
A Metrics Suite for Measuring Quality

Characteristics of JavaBeans Components

Hironori Washizaki, Hiroki Hiraguchi, and Yoshiaki Fukazawa

Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan
{washi, h hira, fukazawa}@fuka.info.waseda.ac.jp

Abstract. In component-based software development, it is necessary to
measure the quality of components before they are built into the sys-
tem in order to ensure the high quality of the entire system. However,
in application development with component reuse, it is difficult to use
conventional metrics because the source codes of components cannot be
obtained, and these metrics require analysis of source codes. Moreover,
conventional techniques do not cover the whole of quality characteristics.
In this paper, we propose a suite of metrics for measuring quality of Jav-
aBeans components based on limited information that can be obtained
from the outside of components without any source codes. Our suite con-
sists of 21 metrics, which are associated with quality characteristics based
on the ISO9126 quality model. Our suite utilizes the qualitative evalu-
ation data available on WWW to empirically identify effective metrics,
and to derive a reference value (threshold) for each metric. As a result
of evaluation experiments, it is found our suite can be used to effectively
identify black-box components with high quality. Moreover we confirmed
that our suite can form a systematic framework for component quality
metrics that includes conventional metrics and newly defined metrics.

1 Introduction

Component-based software development (CBD) has become widely accepted as a
cost-effective approach to software development, as it emphasizes the design and
construction of software systems using reusable components[1]. In this paper,
we use object-oriented (OO) programming language for the implementation of
components. CBD does not always have to be object-oriented; however, it has
been indicated that using OO paradigm/language is a natural way to model and
implement components[2].

Low-quality individual components will result in an overall software package
of low quality. It is therefore important to have product metrics for measuring
the quality of component units. A variety of product metrics have been proposed
for components[3,4,5,6]; however, nobody has so far reported on the results of a
comprehensive investigation of quality characteristics.

In this paper we propose a suite of metrics that provide a comprehensive
mechanism for judging the quality characteristics of high-quality black-box com-
ponents, chiefly from the viewpoint of users.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 45–60, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

46 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

2 Component-Based Development and JavaBeans

A component is a replaceable/reusable software unit that provides a certain func-
tion. Components are generally implemented in an object-oriented programming
language.Component-baseddevelopment is amethod for determining the software
architecture (component architecture) that forms a development platform, reusing
executable components or developing new components according to the architec-
ture standard, and combining the resulting components to develop new software.

With the appearance of comprehensive development environments based on
a visual component assembly metaphor and the popularization of environments
for implementing web applications (JSP, ASP, etc.), client components have
already become popular way of implementing items such as GUI components
and general-purpose logic components[8]. Therefore this paper is concerned with
JavaBeans components[10] as the subject of quality measurements.

2.1 JavaBeans Technology

JavaBeans is a component architecture for developing and using local compo-
nents in the Java language. A JavaBeans component (”bean”) is defined as a
single class in the Java language that satisfies the two conditions listed below.
Accordingly, a bean has constructors, fields and methods, which are the con-
stituent elements of ordinary classes.

– It has an externally accessible default constructor that does not take any
arguments, and can be instantiated simply by specifying the class name.

– It includes a java.io.Serializable interface and is capable of being
serialized.

Figure 1 shows the UML class diagram of an example of a bean. In this
example, the Chart class is a bean according to this definition. In JavaBeans, in
addition to the above mentioned definition, it is recommended that the target
class and associated classes conform to the following mechanism to make it easier
for them to be handled by development environments and other beans:

– Properties: A property is a named characteristic whose value can be set
and/or got (read) from outside the bean. In target classes that are handled
as beans, a property is defined by implementing a setting method that al-
lows the value of a characteristic to be externally set, and a getting method
that allows the value of a characteristic to be externally read. Methods of
both types are called property access methods. Property access methods are
chiefly implemented according to the naming rules and the method typing.
When the target class has a getXyz() method that returns a value of type
A (or a setXyz() method that requires a argument value of type A), then
it can be inferred that the class has a writable (or readable) property xyz.
Most of a bean’s properties tend to have a one-to-one correspondence to
the fields implemented in the bean class[5]). In the example shown in Fig 1,
the Chart class has the methods setTitle and getTitle() for setting and

A Metrics Suite for Measuring Quality Characteristics 47

Grid Border

Chart

- title: String
+ Chart()
+ getTitle() : String
+ setTitle(String): void
+ plot(): void
+ addUpdatedListener(UpdatedListener): void
+ removeUpdatedListener(UpdatedListener): void

ChartBeanInfoChartBeanInfo

<<interface>>
java::beans::BeanInfo

<<interface>>
java::beans::BeanInfo

Packaged in the same JAR file

<<interface>>
java::io::Serializable

<<interface>>
java::io::Serializable

UpdatedListenerUpdatedListener

UpdatedEventUpdatedEvent

Fig. 1. Example of a bean and its associated classes (UML class diagram)

getting the value of a title field. Accordingly, the Chart bean has a title
property whose value can be set and got.

– Methods: A method is a function that is provided for external interaction
with a bean. In target classes that are handled as beans, they are defined by
implementing public methods that can be called externally. In the example
of Fig 1, the Chart bean has a plot() method.

– Events: An event is a mechanism for externally announcing that certain
circumstances have arisen inside a bean. The constituent elements of an
event are an event source, and event listener, and an event object. In the
example of Fig. 1, the Chart bean has an Updated event.

The above mentioned definitions and mechanisms do not guarantee that it will
exist in an environment where the other classes and/or interfaces on which the
bean depends are present when the bean is independently distributed. Therefore,
in JavaBeans it is recommended that a JAR archive file is used to store all the
Java classes and interfaces on which the bean depends in the same archive file
for distribution and reuse. In the example of Fig 1, the Grid and Border classes
and event-related classes and interfaces on which the Chart bean depends must
be distributed by storing them all together in a single JAR file.

2.2 JavaBeans Public Information

Components are not only reused within organizations to which the components’
developers belong, but are also distributed in the form of an object code via
the Internet and reused in other environments[9]. Therefore, users who want to

48 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

reuse components often cannot obtain source codes of the components except
for object codes. To allow a bean to be reused as a black-box component while
keeping all its internal details hidden, the following information can be obtained
externally without having to analyze the source code.

– Basic bean information: An introspection mechanism[10] can be used to ob-
tain information about the properties, events and methods of the above men-
tioned mechanism. This information is obtained either based on the naming
rules, or by analyzing a BeanInfo object provided by the bean developer.

– Class constituent information: Information relating to the constructors, fields
and methods of the bean as a class can be obtained by using a reflection
mechanism.

– Archive file structure information: Information about the structure of the
archive file containing the bean (information on the presence or absence
of various resource files such as icons, and the constituent elements of other
classes/interfaces on which the bean depends) can also be obtained externally
without analyzing the source code.

This externally accessible public information is an essential judgment resource
for measuring the quality characteristics of a bean.

3 Component Quality Metrics

To evaluate a component when it is reused, the component is assessed from
a variety of viewpoints (e.g., maintainability, reusability, and so on)[11]. This
necessitates the use of metrics that consistently deal with the overall quality
provided by a component rather than a single metric that deals with a single
quality characteristic of a component.

Since beans are implemented in Java, it is possible to apply the quality
measurements of conventional object-oriented product metrics. However, most
conventional metrics perform measurements on entire object-oriented systems
consisting of class sets. On the other hand, since components are highly inde-
pendent entities, it is difficult for these metrics to reflect the component charac-
teristics even when applied to individual component units.

Also, conventional metrics often require analysis of the target source code.
Components are sometimes distributed to and reused by third parties across
a network, and since in this case they are black-box components whose source
code cannot be seen by the user, it is impossible to use conventional white-box
metrics[5]. Accordingly, for components whose source code is not exposed, we
need measurements that can be applied in a black-box fashion.

In this paper, based on these issues, we use the following procedure to con-
struct a suite of metrics that provide a component’s user with useful materials
for making judgments when a component is reused.

1. Comprehensive investigation of basic metrics
2. Selection of basic metrics based on qualitative assessment information
3. Construction of a suite of metrics

A Metrics Suite for Measuring Quality Characteristics 49

3.1 Comprehensive Investigation of Basic Metrics

All the information that can be measured from outside a bean is comprehensively
investigated as basic metrics. The investigation results are shown in Table 1.
Tables 1(a), (b) and (c) show the metrics relating to the bean’s information,
class structure information, and archive file structure information resepectively.

In Table 1(a), ”Default event present” expresses whether an initially selected
event is pre-specified when a bean that provides multiple events is used in a de-
velopment environment. Similarly, ”Default property present” expresses whether
an initially selected property is pre-specified.

In Table 1(b), RCO and RCS are the ratios of property getting methods and
setting methods out of all the bean fields, and are used as metrics expressing the
extent to which the properties of fields can be publicly got and set[5]. SCCp and
SCCr are the ratios of methods that have no arguments or return values, and are
used as metrics expressing the independence of the methods[5]. PAD and PAP
are the ratios of public/protected methods and fields, and are used as metrics
expressing the degree to which the methods and fields are encapsulated[12].

In Table 1(c), the notation ”Overall M” represents the results of applying
metric M under conditions where the constituent elements of all the classes
contained in the archive file that includes the bean are assumed to exist within
a single class. The number of root classes expresses the number of classes that
are direct descendents of java.lang.Object. Also, ”Overall bean field (method)
ratio” expresses the ratio of fields and methods that a bean has in the sum total
of fields (methods) in the entire classes.

3.2 Selection of Basic Metrics

Out of all the resulting basic metrics, we select those that are useful for judging
the level of quality of the component. For this selection we use manually obtained
component evaluation information published at jars.com[13]. The evaluation in-
formation at jars.com has already been used to set the evaluation standard values
of a number of metrics[5,6]. At jars.com, in-house or independent group of Java
capable and experienced individuals review each bean from the viewpoints of pre-
sentation, functionality and originality.Finally beans are rated into 8 levels as total
of those different viewpoints. These 8 evaluation levels are normalized to the in-
terval [0, 1] (where 1 is best), and the resulting value is defined as the JARS score.

As our evaluation sample, we used all of the 164 beans that had been evaluated
at jars.com as of March 2004. The publication of beans at jars.com means that
they are reused in unspecified large numbers, so the JARS score is thought to
reflect the height of the overall quality of the component taking the fact that
the bean is reused into account. We therefore verified the correlation between
the measured values of each bean’s basic metrics and its JARS score.

As the verification method, we divided the components into a group with a
JARS score of 1 (group A: 117 components) and a group with a JARS score
of less than 1 (group B: 47 components), and we applied the basic metrics to
all the beans belonging to each group. In cases where testing revealed a differ-
ence between the measured value distributions of each group, this basic metric

50 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

Table 1. Possible basic metrics relating to: (A: normality test result of ”good” com-
ponents group, B: that of ”poor” group, T : difference test result of both distributions)

(a) bean itself

Metric M A B T

BeanInfo present n n n
Number of events n n Y
Number of methods (of bean) n n Y
Number of properties n n n
Default event present n n n
Default property present n n n

(b) class constituent

Metric M A B T

Number of fields n n Y
RCO n n Y
RCS n n Y
abstract field ratio n n n
final field ratio n n n
private field ratio n n n
protected field ratio n n Y
public field ratio n n n
static field ratio n Y n
transient field ratio n n n
volatile field ratio n n n
PAD n n Y
Number of constructors n n Y
Constructor without arguments n n Y
(default constructor) ratio

Average number of n n Y
arguments per constructor

private constructor ratio n n n
protected constructor ratio n n n
public constructor ratio n n n
Total number of methods n n n
SCCp Y Y Y
SCCr n n n
Average number of arguments Y n n
per method

abstract method ratio n n n
final method ratio n n n
native method ratio n n n
private method ratio n n n
protected method ratio n n Y
public method ratio n Y n
static method ratio n n Y
strictfp method ratio n n n
synchronized method ratio n n Y
PAP n Y n

(c) archive file constituent

Metric M A B T
Number of files n n Y

Class file ratio n Y n

Number of icons n n Y

Number of classes n n Y

Number of root classes n n n

Average depth of class hierarchy (DIT) Y Y Y

Abstract class ratio Y n n

final class ratio n n Y

Interface ratio n n n

private class ratio n n Y

protected class ratio n n Y

public class ratio n n n

static member class ratio n n n

synchronized class ratio n n n

Overall number of fields n n Y

Average number of fields per class n n n

Overall RCO n n Y

Overall RCS n n Y

Overall abstract field ratio n n n

Overall final field ratio n Y n

Overall private field ratio Y Y n

Overall protected field ratio n n n

Overall public field ratio n Y n

Overall static field ratio n Y n

Overall transient field ratio n n n

Overall volatile field ratio n n n

Overall PAD n n n

Overall number of constructors n n Y

Average number of constructors per class n Y n

Overall constructor without arguments n Y n

(default constructor) ratio

Overall average number of Y Y n

arguments per constructor

Overall private constructor ratio n n n

Overall protected constructor ratio n n Y

Overall public constructor ratio n n n

Overall number of methods n Y n

Average number of methods per class n n n

Overall SCCp n n Y

Overall SCCr n n n

Overall average number of n Y n

arguments per method

Overall abstract method ratio n n n

Overall final method ratio n n n

Overall native method ratio n n n

Overall private method ratio Y n n

Overall protected method ratio n Y n

Overall public method ratio Y Y n

Overall static method ratio n Y n

Overall strictfp method ratio n n n

Overall synchronized method ratio n n n

Overall PAP Y Y n

Overall bean field ratio n n Y

Overall bean method ratio n n Y

A Metrics Suite for Measuring Quality Characteristics 51

was judged to affect the JARS score and was selected as a metric constituting
the suite of metrics. Tests were performed for each metric M according to the
following procedure.

1. With regard to the distribution of the measured value of M in each group,
we tested for normality at a critical probability of 5%. The test results
of group A and group B are respectively shown in columns A and B of
Table 1. Y indicates that the results were normal, and n indicates that the
results were not normal.

2. We tested the differences in the distributions of the measured values in both
groups. When both groups were found to be normal, we used Welch’s t-
test[14] to check whether or not both groups had the same population mean.
In other cases, we used the Mann-Whitney U-test[14] to check whether or not
the median values of both population distributions were the same. These test
results are shown in the T column of Table 1. Y indicates that the distributions
were found to be different; i.e. there is a possibility to classify each bean into
two groups by using the target metric.

3.3 Construction of Quality Metrics Suite

As a result of these tests, we found differences in the distributions of the mea-
sured values between the two groups for 29 metrics. Below, we will consider the
association of these measurement test results with quality characteristics in the
ISO9126 quality model[7]1.
· Number of events: Figure 2(a) shows a box-and-whisker plot of the measure-
ment results. This box-and-whisker plot shows the range of the measured values
together with the 25%/75% quantiles and the median value for group A (JARS
score = 1; left side) and group B (JARS score < 1; right side). The measured
values tended to be higher in group A. It seems that beans with a large number
of events have sufficient necessary functions and a higher level of suitability.
· Number of methods: According to Fig. 3(a), there tended to be more methods
in group A. Beans with a greater number of methods are able to fully perform
the required operations and have a greater level of suitability.
· Number of fields: According to Fig. 3(b), the number of fields tends to be
smaller in group A. This is thought to be because when using a bean in which
the number of fields has been suppressed, the user is unaware of the unnecessary
fields, resulting n greater understandability.
· Ratio of protected fields: No differences were observed in the distributions of
measured values relating to fields with other types of visibility (private/public),
so it appears that field visibility does not affect a bean’s quality. This metric
was therefore excluded from the suite.
· Ratio of protected methods: No differences were observed in the distribu-
tions of measured values relating to methods with other types of visibility (pri-
vate/public), so it appears that method visibility does not affect a bean’s quality.
This metric was therefore excluded from the suite.
1 Although several problems such as ambiguity have been indicated for the ISO9126

model[15] it can be a good starting point to explore related quality characteristics.

52 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

Fig. 2. Number of events (p-value of the null hypothesis=0.0007)

(a) (b)

Fig. 3. (a) Number of methods (0.0068) (a) Number of fields (0.0008)

· RCO and RCS: According to Fig. 4(a) and (b), both of these measured values
tended to be smaller in group A. By suppressing the number of properties that
can be got/set, it is possible to reduce access as properties to more fields than are
necessary, which is thought to result in a high level of maturity. Also, since the
user is not bothered with unnecessary fields when using the bean, it is though
that the understandability is high.
· Overall RCO and overall RCS: According to Fig. 5(a) and (b), both of these
measured values tended to be smaller in group A. Unlike the bean RCO/RCS
values, the overall RCO/RCS values are thought to represent the internal ma-
turity and stability of a bean.
· PAD: According to Fig. 6(a), this measured value tended to be smaller in group
A. In a bean where this measured value is small, there are few fields that can
be operated on without using property access methods, so it is thought that the
maturity and changeability are high.
· Number of constructors: According to Fig. 6(b), this measured value tended to
be larger in group A. When there is a large number of constructors, it is possible
to select a suitable constructor when the class is instantiated, so it is thought
that the suitability and testability are high.
· Default constructor ratio: This measured value tended to be smaller in group
A. However, since all beans must by definition have a default constructor, this

A Metrics Suite for Measuring Quality Characteristics 53

(a) (b)

Fig. 4. (a) RCO (0.0671) (b) RCS (0.1096)

(a) (b)

Fig. 5. (a) Overall RCO (0.0061) (b) Overall RCS (0.0071)

(a) (b)

Fig. 6. (a) PAD (0.0042) (b) Number of constructors (0.0031)

metric exhibited the same tendency as the number of constructors. Accordingly,
this metric is redundant and is excluded from the suite.
· Average number of arguments per constructor: This measured value tended
to be larger in group A. However, since all beans must by definition have a
void constructor, this metric exhibited the same tendency as the number of
constructors. Accordingly, this metric is excluded from the suite.

54 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

(a) (b)

Fig. 7. (a) SCCp (0.0049) (b) Overall SCCp (0.0004)

(a) (b)

Fig. 8. (a) Static method ratio (0.0857) (b) Synchronized method ratio (0.0083)

· SCCp and overall SCCp: According to Fig. 7(a) and (b), the measured values
for both of these metrics tended to be smaller in group A (where there is a higher
proportion of methods with no arguments). It is thought that the understand-
ability and analyzability are high because less information has to be prepared
at the user side when the methods are used. Here, the overall SCCp differs from
the SCCp of individual beans in that there is no redundancy because it relates
to the handling of methods inside the bean.
· static method ratio: According to Fig. 8(a), the measured values tended to be
smaller in group A. When there are few static methods, the possibility of being
operated from various locations without instantiating a bean is reduced, so it is
thought that that the analyzability is high.
· Synchronized method ratio: According to Fig. 8(b), this measured value tended
to be smaller in group A. When there are few synchronized methods, it is thought
that the target bean is set up so that it can be used either in multi-thread or
single-thread environments, thus resulting in high analyzability.
· Number of files: According to Fig. 9(a), this measured value tended to be larger
in group A. However, since the measured value of the number of files is more or
less proportionally related to the number of classes, it is thought that the number

A Metrics Suite for Measuring Quality Characteristics 55

(a) (b)

Fig. 9. (a) Number of files (0.0005) (b) Number of icons (0.0641)

(a) (b)

Fig. 10. (a) Number of classes (0.0009) (b) Average depth of class hierarchy (0.0009)

of classes is a more suitable indicator of the scale of a bean. Accordingly, the
number of files is excluded from the suite.
· Number of icons: According to Fig. 9(b), this measured value tended to be
larger in group A. Icons are information used to represent beans when they are
selected in the development environment, and the magnitude of this measured
value is thought to reflect the degree of operability.
· Number of classes: According to Fig. 10(a), the number of classes tended to be
larger in group A. Looking at the results for other metrics, there is no difference
between the distributions of group A and group B in terms of the average number
of fields per class and the average number of methods per class, so it is thought
that beans with a large number of classes in the archive are not dependent on
class sets that are fragmented any more than is necessary, but that they purely
express more functions. Therefore, it is thought that beans with more classes
have higher suitability.
· Average depth of class hierarchy (DIT[16]): According to Fig. 10(b), this mea-
sured value tended to be larger in group A. In object-oriented design, the reuse of
fields/methods and the embodiment of variable parts are realized by differential
definitions based on inheritance. Therefore, it is thought that the analyzability

56 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

(a) (b)

Fig. 11. (a) Final class ratio (0.0585) (b) Private class ratio (0.0074)

(a) (b)

Fig. 12. (a) Protected class ratio (0.2509) (b) Overall number of fields (0.0016)

and changeability both increase with increasing depth of the inheritance hierar-
chy in the class set that constitutes the archive.
· final/private/protected class ratio: According to Fig. 11(a) and (b) and
Fig. 12(a), all three of these metrics tended to be smaller in group A. Since these
measured values are not encapsulated in a bean any more than is necessary, it
is thought that the testability is high.
· Overall number of fields: According to Fig. 12(b), this measured value tended
to be larger in group A. Since there is no difference between the two groups in
terms of the distribution of the average number of fields per class, it is thought
that this measured value increases as the number of classes increases, regardless
of how high the quality is. Therefore, this metric is excluded from the suite
because it represents the same characteristic as the number of classes.
· Overall number of constructors: This measured value tended to be larger in
group A. Since there was no difference between the two groups in terms of the
distribution of the average number of constructors per class, it is thought that
this measured value increases as the number of classes increases, regardless of
how high the quality is. Therefore, this metric is excluded from the suite because
it represents the same characteristic as the number of classes.
· Overall protected constructor ratio: No differences were observed in the distri-
butions of measured values relating to constructors with other types of visibility
(private/public), so it appears that the visibility of constructors in the class set

A Metrics Suite for Measuring Quality Characteristics 57

(a) (b)

Fig. 13. (a) Overall bean field ratio (0.0000) (b) Overall bean method ratio (0.0000)

constituting an archive does not affect a bean’s quality. This metric is therefore
excluded from the suite.
· Overall bean field ratio/bean method ratio: According to Fig. 13(a) and (b),
this measured value tended to be smaller in group A for both of these metrics. In
beans where these measured values are small, the realization of required functions
is transferred to (fields/method in) other dependent class sets while suppressing
information that is published externally, so it is thought that the maturity and
analyzability are high.

Based on these findings, we selected 21 metrics to be incorporated in the qual-
ity metrics suite. According to our consideration of the results, Figure 14 shows
a framework for component quality metrics (i.e. the suite of quality metrics) in
which these metrics are associated with the quality characteristics mentioned in
the ISO9126 quality model. In Fig. 14, metrics that are thought to be effective
for measuring the quality of beans are connected by lines to the quality sub-
characteristics that are closely related to these metrics in order to show their
linked relationships. Of the 21 metrics, 14 metrics obtained results relating to
maintainability.

Using this framework, it is possible to make detailed quality measurements
focused on beans, and to select metrics that efficiently and comprehensively take
account of the overall bean quality.

4 Verifying the Validity of the Metrics Suite

4.1 Standard Assessment Criteria

As a threshold value for deciding whether a target bean belongs in either group
A or group B of the previous section, we obtained standard assessment crite-
ria for each basic metric. Using these standard assessment criteria, we verified
whether or not it is possible to judge the quality of a bean. If XM,a and XM,b

are the average values of metric M in group A and group B respectively, then
the standard assessment criterion EM is defined as follows:

58 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

Functionality Number of classes

Quality characteristic Sub characteristic

Suitability

Metric

Number of events

Number of methods

Maintainability Testability

Reliability Maturity

Operability

Usability Understandability

Analysability

Changeability

Stability

Number of constructors

final class ratio

private class ratio

protected class ratio

static method ratio

synchronized method ratio

Average depth of class hierarchy

Overall bean field ratio

Overall bean method ratio

PAD

Overall RCO

Overall RCS

RCO

RCS

Number of fields

SCCp

Overall SCCp

Number of icons

Fig. 14. A framework of component quality metrics

EM =

{
More than or equals to XM,a+XM,b

2
(if XM,a > XM,b)

Less than or equals to XM,a+XM,b

2
(Otherwise)

When a measured value corresponds to a standard assessment criterion, the
corresponding quality characteristics and/or sub-characteristics of the bean are
high. For each of the 21 metrics constituting the proposed metrics suite,
Table 2 lists the proportion of beans in group A that correspond to the standard
assessment criterion (conformity RA) and the proportion of beans in group B
that do NOT correspond to the standard assessment criterion (conformity RB).
If both of RA and RB are close to 100%, the target standard assessment criterion
is almost perfectly useful to classify each bean into two groups.

As both degrees of conformity become higher, it shows that the metric is more
effective at correctly measuring the quality of the target bean and classifying it
into the correct group. According to Table 2, the conformity values are both 50%
or more for nine metrics such as SCCp, which shows that these nine metrics are
particularly effective at quality measurements. Also, since the overall average

A Metrics Suite for Measuring Quality Characteristics 59

Table 2. Standard assessment criteria and conformity

Metric M EM RA RB

Number of events ≥ 11 77% 57%
Number of methods ≥ 248 60% 61%
Number of icons ≥ 4 99% 26%
Number of classes ≥ 31 45% 83%
Average depth of class hierarchy ≥ 2.6 69% 57%
Final class ratio ≤ 3% 96% 26%
Private class ratio ≤ 6% 79% 30%
Protected class ratio ≤ 0.8% 98% 17%
Overall RCO ≤ 4% 78% 48%
Overall RCS ≤ 5% 78% 39%
Overall SCCp ≤ 42% 91% 52%
Number of fields ≤ 18 76% 48%
RCO ≤ 9% 80% 39%
RCS ≤ 9% 76% 43%
PAD ≤ 25% 74% 52%
Number of constructors ≥ 2% 63% 78%
SCCp ≥ 66% 51% 61%
Static method ratio ≤ 1.5% 84% 35%
Synchronized method ratio ≤ 4% 93% 35%
Overall bean field ratio ≤ 22% 91% 57%
Overall bean method ratio ≤ 27% 87% 52%

Average – 74% 50%

values for both types of conformity are equal to or over 50%, it is highly likely
that the quality of a bean can be suitably assessed by using the combination of
multiple metrics constituting the proposed metrics suite.

4.2 Comparison with Conventional Metrics

Metrics suitable for beans in situations where the source code is unavailable
include the usability metrics of Hirayama et al.[6], the testability metrics sum-
marized by R. Binder[12], and the object-oriented metrics of Chidamber and
Kemerer[16]. Of these conventional metrics, our proposed metrics suite includes
all the metrics that can be applied to beans. The contribution of this paper
is that it proposes a systematic framework for component quality metrics that
includes these existing metrics and newly defined metrics, and that it has been
verified using qualitative assessment information.

Metrics for measuring the complexity and reusability of beans have been pro-
posed by Cho et al.[3], but these metrics included the need for analysis of the
bean source code. Wang also proposes metrics for measuring the reusability of
JavaBeans components[4]; however the metrics indicate the actual reuse rates of
the reused component in a component library and cannot be used in a situation
where sufficient time has not passed since the target component was developed.

60 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

In contrast, our metrics suite can be used in two situations where the source
codes are unavailable and where the components were newly developed.

5 Conclusion and Future Work

We have proposed metrics for evaluating the overall quality of individual Jav-
aBeans components in a black-box fashion, and we have empirically confirmed
that they are effective based on a correlation with the resulting qualitative as-
sessment information.

In the future, by carrying out manual verification trials, we plan to make a
detailed verification of the effectiveness of these proposed metrics, and of the
validity of the association between each metric and the quality characteristics.
Several metrics that constitute the proposed metrics suite can also be applied
to ordinary Java classes that are not beans. We also plan to investigate the
possibility of applying them to other classes besides beans.

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading (1999)

2. Hopkins, J.: Component Primer. Communications of the ACM 43(10) (2000)
3. Cho, E., Kim, M., Kim, S.: Component Metrics to Measure Component Quality.

In: Proc. 8th Asia-Pacific Software Engineering Conference (2001)
4. Wand, A.J.A.: Reuse Metrics and Assessment in Component-Based Development.

In: Proc. 6th IASTED International Conference on Software Engineering and Ap-
plications (2002)

5. Washizaki, H., et al.: A Metrics Suite for Measuring Reusability of Software Com-
ponents. In: Proc. 9th IEEE International Symposium on Software Metrics (2003)

6. Hirayama, M., Sato, M.: Usability evaluation of software components. IPSJ Jour-
nal 45(6) (2004)

7. ISO/IEC 9126 International Standard: Quality Characteristics and Guidelines for
Their Use (1991)

8. Suzuki, M., Maruyama, K., Aoki, T., Washizaki, H., Aoyama, M.: A Research
Study on Realization of Componentware Technology, Research Institute of Software
Engineering (2003)

9. Aoyama, M., et al.: Software Commerce Broker over the Internet. In: Proc. 22nd
IEEE Annual International Computer Software and Applications Conference (1998)

10. Hamilton, G.: JavaBeans 1.01 Specification, Sun Microsystems (1997)
11. Sedigh-Ali, S., et al.: Software Engineering Metrics for COTS-Based Systems, Com-

puter, vol. 34(5) (2001)
12. Binder, R.: Design for Testability in Object-Oriented Systems. Communications of

the ACM 37(9) (1994)
13. JARS.COM: Java Applet Rating Service, http://www.jars.com/
14. Glass, G.V., Hopkins, K.D.: Statistical Methods in Education and Psychology.

Allyn & Bacon, MA (1996)
15. Al-Kilidar, H., et al.: The use and usefulness of the ISO/IEC 9126 quality standard.

In: Proc. 4th International Symposium on Empirical Software Engineering (2005)
16. Chidamber, S., Kemerer, C.: A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering 20(6) (1994)

http://www.jars.com/

	Introduction
	Component-Based Development and JavaBeans
	JavaBeans Technology
	JavaBeans Public Information

	Component Quality Metrics
	Comprehensive Investigation of Basic Metrics
	Selection of Basic Metrics
	Construction of Quality Metrics Suite

	Verifying the Validity of the Metrics Suite
	Standard Assessment Criteria
	Comparison with Conventional Metrics

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

