
Comparative Evaluation of Programming Paradigms: Separation of Concerns
with Object-, Aspect-, and Context-Oriented Programming

Fumiya Kato, Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukazawa

Dept. Computer Science and Engineering
Waseda University

Tokyo, Japan
E-mail: fum kato@asagi.waseda.jp

Abstract

There are many programming paradigms for the sep-
aration of concerns (SoC). Each paradigm modularizes
concerns in a different way. Context-oriented program-
ming (COP) has been developed as a supplement to object-
oriented programming (OOP), which is one of the most
widely used paradigms for SoC. It modularizes concerns
that are difficult for OOP. In this paper, we focus on three
paradigms - OOP, aspect-oriented programming (proposed
as a supplement to OOP that has a different approach from
COP), and COP - and study whether COP can modular-
ize concerns better than other two paradigms in given sit-
uations. Then we determine the reasons why COP can or
cannot better modularize concerns.

1. INTRODUCTION

In software development, the separation of concerns
(SoC) is an important matter. To deal with SoC, numer-
ous programming paradigms have been proposed. Object-
oriented programming (OOP) is one of the most widely
used paradigms. However, some concerns called cross-
cutting concerns (CCCs) are difficult to modularize for
OOP and are often scattered over modules in a program. As
a supplement to OOP, aspect-oriented programming (AOP)
has been proposed. AOP modularizes CCCs asaspectsthat
weave codes into other modules.

In recent years, context-oriented programming (COP)
has been proposed as a supplement to OOP that has a dif-
ferent approach from AOP. COP modularizes behavior that
depends on the state of execution aslayers. Several COP
languages have been developed [1, 2, 3] however, there has
been little research on the situations COP is most effective
for developing and how COP modularizes concerns better
than the other paradigms.

In this paper, we focus on three programming paradigms:

OOP, AOP, and COP and perform comparative experimen-
tation on these paradigms to research their effectiveness of
achieving SoC. To measure the effectiveness of achieving
SoC, we perform experimentation in terms of the descrip-
tion amount and the locality of change. The purpose of this
study is to answer the following research questions (RQs):

RQ1: Do the description amount and the locality of
change differ in implementing programs with the
same requirement by OOP, AOP, and COP?

RQ2: Are there any situations in which COP is superior
or inferior to OOP and AOP in terms of the descrip-
tion amount and the locality of change?

RQ3: What features of COP result in its superiority to
OOP and AOP?

RQ4: What features of COP result in its inferiority to
OOP and AOP?

The contributions of this paper are as follows:
• Suggestion of the comparative evaluation scheme

for programming paradigms.
• The comparative results of the superiority or infe-

riority of OOP, AOP, and COP in terms of the de-
scription amount and the locality of change.

• Specification of the causes of superiority and inferi-
ority in the comparative results.

The rest of the paper is structured as follows. Section
2 introduces the cross-cutting concerns that are difficult to
modularize by OOP, and how AOP and OOP modularize
such concerns. Section 3 presents the study format: the
purpose of study, the method of comparative study, and the
programming languages used. Section 4 shows the results
of the study and our analysis. We discuss related works in
Section 5 and summarize the paper in Section 6.

2. BACKGROUND

2.1. CrossCutting Concerns

CCC is a type of concern that is entangled with other
concerns. As the source code level, CCCs are often scat-
tered over modules in a program. For instance, logging to

1



Figure 1. Crosscutting concern of logging
code in OOP (top) and modularization of CCC
of logging code in AOP (bottom)

carry out debugging is one CCC. As shown in the top of Fig-
ure 1, it is difficult to modularize CCCs by OOP. A logging
code can be written in many modules in a program in OOP.
Such a situation worsens maintainability, because scattered
logging codes make programs unreadable, and causing mis-
takes in modifying or deleting logging codes.

2.2. AspectOriented Programming

AOP has been proposed as a supplement to OOP. AOP
modularizes CCCs asaspects. The bottom of Figure 1
shows the modularization of CCCs about logging by AOP.
Aspects separate CCCs from the major concerns that each
class modularizes by weaving CCC codes into other mod-
ules. AOP has apointcut-advicemechanism for achieving
weaving. Advicedefines the operation woven into other
modules. Pointcutdefines the modules into which advice
is woven and the points - for instance, particular methods
are executed or particular types of objects are accessed - at
which woven codes are validated.

2.3. ContextOriented Programming

COP has been proposed as a supplement to OOP via a
different approach from AOP. COP can modularize CCCs
about changing behavior depending on the state of execu-
tion aslayers. A layer defines the methods in other classes.
Methods defined in a layer are executed in a particular state
instead of the original method definitions. Figure 2 shows
the modularization of CCCs about logging by COP. A layer
defines the methods in other classes with logging codes.
Method definitions with logging codes in a layer can be ex-
ecuted instead of the base definitions in other classes when

Figure 2. Modularization of CCC with layer

the layer is activated. Layers are activated bywith state-
ments. In addition, base definitions can be called from the
definitions in a layer byproceedstatements.

3. COMPARATIVE EVALUATION SCHEME

Figure 3 shows the overview of the comparative evalu-
ation. To detect situations in which COP is superior or in-
ferior to OOP and AOP, we performed comparative experi-
mentation. In this paper, we created three sample programs
containing CCCs about changing behavior, implemented
them in three programming languages, and performed seven
modification experimentation. In addition, we implemented
some parts of open-source software (OSS) in Java with each
programming language. From the results of our implemen-
tation, we discuss the superiority and inferiority of COP.

In the analysis of the results, we use two criteria: de-
scription amount and locality of change. For comparison
of the locality of change, we created seven change tasks
as follows: add classes related or unrelated to CCCs, add
methods related or unrelated to CCCs, rename methods re-
lated or unrelated CCCs, and delete CCCs. We counted the
chunks of code that the change tasks forced to modify.

As programming languages for OOP, AOP, and COP, we
use Java, AspectJ [4, 5] , and JCop [1] respectively. As-
pectJ and JCop are implemented by extending Java. Thus,
the forms of the fundamental descriptions of Java, AspectJ,
and JCop are similar. Therefore, the results should be less
affected by differences in the abstraction level and gram-
mar of languages, and more affected by differences among
paradigm features.

4. EVALUATION EXPERIMENTATION

4.1. Target

4.1.1. Sample Programs

To compare OOP, AOP, and COP, we created three
sample programs that are based on the samples on the JCop
project page [6]: address book, bank account system, and

2



Figure 3. Overview of the comparative evalu
ation.

BMI calculator (https://github.com/FumKato/CompPar-
adigm). They contain CCCs about changing behavior of
several classes depending on the state of execution.

Figure 4 shows the design of the address book. As the
base behavior, the StandardRenderer class implementing a
Renderer interface outputs the fields of a Person object. The
CCCs about changing behavior enable renderer classes to
switch the styles of output: to render a name with an ad-
dress, to add HTML tags, and to decorate outputs by‘ * ’
and‘ ’. As shown in Figure 5, each output option is
switched independently. As the description amount, the
lines of code (LOC) to implement the program are counted.
As the change of locality, the seven change tasks defined
in Section 3 are applied to the CCCs about output options.
For instance,Add-Related-Classadds a new renderer class
so that output options can be set, andAdd-Unrelated-Class
adds a new class unrelated to output options.

In the same way as the address book, bank account sys-
tem has CCCs: logging and encryption of data. The BMI
calculator, which is a GUI application with a Qt Jambi
framework [8], also has CCCs: switching units of input and
style of output.

4.1.2 OpenSource Software

We perform a comparative study of sample programs
prior to the comparative study of OSS. The results and anal-
ysis of the samples, presented in a later section, indicate that
a correspondence relation between layers in JCop and the
decorator pattern - one of the GoF design patterns - in Java
exists. If JCop improves implementation in the decorator
pattern, we can propose the part of the programs the dec-
orator pattern is applied as the COP usage guideline. The

Figure 4. Design of address book and addi
tional design concern

Figure 5. Output of address book: each op
tion is switched independently

guideline can be used to recommend to developers the more
positive use of COP than of OOP. Then we performed a
comparative study of OSS in the Java that decorator pattern
are applied. The OSS we used is JHotDraw 5.3 [7], a Java
GUI framework for graphics editor. We found four places
decorator patterns are applied, and rewrote them in AspectJ
and JCop.

4.2. Evaluation Results

The top of Figure 6 shows the LOC to implement sample
programs in each programming language. In the three sam-
ple programs, implementation in Java needs the most LOC,
and implementation in JCop needs the least LOC.

Table 1 shows the change tasks and chunks of code that
the tasks forced to change. InAdd-Related-Method, Add-
Unrelated-Method, andRename-Unrelated-Method, imple-
mentation in AspectJ and JCop need less change than in the
case of OOP. In particular, inAdd-Related-Methodof the
address book and bank account system, implementation in
JCop needs less change than in the other languages. On the
other hand, inAdd-Related-Method, JCop has the largest
number of changed chunks of code.

The modularization of CCCs about changing behavior in
sample programs is achieved using the decorator pattern in
Java, aspects in AspectJ, and layers in JCop.

The bottom of Figure 6 shows the LOC of implementa-
tion where the decorator pattern is applied in each program-
ming language. In three of the four cases, implementation
in JCop needs the most LOC, and in the other case, it is
impossible for implementation in JCop to rewrite the codes

3



Table 1. Seven change tasks and affected chunks of code. ‘ n ’indicates the number of times the
tasks, e.g. in Add-Related (Unrelated)-Class,‘ n ’indicates the number of added classes (n > 0).

Address Book Bank Account System BMI Calculator
OOP AOP COP OOP AOP COP OOP AOP COP

Add-Related-Class n 0 3n 2n 0 6n 13n 4n 2n
Add-Unrelated-Class 0 0 0 0 0 0 0 0 0
Add-Related-Method 3n 4n 2n 2n 2n 2n 3n 3n 2n

Add-Unrelated-Method n 0 0 2n 0 0 2n 0 0
Rename-Related-Method 3n 2n 2n 2n 2n 2n 2n 2n 2n

Rename-Unrelated-Method 3n 0 0 2n 0 0 2n 0 0
Delete-Concerns n 0 1 n 0 1 6n 0 0

Figure 6. LOC for sample program (top)
and OSS with the decorator pattern (bottom)
implementation in three programming lan
guages

applied the decorator pattern without changing the funda-
mental structure of the program. Implementation in AspectJ
can reduce LOC in two of the four cases, and in the other
cases LOC increases compared with that in OOP.

4.3. Discussion

RQ1: Do the description amount and the locality of
change differ in implementing programs with the same
requirement by OOP, AOP, and COP?

The comparative result shown in Figure 6 indicates that
the description amount differ in implementing programs
with the same requirement by OOP, AOP, and COP. The re-
sults shown in Table 1 indicate that the localities of change
also differ. Therefore, using the programming paradigms

properly in appropriate situations would improve the soft-
ware quality from the viewpoint of the description amount
and the locality of change compared with that in the case of
using a single paradigm.
RQ2: Are there any situations in which COP has supe-
riority or inferiority to OOP and AOP in terms of the
description amount and the locality of change?

The comparative results of the sample programs shown
in the top of Figure 6 indicate that situations in which COP
is superior to OOP and AOP exist from the viewpoint of the
description amount. On the other hand, the results for OSS
shown in the bottom of Figure 6 indicate that situations in
which COP is inferior to OOP and AOP exist.

The results shown in Table 1 indicate that situations in
which COP is both superior and inferior to OOP and AOP
exist from the viewpoint of the locality of change. The situ-
ations in which COP is superior to OOP are the change tasks
of Add-Unrelated-Method, Rename-Unrelated-Method, and
Delete-Concerns. These change tasks affect COP in the
same way as AOP. InAdd-Related-Class, COP is less af-
fected than OOP and AOP.
RQ3: What features of COP result in its superiority to
OOP and AOP?

The situations in which COP is superior to other two
paradigms can be classified under two types of descriptions:
necessary for Java but unnecessary for AspectJ and JCop,
and necessary for AspectJ but unnecessary for JCop.

First, we discuss the former. As mentioned above, the
decorator pattern is applied in implementation in Java. Fig-
ure 7 shows that the concerns about changing behavior
are implemented as the Html class; such a class is called
decorator class. The Html class changes the behavior of
StandardRenderer class - such classes are calledcompo-
nent classes- through the field of a component class ob-
ject. Therefore, decorator classes need descriptions that set
and get component class objects. On the other hand, im-
plementation in AspectJ or JCop does not need such de-
scriptions, because aspects and layers have mechanisms of
weaving codes that change behavior into other classes.

4



Figure 7. Part of address book program implemented in Java (left), AspectJ (center), and JCop (right).

Furthermore, a decorator class needs to implement the
same interface with a component class in implementation
in Java. Therefore, a decorator class needs to define not
only the methods that change behavior but also other meth-
ods unrelated to the concerns about changing behavior. On
the other hand, aspects and layers do not need to define the
methods unrelated to the concerns about changing behav-
ior, because if aspects or layers do not describe the methods
of other classes, the methods defined in each class are just
called. For that reason, adding methods unrelated to the
concerns about changing behavior does not force aspects or
layers to change any codes and only implementation in Java
need to change codes as shown in Figure 7.

Secondly, we present the later. Figure 7 shows the exam-
ple. Adding a method that changes behavior forces decora-
tor classes, aspects, and layers to change codes. To adopt
the added method, aspects need to define advice - that is the
operation weaved into other classes - and the pointcut that
defines the classes and timing advice is weaved for each ad-
vice. Therefore, two chunks of code - pointcut and advice -
are needed for each new method that changes behavior. On
the other hand, the method definitions in layers are bound
to only classes weaved codes. The timing at which weaved
codes are validated is bound to layers. Therefore, if the tim-
ing of validating weaved codes is common to the methods
defined in a layer, JCop defines it only once no matter how
many methods are defined in a layer. For these reasons, im-
plementation in JCop needs less change in theAdd-Related-
Methodthan that in AspectJ.
RQ4: What features of COP result in its inferiority to
OOP and AOP?

The situations in which COP shows inferiority originate
from the change taskAdd-Related-Classin Table 1 and the
results of the decorator pattern in OSS shown in Figure 6.
Figure 8 shows an example: part of the address book pro-
gram. In the change taskAdd-Related-Class, the TableRen-

derer class is added. The TableRenderer class has meth-
ods that changes behavior the same as the StandardRenderer
class. This change task does not force an aspect to change
any codes, because the pointcut rendering in the Html as-
pect already defines the classes that are weaved codes as
subclasses of the Renderer interface. Such a definition is
achieved by‘ Renderer+’.

On the other hand,Add-Related-Classforces layers to
describe redundant method definitions as shown in Figure
8. An Html layer needs to describe almost the same method
definitions that differ only in class path to weave into the
StandardRenderer and TableRenderer classes, because each
method definition is bound on only one class. Therefore,
situations in which COP is inferior to OOP and AOP exist.

The main reasons why implementation in JCop needs
more LOC than that in other languages in OSS are the same
as those for sample programs. A decorator class is often
applied to two or more component classes; therefore, im-
plementation in JCop needs redundant method definitions
such as in the example given in Figure 8.

In addition, layers in JCop cannot define members that
are not weaved into other classes. Therefore, in Java, if dec-
orator classes define private members, layers cannot define
such members. Thus, each class that is weaved code by lay-
ers needs to define members that are accessed by only lay-
ers. For this reason, implementation in JCop makes codes
accessed by only layers scattered.

4.4. Threats to Validity

The results and analysis are based on our implementa-
tion in each programming paradigm. Therefore, threats to
internal validity exist, because the affect of the difference
in the developer on the comparative results is not discussed
in this paper. As future work, we will perform implementa-
tion experimentation with several programmers to validate

5



Figure 8. Situation in which COP has infe
riority to OOP and AOP. Adding a new re
lated class forces layers to describe redun
dant method definitions that differ only in
class path.

the generality of the results and analysis discussed in this
paper.

5. RELATED WORK

In recent years, many COP languages have been devel-
oped [9] including those for Java [1, 2, 3, 10]. These studies
focused on specification of the languages and their perfor-
mance of execution. However, these studies do not evaluate
how degree and what situations these languages can achieve
SoC compared with other programming paradigms.

The prior works that have guided this study is given
in [11, 12, 14, 15]. Figueiredo et. al [11] performed a
quantitative study of AOP that investigated the efficacy of
AOP to prolong design stability of software product lines.
This study focused upon a multi-perspective analysis in
terms of modularity, change propagation, and feature de-
pendency measured by metrics for concerns [13]. Kiczales
and Mezini [14] performed comparative study of program-
ming paradigms, which dealt with procedure calls, pointcut-
advice, and annotation by the implementation of a sample
program. The comparison was in terms of the locality and
the implicitness. Hannemann and Kiczales [15] performed
study of improving design patterns by AOP, which showed
a comparison of Java and AspectJ by implementation of
sample programs including design patterns. The compar-
ison was in terms of the modularity and the reusability.
Our study is inspired by these studies and focuses on COP.
We perform comparative studies in terms of the description
amount and the locality of change measured by basic met-
rics such as LOC and chunks of code as a first step towards
the evaluation of the efficacy of COP to deal with CCCs.

6. CONCLUSIONS AND FUTURE WORK

As the programming paradigm that achieves SoC with a
different approach from existing paradigms, COP has been

proposed. From the viewpoints of the description amount
and the locality of change, we performed comparative stud-
ies of OOP, AOP, and COP to detect situations in which
COP achieves better SoC and determine the reason why
COP can or cannot achieve better SoC. From these results,
several avenues for future work exist.

The next step would be a comparative study with larger
projects applying metrics used in prior works [11, 13]. A
comparative study focusing on multi-perspective analysis
would also be interesting, for instance, reusability, implicit-
ness, ease of description, and learning cost. A second line of
work would be to discuss and develop a COP language that
improves the inferior situations detected in this research.

References

[1] Appeltauer, M. et al. : Event-Specific Software Com-
position in Context-Oriented Programming, SC 2010,
pp. 50-75.

[2] Appeltauer, M. et al. : Context-oriented Programming
with Java, 26th JSSST Annual Conference, 2009.

[3] Salvaneschi, G. et al. : JavaCtx: Seamless
Toolchain Integration for Context-Oriented Program-
ming, COP’11, 2011.

[4] AspectJ, http://www.eclipse.org/aspectj/
[5] Kiczales, G. et al. : An Overview of AspectJ, ECOOP

’01, pp. 327-353, 2001.
[6] JCop-Context-Oriented Program-

ming Projects, https://www.hpi.uni-
potsdam.de/hirschfeld/trac/Cop/wiki/JCop

[7] JHotDraw, http://www.jhotdraw.org/
[8] Qt Jambi, http://qt-jabmi.org/
[9] Schippers, H. et al. : An Implementation Substrate

for Languages Composing Modularized Crosscutting
Concerns, SAC’09, pp. 1944-1951, 2009.

[10] Hirschfeld, R. et al. : Context-oriented Programming,
Journal of Object Technology, Vol. 7, No. 3, pp.125-
151, 2008.

[11] Figueiredo, E. et al. : Evolving Software Product
Lines with Aspects: An Empirical Study on Design
Stability, ICSE’ 08, pp. 261-270, 2008.

[12] Soares, S. et al. : Implementing Distribution and Per-
sistece Aspects with AspectJ, OOPSLA’02, pp. 174-
190, 2002.

[13] Figueiredo, E. et al. : On the Maintainability of
Aspect-Oriented Software: A Concern-Oriented Mea-
surement Framework, CSMR 2008, pp. 183-192, 2008

[14] Kiczales, G. and Mezini, M.: Separation of Concerns
with Procedures, Annotations, Advice and Pointcuts,
ECOOP 2005, pp. 195-213, 2004.

[15] Hannemann, J. and Kiczales, G.: Design Pattern Im-
plementation in Java and AspectJ, OOPSLA’02, 2002.

6


