Comparative Evaluation of Programming Paradigms: Separation of Concerns
with Object-, Aspect-, and Context-Oriented Programming

Fumiya Kato, Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukazawa

Dept. Computer Science and Engineering
Waseda University
Tokyo, Japan
E-mail: fum _kato@asagi.waseda.jp

Abstract OOP, AOP, and COP and perform comparative experimen-
tation on these paradigms to research their effectiveness of
. : . achieving SoC. To measure the effectiveness of achieving
aration of concerns (SoC). Each paradigm modularizes) o .
SoC, we perform experimentation in terms of the descrip-

concerns in a different way. Context-oriented program- . :
ming (COP) has been developed as a supplement to Objec,[yon amount and the locality of change. The purpose of this

oriented programming (OOP), which is one of the mosﬁsm_dy is to answert_he_ following research questloqs (RQs):
: . . Q1: Do the description amount and the locality of
widely used paradigms for SoC. It modularizes concerns

- . change differ in implementing programs with the
that are difficult for OOP. In this paper, we focus on three same requirement by OOP, AOP, and COP?

paradigms - OOP, aspect-oriented programming (Proposegz: Are there any situations in 'which COP is superior
as a supplement to OOP that has a different approach from or inferior to OOP and AOP in terms of the descrip-
COP), and COP - and study whether COP can modular- tion amount and the locality of change?
ize concerns better than other two paradigms in given siRQ3: What features of COP result in its superiority to
uations. Then we determine the reasons why COP can or OOP and AOP?
cannot better modularize concerns. RQ4: What features of COP result in its inferiority to

OOP and AOP?

The contributions of this paper are as follows:

e Suggestion of the comparative evaluation scheme
1. INTRODUCTION for programming paradigms.

_ e The comparative results of the superiority or infe-
In software development, the separation of concerns riority of OOP, AOP, and COP in terms of the de-

There are many programming paradigms for the sep-

(SoC) is an important matter. To deal with SoC, numer- scription amount and the locality of change.
ous programming paradigms have been proposed. Object- e Specification of the causes of superiority and inferi-
oriented programming (OOP) is one of the most widely ority in the comparative results.

used paradigms. However, some concerns called cross- The rest of the paper is structured as follows. Section
cutting concerns (CCCs) are difficult to modularize for 2 introduces the cross-cutting concerns that are difficult to
OOP and are often scattered over modules in a program. Asnodularize by OOP, and how AOP and OOP modularize
a supplement to OOP, aspect-oriented programming (AOP)such concerns. Section 3 presents the study format: the
has been proposed. AOP modularizes CCCaspgctshat purpose of study, the method of comparative study, and the
weave codes into other modules. programming languages used. Section 4 shows the results
In recent years, context-oriented programming (COP) of the study and our analysis. We discuss related works in
has been proposed as a supplement to OOP that has a difSection 5 and summarize the paper in Section 6.
ferent approach from AOP. COP modularizes behavior that
depends on the state of executionlagers Several COP 2. BACKGROUND
languages have been developed [1, 2, 3] however, there ha
been little research on the situations COP is most effective
for developing and how COP modularizes concerns better CCC is a type of concern that is entangled with other
than the other paradigms. concerns. As the source code level, CCCs are often scat-
In this paper, we focus on three programming paradigms:tered over modules in a program. For instance, logging to

3.1. Cross-Cutting Concerns

class Foo { class Bar { class Baz { class Foo { class Bar { blass Baz {
void foometh O { void barmeth O { void bazmeth O { void foometh O { void barmeth O { void bazmeth () {
) ‘ | |
loggerlogging(; | loggerlogging(); loggerlogging(;
bt .t bt | with{new Logging()) |
class Foo { class Bar { class Baz { Layer Logging{) {
void foometh () { void barmethQ { | void bazmeth () {

void Foo.foometh({ | void BarbarmethQ { | void Baz bazmeth O {

} } \ }} 1 /r}' logger.logging(%; logger.logging(; logger.logging);

proceed(); proceed(); proceed();
aspect Logger {
painteut loggingQ : . L .
execution(void * *meth0); Figure 2. Modularization of CCC with layer
; 0 { the layer is activated. Layers are activatedviiyh state-

afizroerli’ggm‘g% ments. In addition, base definitions can be called from the

1} ggeriogEmels definitions in a layer byproceedstatements.
Figure 1. Cross-cutting concern of logging MPARATIVE EVALUATION HEME
code in OOP (top) and modularization of CCC 3.CO UATION SC
of logging code in AOP (bottom) Figure 3 shows the overview of the comparative evalu-

ation. To detect situations in which COP is superior or in-
carry out debugging is one CCC. As shown in the top of Fig- ferior to OOP and AOP, we performed comparative experi-
ure 1, it is difficult to modularize CCCs by OOP. A logging mentation. In this paper, we created three sample programs
code can be written in many modules in a program in OOP. containing CCCs about changing behavior, implemented
Such a situation worsens maintainability, because scatteredhem in three programming languages, and performed seven
logging codes make programs unreadable, and causing mismodification experimentation. In addition, we implemented

takes in modifying or deleting logging codes. some parts of open-source software (OSS) in Java with each
programming language. From the results of our implemen-
2.2. Aspect-Oriented Programming tation, we discuss the superiority and inferiority of COP.

In the analysis of the results, we use two criteria: de-
AOP has been proposed as a supplement to OOP. AORscription amount and locality of change. For comparison
modularizes CCCs aaspects The bottom of Figure 1 of the locality of change, we created seven change tasks
shows the modularization of CCCs about logging by AOP. a5 follows: add classes related or unrelated to CCCs, add
Aspects separate CCCs from the major concerns that eachyethods related or unrelated to CCCs, rename methods re-
class modularizes by weaving CCC codes into other mod-|ated or unrelated CCCs, and delete CCCs. We counted the
ules. AOP has gointcut-advicemechanism for achieving chunks of code that the change tasks forced to modify.
weaving. Advicedefines the operation woven into other As programming languages for OOP, AOP, and COP, we
modules. Pointcutdefines the modules into which advice g Java, Aspectd [4, 5], and JCop [1] respectively. As-
is woven and the points - for instance, particular methods pecty and JCop are implemented by extending Java. Thus,
are executed or particular types of objects are accessed - ghe forms of the fundamental descriptions of Java, AspectJ,

which woven codes are validated. and JCop are similar. Therefore, the results should be less
_ _ affected by differences in the abstraction level and gram-
2.3. Context-Oriented Programming mar of languages, and more affected by differences among

COP has been proposed as a supplement to OOP via garamgm features.

different approach from AOP. COP can modularize CCCs

about changing behavior depending on the state of execu4. EVALUATION EXPERIMENTATION
tion aslayers A layer defines the methods in other classes.

Methods defined in a layer are executed in a particular state?-1- Target

instead of the original method definitions. Figure 2 shows

the modularization of CCCs about logging by COP. A layer 4.1.1. Sample Programs
defines the methods in other classes with logging codes. To compare OOP, AOP, and COP, we created three
Method definitions with logging codes in a layer can be ex- sample programs that are based on the samples on the JCop
ecuted instead of the base definitions in other classes whemproject page [6]: address book, bank account system, and

‘ QOP | AOP | COP |

Comparative Evaluation

Purpose: To measure the effectiveness of achieving SoC of each paradigm

<<[nterface=>
Renderer

rendName()
rendAddress()
render()

A
/
/
/
/
/
/

Criteria 1: description amount | Criteria 2! locality of change
“Implementation experiments | Applying seven change tasks Person Abstractienderer
r name: String p- Person
Sample 088 with Sample address: String getPerson()
programs Java programs getName() ; setPerson
getAddressQ ;‘ A %
J‘ ’—L—t StandardRenderer
Evaluation Results
77777777777777777777777777777777 rendN ame()
The LOC to implement the The chunks of code that the Switching style of output i _-»| rendAddressO
samples and O8S change tasks force to change || beommmmooeeim st render()
- Figure 4. Design of address book and addi-
Analysis

_ _ tional design concern
Purpose: To determine the reasons why the paradigms

can or cannot better modularize concerns

Fumiya KATO

Fumiya KATO, Chiba Japan

=div class = "person”==* Fumiya KATO?*=</div=

<div class = "person">Fumiya KATO</div>, <i>Chiba Japan</i>

Figure 3. Overview of the comparative evalu-

ation.
Figure 5. Output of address book: each op-

9 itched i |
BMI calculator (https://github.com/FumKato/CompPar- tion is switched independently

adigm). They contain _CCCS about changing b(_ehavior of guideline can be used to recommend to developers the more
seve_ral classes dependmg_on the state of execution. positive use of COP than of OOP. Then we performed a
Figure 4 shows the design of the address book. As theqmparative study of OSS in the Java that decorator pattern
base behavior, the StandardRenderer class implementing g, applied. The OSS we used is JHotDraw 5.3 [7], a Java
Renderer interface outputs the fields of a Person object. Thes | framework for graphics editor. We found four r’JIaces

CCCs about changing behavior enable renderer classes Qg qorator patterns are applied, and rewrote them in AspectJ
switch the styles of output: to render a name with an ad- ;4 JCop.

dress, to add HTML tags, and to decorate outputs' By’

and ‘ _ 7. As shown in Figure 5, each output option is
switched independently. As the description amount, the
lines of code (LOC) to implement the program are counted. The top of Figure 6 shows the LOC to implement sample
As the Change of |Ocality, the seven Change tasks de'ﬁne%rograms in each programming |anguage_ In the three sam-
in Section 3 are applied to the CCCs about output options. ple programs, implementation in Java needs the most LOC,
For instanceAdd-Related-Clasadds a new renderer class gng implementation in JCop needs the least LOC.

so that output options can be set, duitl-Unrelated-Class Table 1 shows the change tasks and chunks of code that
adds a new class unrelated to output options. the tasks forced to change. Add-Related-MethqdAdd-

In the same way as the address book, bank account SYSUnrelated-MethogandRename-Unrelated-Methpinple-
tem has CCCs: logging and encryption of data. The BMI mentation in Aspectd and JCop need less change than in the
calculator, which is a GUI application with a Qt Jambi ¢ase of OOP. In particular, iAdd-Related-Methodf the
framework [8], also has CCCs: switching units of inputand zqdress book and bank account system, implementation in
style of output. JCop needs less change than in the other languages. On the

other hand, inAdd-Related-MethqdJCop has the largest
4.1.2 Open-Source Software number of changed chunks of code.

We perform a comparative study of sample programs The modularization of CCCs about changing behavior in
prior to the comparative study of OSS. The results and anal-sample programs is achieved using the decorator pattern in
ysis of the samples, presented in a later section, indicate thafava, aspects in AspectJ, and layers in JCop.

a correspondence relation between layers in JCop and the The bottom of Figure 6 shows the LOC of implementa-

decorator pattern - one of the GoF design patterns - in Javaion where the decorator pattern is applied in each program-
exists. If JCop improves implementation in the decorator ming language. In three of the four cases, implementation
pattern, we can propose the part of the programs the decin JCop needs the most LOC, and in the other case, it is
orator pattern is applied as the COP usage guideline. Thampossible for implementation in JCop to rewrite the codes

4.2. Evaluation Results

Table 1. Seven change tasks and affected chunks of code.

< >

n ’ indicates the number of times the

tasks, e.g. in Add-Related (Unrelated)-Class n ’ indicates the number of added classes (n > 0).

Address Book Bank Account System BMI Calculator
OOP [AOP [COP | OOP| AOP | COP | OOP | AOP | COP
Add-Related-Class n 0 3n 2n 0 6n 13n | 4n 2n
Add-Unrelated-Class O 0 0 0 0 0 0 0 0
Add-Related-Method 3n 4n 2n 2n 2n 2n 3n 3n 2n
Add-Unrelated-Method n 0 0 2n 0 0 2n 0 0
Rename-Related-Method 3n 2n 2n 2n 2n 2n 2n 2n 2n
Rename-Unrelated-Method 3n 0 0 2n 0 0 2n 0 0
Delete-Concerns n 0 1 n 0 1 6n 0 0
850 331 properly in appropriate situations would improve the soft-
300 Oore ware quality from the viewpoint of the description amount
0 - = and the locality of change compared with that in the case of
o 200 - OO using a single paradigm.
3150 T AO'P(;SPM_D RQ2: Are there any situations in which COP has supe-
00 | L2 u3 0P riority or inferiority to OOP and AOP in terms of the
50 | description amount and the locality of change?
0 The comparative results of the sample programs shown
Address Book Account System BMI Caleulator in the top of Figure 6 indicate that situations in which COP
is superior to OOP and AOP exist from the viewpoint of the
description amount. On the other hand, the results for OSS
shown in the bottom of Figure 6 indicate that situations in
which COP is inferior to OOP and AOP exist.
o P) The results shown in Table 1 indicate that situations in
3 . EDB(e) which COP is both superior and inferior to OOP and AOP
L8l Bt exist from the viewpoint of the locality of change. The situ-
107 115 - ations in which COP is superior to OOP are the change tasks
- of Add-Unrelated-Method, Rename-Unrelated-Mettaod
Diomabor: Deccrstard Cosoraser Descrabid® Delete-Concerns These change tasks affect COP in the

Figure 6. LOC for sample program (top)
and OSS with the decorator pattern (bottom)
implementation in three programming lan-
guages

applied the decorator pattern without changing the funda-
mental structure of the program. Implementation in AspectJ
can reduce LOC in two of the four cases, and in the other
cases LOC increases compared with that in OOP.

4.3. Discussion

RQ1: Do the description amount and the locality of
change differ in implementing programs with the same
requirement by OOP, AOP, and COP?

The comparative result shown in Figure 6 indicates that
the description amount differ in implementing programs

with the same requirement by OOP, AOP, and COP. The re-

sults shown in Table 1 indicate that the localities of change
also differ. Therefore, using the programming paradigms

same way as AOP. IAdd-Related-ClassCOP is less af-
fected than OOP and AOP.

RQ3: What features of COP result in its superiority to
OOP and AOP?

The situations in which COP is superior to other two
paradigms can be classified under two types of descriptions:
necessary for Java but unnecessary for Aspectd and JCop,
and necessary for AspectJ but unnecessary for JCop.

First, we discuss the former. As mentioned above, the
decorator pattern is applied in implementation in Java. Fig-
ure 7 shows that the concerns about changing behavior
are implemented as the Html class; such a class is called
decorator class The Html class changes the behavior of
StandardRenderer class - such classes are catlegbo-
nent classes through the field of a component class ob-
ject. Therefore, decorator classes need descriptions that set
and get component class objects. On the other hand, im-
plementation in AspectJ or JCop does not need such de-
scriptions, because aspects and layers have mechanisms of
weaving codes that change behavior into other classes.

~<Interface=> <<fnterface>> <<Interface>>
Renderer Renderer Renderer
render render render
<=<aspect>> %
DecoratorRenderer
AbstractRenderer - Renderer AbstractRenderer Html
p: Person . p- Forson AbstractRenderer
getPerson <H® etRenderer i pointeut’ render p: Person =<layer>>
tP getRenderer et erson advice: render getPerson Html
setterson setPerson
pointeut setPerson
) . render
% LP L % 1 advice ‘ .
StandardRenderer Html StandardRerda %
ancar erer] weaving Stand ardR enderer weavin
render render yZ4 g
render FZ4
| | I ! render /
\ |

A chunk of code influenced by
the method unrelated to the concern

A chunk of code influenced by
the method related to the concern

Figure 7. Part of address book program implemented in Java (left), AspectJ (center), and JCop (right).

Furthermore, a decorator class needs to implement thederer class is added. The TableRenderer class has meth-
same interface with a component class in implementationods that changes behavior the same as the StandardRenderer
in Java. Therefore, a decorator class needs to define notlass. This change task does not force an aspect to change
only the methods that change behavior but also other meth-any codes, because the pointcut rendering in the Html as-
ods unrelated to the concerns about changing behavior. Orpect already defines the classes that are weaved codes as
the other hand, aspects and layers do not need to define theubclasses of the Renderer interface. Such a definition is
methods unrelated to the concerns about changing behavachieved by‘ Renderer+ .
ior, because if aspects or layers do not describe the methods On the other handAdd-Related-Clasforces layers to
of other classes, the methods defined in each class are jusiescribe redundant method definitions as shown in Figure
called. For that reason, adding methods unrelated to theg. An Html layer needs to describe almost the same method
concerns about changing behavior does not force aspects adefinitions that differ only in class path to weave into the
layers to change any codes and only implementation in JavaStandardRenderer and TableRenderer classes, because each
need to change codes as shown in Figure 7. method definition is bound on only one class. Therefore,

Secondly, we present the later. Figure 7 shows the exam-situations in which COP is inferior to OOP and AOP exist.
ple. Adding a method that changes behavior forces decora- The main reasons why implementation in JCop needs
tor classes, aspects, and layers to change codes. To adoptore LOC than that in other languages in OSS are the same
the added method, aspects need to define advice - that is thas those for sample programs. A decorator class is often
operation weaved into other classes - and the pointcut thatapplied to two or more component classes; therefore, im-
defines the classes and timing advice is weaved for each adplementation in JCop needs redundant method definitions
vice. Therefore, two chunks of code - pointcut and advice - such as in the example given in Figure 8.
are needed for each new method that changes behavior. On |n addition, layers in JCop cannot define members that
the other hand, the method definitions in layers are boundare not weaved into other classes. Therefore, in Java, if dec-
to only classes weaved codes. The timing at which weavedorator classes define private members, layers cannot define
codes are validated is bound to layers. Therefore, if the tim-such members. Thus, each class that is weaved code by lay-
ing of validating weaved codes is common to the methods ers needs to define members that are accessed by only lay-

defined in a layer, JCop defines it only once no matter how ers. For this reason, implementation in JCop makes codes
many methods are defined in a layer. For these reasons, imaccessed by only layers scattered.

plementation in JCop needs less change irhtiheé-Related-
Methodthan that in AspectJ.
RQ4: What features of COP result in its inferiority to

OOP and AOP? The results and analysis are based on our implementa-
The situations in which COP shows inferiority originate tion in each programming paradigm. Therefore, threats to
from the change taskdd-Related-Clasm Table 1 and the internal validity exist, because the affect of the difference
results of the decorator pattern in OSS shown in Figure 6.in the developer on the comparative results is not discussed
Figure 8 shows an example: part of the address book pro-in this paper. As future work, we will perform implementa-
gram. In the change tagkdd-Related-Classhe TableRen- tion experimentation with several programmers to validate

4.4. Threats to Validity

interface Renderer

: ‘ proposed. From the viewpoints of the description amount

class StandardRenderer class TableRenderer and the locality of change, we performed comparative stud-

sm“"aiatﬂ“ﬂem{ Smﬂ::';“‘endmﬂ ies of OOP, AOP, and COP to detect situations in which
L, return rendNamef); COP achieves better SoC and determine the reason why
3.3 ™ 1y XN COP can or cannot achieve better SoC. From these results,

\ several avenues for future work exist.

aspect Him { \/\ layer Himl { The next step would be a comparative study with larger
pointeut render(): String StandardRen erer.render(){

execute(String Renderer+.render()); return "<div>" + prodeed() + "</div=";} prOJeCtS applylng metrlCS- used in prl_or works [11’ 13] A
String around(): render() { String TableRenderer. 0 { comparative study focusing on multi-perspective analysis

}m;“m "<div="+proceed()+"</div>"; “‘;‘“’1"“’“"' +wroceed0 +"</div>"} | \yould also be interesting, for instance, reusability, implicit-
ness, ease of description, and learning cost. A second line of

work would be to discuss and develop a COP language that
improves the inferior situations detected in this research.

Figure 8. Situation in which COP has infe-
riority to OOP and AOP. Adding a new re-
lated class forces layers to describe redun-

dant method definitions that differ only in References
class path. [1] Appeltauer, M. et al. : Event-Specific Software Com-
the generality of the results and analysis discussed in this Sgsg'g_n?'; Context-Oriented Programming, SC 2010,
paper. [2] Appeltauer, M. et al. : Context-oriented Programming
with Java, 26th JSSST Annual Conference, 2009.
5. RELATED WORK [3] Salvaneschi, G. et al. : JavaCtx: Seamless
In recent years, many COP languages have been devel- Toolchain Integration for Context-Oriented Program-

oped [9] including those for Java [1, 2, 3, 10]. These studies ming, COP’11, 2011.

focused on specification of the languages and their perfor- [4] Aspect], http://www.eclipse.org/aspectj/

mance of execution. However, these studies do not evaluate [5] Kiczales, G. etal. : An Overview of AspectJ, ECOOP
how degree and what situations these languages can achieve ‘01, pp. 327-353, 2001.

SoC compared with other programming paradigms. [6] JCop-Context-Criented Program-
The prior works that have guided this study is given ming Projects, http_s:_//www.hpl.unl-
in [11, 12, 14, 15]. Figueiredo et. al [11] performed a potsdam.de/hirschfeld/trac/Cop/wiki/JCop

quantitative study of AOP that investigated the efficacy of [7] JHotDraw, http://www.jhotdraw.org/

AOP to prolong design stability of software product lines. [8] Qt Jambi, http:/qt-jabmi.org/

This study focused upon a multi-perspective analysis in [9] Schippers, H. et al. : An Implementation Substrate
terms of modularity, change propagation, and feature de- for Languages Composing Modularized Crosscutting
pendency measured by metrics for concerns [13]. Kiczales Concerns, SAC'09, pp. 1944-1951, 2009.

and Mezini [14] performed comparative study of program- [10] Hirschfeld, R. et al. : Context-oriented Programming,

ming paradigms, which dealt with procedure calls, pointcut- Journal of Object Technology, Vol. 7, No. 3, pp.125-
advice, and annotation by the implementation of a sample 151, 2008.

program. The comparison was in terms of the locality and [11] Figueiredo, E. et al. : Evolving Software Product
the implicitness. Hannemann and Kiczales [15] performed Lines with Aspects: An Empirical Study on Design

study of improving design patterns by AOP, which showed Stability, ICSE’ 08, pp. 261-270, 2008.
a comparison of Java and AspectJ by implementation of[12] Soares, S. etal. : Implementing Distribution and Per-
sample programs including design patterns. The compar- sistece Aspects with AspectJ, OOPSLA02, pp. 174-

ison was in terms of the modularity and the reusability. 190, 2002.
Our study is inspired by these studies and focuses on COP[13] Figueiredo, E. et al. : On the Maintainability of
We perform comparative studies in terms of the description Aspect-Oriented Software: A Concern-Oriented Mea-

amount and the locality of change measured by basic met- ~ surement Framework, CSMR 2008, pp. 183-192, 2008
rics such as LOC and chunks of code as a first step towards
the evaluation of the efficacy of COP to deal with CCCs. [14] Kiczales, G. and Mezini, M.: Separation of Concerns
with Procedures, Annotations, Advice and Pointcuts,
6. CONCLUSIONS AND FUTURE WORK ECOOQP 2005, pp. 195-213, 2004.
[15] Hannemann, J. and Kiczales, G.: Design Pattern Im-

As the programming paradigm that achieves SoC with a plementation in Java and Aspect], OOPSLA02, 2002.
different approach from existing paradigms, COP has been

