
5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases 

Acceptance Testing based on Relationships among Use Cases

Susumu Kariyuki,          
Hironori Washizaki,          
Yoshiaki Fukazawa 
Waseda University 

Tokyo, Japan 
washizaki@waseda.jp 

Atsuto Kubo 
Aoyama Media Laboratory 

Tokyo, Japan 
a.kubo@fuka.info.waseda.ac.

jp 
 

Mikio Suzuki 
TIS Inc. 

Tokyo, Japan 
mickey_suzuki@ybb.ne.jp 
mikio.suzuki@gmail.com

  

Abstract 

In software development using use cases, such as use-case-driven object-oriented development, test 
scenarios for the acceptance test can be built from use cases. However, the manual listing of execution 
flows of complex use cases sometimes results in incomplete coverage of the possible execution flows, 
particularly if the relationships between use cases are complicated.  Moreover, the lack of a widely 
accepted coverage definition for the acceptance test results in the ambiguous judgment of acceptance test 
completion.  We propose a definition of acceptance test coverage using use cases and an automated 
generation procedure for test scenarios and skeleton codes under a specified condition for coverage while 
automatically identifying the execution flows of use cases.  Our technique can reduce the incomplete 
coverage of execution flows of use cases and create objective standards for judging acceptance test 
completion.  Moreover, we expect an improvement of the efficiency of acceptance tests because of the 
automated generation procedure for test scenarios and skeleton codes.  

 

1. Introduction 

An acceptance test is carried out by users who take the initiative in confirming whether the developed 
system precisely performs the requirements of the users.

2)
  As a method of representing functional 

requirements, use cases have been used.
3)

  Use cases are descriptions of external functions of a system 
from the viewpoint of the users and external systems (both are called actors).  When functional 
requirements are identified using use cases, the execution flows of the use cases are manually identified 
and test scenarios are generated on the basis of the identified execution flows.  When the number of use 
cases is large, such as several tens or several hundred, manual identification of the execution flows may 
become difficult and incomplete coverage of the execution flows may occur.  The likelihood of this 
particularly increases when the relationship between use cases is complicated, leading to a decrease in the 
reliability of the acceptance test. 

Test coverage has been used as a measure for judging the completion of an acceptance test.  Test 
coverage refers to the ratio of the number of test items that were actually tested to the total number of test 
items that should have been tested.

4)
  Examples used to define test coverage include statement coverage 

and branch coverage in a white box test.  However, a widely accepted definition for test coverage has not 
yet been established for acceptance tests targeting the test scenarios identified from use cases; the 
judgment of acceptance test completion largely depends on individuals.  As a result, the coverage of an 
acceptance test differs each time, leading to a decrease in the reliability of the acceptance test. 

In this study, we define the coverage of the acceptance test targeting the test scenarios identified on the 
basis of use case descriptions.  Using this definition, we propose a technique of automatically generating an 
acceptance test environment with a particular test framework format targeting the functional test using the 
use case descriptions, a domain model, and the test coverage, as input.  Our proposed technique can 
automatically identify the test scenarios using use cases; incomplete coverage of the test scenarios 
targeted in the acceptance test can be prevented, and we can remove the dependence of the judgment of 
acceptance test completion on individuals.  In addition, we can expect an improvement in the efficiency of 
the acceptance test by automatically generating its test scenarios and skeleton codes. 

 

 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 2 of 25 

2. Acceptance test using use cases and its problems 

2.1 Domain model and relationships among use cases 

Use cases are descriptions of the external functions of a system from the viewpoint of actors.  Use cases do 
not deal with the internal structure of a system; rather, they are used to organize the requirements of the 
actors in the system.  A use case description provides details of a use case in texts.

3)
  An action described 

in the flow of a use case description is called a use case step.  In the following explanation, a use case step 
is simply called a step.  In this study, a sequence of steps that may be executed by a combination of steps 
is defined as an execution flow.  Figure 1 shows an example of a use case diagram for a hotel reservation 
system developed using unified modeling language (UML) 2.0.

5)
  Figures 2-6 show use case descriptions 

of “Reserve facility,” “Reserve room,” “Log in,” “Intercept,” and “Encrypt,” respectively.   

Use case descriptions can be reused and steps can be added by using the relationship between use cases 
(such as include, generalization, and extend) defined in UML 2.0 without changing the existing use cases. 

Include: The include relationship is a relationship in which a certain use case includes the steps of another 
use case.  In Fig. 1, the use case “Log in” includes the use case “Encrypt.”  This relationship is represented 
by the text in Fig. 4, i.e., “Include: The step „The system codes the input information and transmits it‟ in the 
flow „Log in‟ executes the use case „Encrypt.‟”  

Generalization: The generalization relationship is a relationship of “is-a” between use cases.  In Fig. 1, the 
use case “Reserve room” is a use case “Reserve facility.”  This relationship is represented by the text in Fig. 
3, i.e., “Use case: Specializing the use case „Reserve facility.‟”   

Extend: The extend relationship is a relationship in which steps of another use case are added to an 
existing use case.  The extended use case has extension points, at which additional steps can be inserted.  
In the extended use case, the point of insertion is specified by the extension point.  In Fig. 1, the use case 
“Log in” extends the use case “Reserve facility.”  As an extension point, “Start process” is specified.  
Examples of the application of the extend relationship include misuse cases and security use cases.

6)
  

Misuse cases are the use cases described from the viewpoint of an opposing actor (attacker) of the system 
under design.  Security use cases are the use cases that mitigate the effects of the misuse cases.  
According to ref. 6), threatening a use case by a misuse case is defined as “threaten,” and mitigating the 
threat of the misuse case by a security use case is defined as “mitigate.”  Also, it is stated that threaten can 
be defined as a special type of extend.  In Fig. 1, the use case “Intercept” threatens the use case “Log in,” 
which is represented by a <<threaten>> arrow.  Similarly, the use case “Encrypt” mitigates the threat of the 
use case “Intercept,” which is represented by a <<mitigate>> arrow. 

A domain model is a model that represents an essential and target relationship between concepts in a 
target system for the purpose of precisely understanding the problem domain that is targeted by the system 
developer.

7)
  Figure 7 shows an example of a domain model corresponding to the hotel reservation system 

shown in Fig. 1.  In the figure, the main concepts related to the hotel reservation system, such as “Room” 
and “Reservation,” are shown. 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 3 of 25 

Reserve 

facility

Start rocess

Reserve

room

Customer

Log in

Transmits info.

Intercept

Encrypt

Attacker

 

Figure 1. Example of use case diagram 

Use case: Reserve facility 

Main flow name: Reserve facility 

1. The system displays available facilities. 

2. The customer selects a facility. 

3. The system displays the total fee for the selected facility. 

4. The system reduces the total number of available facilities on the database. 

5. The system makes a new reservation for the selected facility. 

6. The system displays a reservation confirmation number. 

7. The system terminates the use case. 

Alternative flow: 

Alternative flow name: Duplicate application  

After the step “The system reduces the total number of available facilities on the database,” the flow 
branches to “duplicate application.” 

A1. 1. If the customer indicates that the new reservation is a duplicate one, the system terminates the use 
case. 

Precondition: When the same reservation (same customer, e-mail address, start and end days) exists 

Extension point: “Start process” 

The step “The system displays available facilities” in the flow “Reserve facility” 

Figure 2. Use case description of “Reserve facility” 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 4 of 25 

Use case: Reserve room 

Use case: Specializing the use case “Reserve facility” 

Main flow name: Reserve facility 

1. The system displays available facilities. 

2. The customer chooses to make a reservation for a room. 

3. The customer selects the type of room. 

4. The customer confirms the fee for the room. 

5. The system displays the total fee for the selected facility. 

6. The system reduces the total number of available facilities on the database. 

7. The system makes a new reservation for the selected facility. 

8. The system displays a reservation confirmation number. 

9. The system terminates the use case. 

Alternative flow: 

Alternative flow name: Duplicate facility 

After the step “The system reduces the total number of available facilities on the database,” the flow 
branches to “duplicate facility.” 

A1. 1. If the customer indicates that the new reservation is a duplicate one, the system terminates the use 
case. 

Precondition: When the same reservation (same customer, e-mail address, start and end days) exists 

Figure 3. Use case description of “Reserve room” 

 

Use case: Log in 

Main flow name: Log in 

1. The system requests the customer to input ID and password. 

2. The customer inputs ID and password. 

3. The system encrypts the input information and transmits it. 

4. The system authenticates the ID and password. 

5. The system executes a base use case. 

Alternative flow: Alternative flow name: Authentication failure 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 5 of 25 

After the step “The system authenticates the ID and password,” the flow branches to “authentication 
failure.” 

A1. 1. The system terminates the base use case. 

Precondition: When the input ID is not registered or the input ID does not match the registered password 

Include: 

The step “The system encrypts the input information and transmits it” in the flow “Log in” executes the use 
case “Encrypt.”  

Extend: Prior to “Start process” 

Extension point: “Transmits information” 

The step “The system encrypts the input information and transmits it” in the flow “Log in” 

Figure 4.  Use case description of “Log in” 

 

Use case: Intercept 

Main flow name: Intercept 

1. An attacker attempts to intercept the transmitted information. 

Extend: After “transmitting information” 

Figure 5. Use case description of “Intercept” 

 

Use case: Encrypt 

Main flow name: Encrypt 

1. The system encrypts the information to be transmitted. 

Figure 6. Use case description of “Encrypt” 

 

Facility

Room

Reserv

ation

Facility

 

Figure 7. Example of domain model corresponding to Fig. 1 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 6 of 25 

2.2 Acceptance test 

Use cases represent the requirements of the users.  Therefore, it is possible to test whether the system 
precisely implements the requirements of the users by testing the system using the test scenarios prepared 
using use cases.  One such test is an acceptance test.  An acceptance test is carried out by users who take 
the initiative in confirming whether the software under development really implements the requirements of 
the users.  In this study, we focus on a functional test, one type of acceptance test, to test whether the 
functions required by the users are implemented. 

 

2.3 Framework for integrated test 

The framework for integrated test (FIT)
8)

 was developed by Ward Cunningham
 
 and is a test framework 

used for the acceptance test.  FIT has the following characteristics. 

 Automatic testing is possible. 

 Users unfamiliar with programming can generate test scenarios because test scenarios are generated 
using an HTML table format. 

 FIT is compatible with many languages including Java and Ruby. 

FIT is composed of the following elements. 

 Runner: a test execution program   

 Fixture: defining the correspondence between a test description file and a test target program 

 Test description file: a file describing a test scenario 

 Test result file: a file including a test result 

 

Figure 8 shows the outline of the test using FIT. 

(1) Users develop a test description file in HTML format.  Concretely, a user describes the test contents 
to check the program functions required by the users using an HTML table format in a test 
description file.  Here, “CheckAuthentication” in Fig. 8 is used as an example.  The user specifies 
the fixture “checking authentication” on the first row.  Also, the user indicates that three items, i.e., 
userName, password, valid(), are dealt with as the test items on the second row.  On the third or 
later rows, test scenarios are described.  On the third row, “Jack” and “waseda” are assigned to 
userName and password, respectively.  The third column indicates whether the result of executing 
the valid() method is true.   

(2) The developer develops a product program so that the contents of the table in the test description 
file are satisfied.  The developer also develops fixtures to connect the table contents with the 
product program.  The fixture “checking authentication” in Fig. 8 has variables such as userName 
and password.  The developer writes codes to test the required functions using userName, 
password, and the valid() method.   

(3) The user executes the acceptance test by inputting a test description file to FIT.  The user confirms 
the result of the acceptance test by browsing the test result file that is output from a runner. 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 7 of 25 

FIT

Program 

under

testing

4.Test

Fixture

・
・
・

Test description file

Test result file

1.Develop
3.Input

User

6.Confirm

Developer

2.Develop

5.Output

CheckAuthentication

CheckAuthentication

 

Figure 8. Outline of test using FIT 

 

2.4 Problems associated with acceptance test using use cases 

References 9) and 10) explain the conventional techniques of generating test scenarios by identifying 
execution flows in use cases.  In these references, the execution flows of the use cases are manually 
identified, and test scenarios are generated on the basis of these execution flows.  These techniques have 
the following two problems. 

Problem 1: A widely accepted definition for the coverage of the acceptance test using test scenarios 
identified from use cases has not yet been established.  Therefore, in the development of test scenarios 
covering all the use cases, one person may develop test scenarios including all the steps at least once; 
another may develop test scenarios including all the branches at least once.  This indicates that the 
judgment of acceptance test completion may depend on the individual, leading to a decrease in the 
reliability of the acceptance test. 

Problem 2: A complicated relationship between use cases may lead to the incomplete coverage of 
execution flows.  In large-scale development, the number of use cases is large, such as several tens or 
several hundred; moreover, the relationship between use cases tends to become complicated.  In addition, 
the requirement for security has been intensifying, and misuse cases and security use cases, in addition to 
general use cases, should be taken into consideration.  In this case, the incomplete coverage of execution 
flows tends to occur because the execution flows involving misuse cases and security use cases are more 
complicated that those involving only general use cases. 

 

3. Definition of coverage on the basis of execution flows of use cases 

We propose solutions to the two problems explained in section 2.4. 

Solution for problem 1: First, we define the coverage for the acceptance test targeting test scenarios 
identified from use case descriptions.  Following this definition, the dependence of the judgment of 
acceptance test completion on the individual can be avoided. 

Solution for problem 2: We automatically identify the execution flows of use cases using a system for 
generating the test scenarios and skeleton codes for the acceptance test environment of a particular test 
framework format.  In this study, we adopted FIT in consideration of its compatibility with various languages 
and its familiarity.  When execution flows of the use cases are automatically identified, the incomplete 
coverage and errors of the test scenarios can be avoided. 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 8 of 25 

The solutions to problems 1 and 2 are discussed in sections 3 and 4, respectively. 

 

3.1 Identification of all execution flows in use cases 

First, we generate a graph of flows of use cases and define the test coverage using the diagram.  The 
procedure for generating the graph flows is explained below. 

Assuming that the sets of all the steps and the transitions between steps are S and E, respectively, then use 
case uc is expressed as 

 

Here, we define n as the number of steps that are defined.  It is assumed that |X| and Xi are the number of 
elements in a set X and the set of edges with step si as a destination of the transition, respectively.  When 
the number of elements in Xi is two or more, Xi is the set of branches from si, and the set B of branches is 
expressed as 

 

The set of execution flows generated by the following algorithm, i.e., the set of all execution flows, is 
denoted as F.   

 

Function name: generate_allFlows      

Outline: Obtains the set of all execution flows in a certain use case  

Input: Use case 

Output: The set of all execution flows in the input use case  

Use case

The first step in uc;

 

 

Function name: traverse     



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 9 of 25 

Outline: Obtains the set of execution flows that are executable using the input steps 

Input: A step and a description of the execution flows in a use case, and the set of all execution flows in a 
use case 

Output: None 

Step Exec. flow : Set of exec. flows

 

 

When only the use case description shown in Fig. 2 is considered and input to the function 
“generate_allFlows,” then S, E, and F are obtained as follows.  Here, each step is described using the step 
number instead of its content. 

 

Figure 9 shows the procedure for identifying the change in execution flows depending on the relationship 
between use cases.  The use cases shown in Fig. 1 are used as an example.  Diagrams of the execution 
flows of the use cases are generated from the use case descriptions that are input.  

(1) If there is a generalized use case, its execution flow is overwritten with the execution flow of the 
specialized use case in the unit of step.  Figure 10 shows a diagram after the change by 
generalization for this example, where the gray area shows the changes after generalization.  In 
this case, the step “The customer selects a facility” in the use case “Reserve facility” is replaced 
with the steps “The customer chooses to make a reservation for a room,” “The customer selects the 
type of room,” and “The customer confirms the fee for the room” in the use case “Reserve room.” 

(2) If there is an including use case, the step referring to the included use case is overwritten with the 
execution flow of the included use case.  Figure 11 shows a diagram after the change by inclusion, 
where the gray area shows the changes after inclusion.  In this case, the step “The system codes 
the input information and transmits it” in the use case “Log in” is replaced with the step “The system 
codes the information to be transmitted” in the use case “Encrypt,” to which the use case “Log in” 
refers.  This means that the likelihood of the malicious use of the tapped information is mitigated by 
executing this step.   



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 10 of 25 

(3) If there is an extending use case, its execution flow is added to the step specified as the extension 
point.  Figure 12 shows a diagram after the change by extension, where the gray area shows the 
changes after extension.  The flow “Intercept” is added after the step “The system codes the input 
information and transmits it” in the use case “Log in,” which is specified as the extension point.  This 
indicates a threat that an attacker attempts to tap the information transmitted during the Log in of a 
customer.  Similarly, the flow “Log in” is added before the step “The system displays available 
facilities” in the use case “Reserve facility,” which is specified as the extension point. 

The threat relationship can be interpreted as a special type of the extend relationship that is defined in UML 
2.0.

6)
  Therefore, the threat relationship is treated as an extend relationship when specifying the execution 

flows.  In addition, the mitigate relationship indicates that the effect of a threat is mitigated and does not 
affect the execution flows; therefore, the mitigate relationship is considered nonexistent when specifying the 
execution flows. 

 

Generates a graph of only the execution flows in a target UC 

if (there is a generalization relationship){ 

The execution flow in the generalized UC is overwritten with that in the target UC in the unit of step; 

} 

if (there is an include relationship){ 

The step referring to the included UC is overwritten with the execution flow of the included UC; 

} 

if (there is an extend relationship){ 

The execution flow of the extending UC is added at the extension point; 

} 

Figure 9. Identification procedure of execution flow 

The customer confirms

the fee for the room.

The customer selects a 

facility. 

The system displays 

available facilities. 

The customer chooses

to make a reservation

for a room.

The customer selects 

the type of room. 

 

Figure 10. Change of flow by generalization 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 11 of 25 

The system encrypts 

the input information 

and transmits it. 

The customer inputs ID 

and password. 

The system encrypts

the information to be

transmitted.

The system 

authenticates the ID 

and password.
 

Figure 11. Change of flow by include 

 

An attacker attempts to 

intercept the 

transmitted information.
The system 

authenticates the ID 

and password.

The system executes

the base use case.

The system displays 

available facilities.

The system encrypts 

the input information 

and transmits it.

 

Figure 12. Change of flow by extend 

 

3.2 Coverage of acceptance test using use cases 

We define the coverage of the acceptance test on the basis of test scenarios identified from use cases as 
follows, using the diagrams of execution flows created in section 3.1.  Focusing on the similarity between 
the flow of the use case description and a program flow, we propose three coverages, step coverage, 
branch coverage, and all-execution-flows coverage, referring to the definition of the test coverage of a 
program flow.  A loop is treated as a branch, similarly to in the control flow of a program.  Note that only one 
iteration of a loop is treated and subsequent iterations are not taken into consideration.    

 

Definition 1: Step coverage, C’0 

C‟0 denotes the percentage of actually executed steps among all the use case steps.  Assuming that the set 
of steps executed in a test case t included in the set of test cases T is St, C‟0 is defined as 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 12 of 25 

 

Definition 2: Branch coverage, C’1 

C‟1 denotes the percentage of actually executed branches among all the branches.  Assuming that the set of 
branches executed in a test case t included in the set of test cases T is Bt, C‟1 is defined as 

 

Definition 3: All-execution-flows coverage, C’∞ 

C‟∞ denotes the percentage of actually executed combinations of flows among all the combinations of flows.  
Assuming that the set of execution flows executed in a test case t included in the set of test cases T is Ft, C‟∞ 

is defined as 

 

C‟1 for the use case shown in Fig. 13 is calculated as an example [extracted from ref. 3) after partial 
modification].  Figure 14 shows a graph flows.  Assuming that the set of branches actually executed is {c2}, 
C‟1 is calculated as   

 

Here, C‟0 and C‟∞ are 80 and 50%, respectively. 

Use case: Keeps the client waiting for access to a resource 

Main flow name: Keeps the client waiting for access to a resource 

1. The resource lock temporary disrupts the process of a client. 

2. The client waits for the resumption. 

3. The process of the client resumes. 

Exceptional flow:  

A1. Expiration of latency time 

In step 2 of the main flow, when the latency time expires  

1. The system informs the client by a signal that the requested access is not permitted. 

2. The system terminates the use case. 

Figure 13. Use case description of “Keeps the client waiting for access to resource” 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 13 of 25 

The process of the 

client resumes.

The client waits for 

the resumption.

The system informs the client

by a signal that the requested

access is not permitted.

The system terminates 

the use case.

The resource lock 

temporary disrupts the 

process of a client.

 

Figure 14. Execution flow of use case of “Keeps the client waiting for access to resource” 

 

4. Test environment generation system  

The manual identification of execution flows may result in incomplete coverage and errors.  We propose a 
system for generating the test scenarios and skeleton codes for an acceptance test environment with a 
particular test framework format (hereafter, proposed system).  Incomplete coverage and errors can be 
eliminated using the proposed system because the execution flows of the use cases are automatically 
identified.  In this study, we adopted test framework FIT in consideration of its compatibility with various 
languages and its familiarity. 

 

4.1 Structure and testing method of the proposed system  

The manual identification of execution flows of use cases may result in incomplete coverage and errors, 
particularly when the relationship between use cases is complicated.  As a solution to these problems, we 
propose a system for generating test scenarios and skeleton codes for an acceptance test environment with 
a particular test framework format through the automatic identification of the execution flows using the use 
case description, domain model, and coverage as the input.  Figure 15 shows an outline of the proposed 
system. The processes involved in the acceptance test using the proposed system are divided into the 
following three steps: (1) a phase to input data to the proposed system (input phase), (2) a phase to detail 
the output from the proposed system (detailing phase), and (3) an acceptance test phase involving FIT. 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 14 of 25 

Use case

descriptions

Domain

model

User

(Customer)

Coverage

selection

Program

under 

testing

Fixtures

Test result file

4.Detailing

10.Confirm

7.Input to FIT

9.Output
Developer

6.Develop

8.Test

2. Skelton output 

Test case file

3. Skelton output in Java

5.Detailing

FIT

テスト環境生成システムの概要
Test environment generation system

1. Input

ReserveRoom

reserves() Room displayConfirma
tionNumber()

Reserve 101 10

Reserve 102 11

Reserves room

reserves() Room displayConfirma
tionNumber ()

Reserve 101 10

Reserve 102 11

 

Figure 15. Outline of proposed system 

(1) Input phase 

Three types of data, the selection of coverage, use case descriptions, and the domain model, are input to 
the proposed system.  By inputting the domain model to the proposed system, the elements used as input 
values of the test can be extracted.  For example, when a test scenario that a “customer” Saitoh reserves 
“room number” 3022 in the use case “Reserve room,” the elements “customer” and “room number” can be 
extracted.  Upon receiving the input, the proposed system outputs the two data, i.e., a skeleton test 
scenario (HTML table format) and skeleton fixture (execution program to test the test scenario). 

(2) Detailing phase 

In the test scenario output from the proposed system, the input items and steps in a domain model are 
described.  In the test scenarios, input items, such as “customer” and “room number” in a domain model, 
are described; however, concrete values, such as Saitoh for “customer” and 3022 for “room number” are 
not described.  Similarly, operations having the same names as those of the steps are defined in the fixture; 
however, function calls of the functions that should be tested are not described.  Therefore, the concrete 
values of the test items should be added to the test scenario, and the required function calls should be 
added in the fixture.  In the detailing phase, the following two files are detailed so that they can be directly 
used in the test. 

・ Skeleton test scenario:  This is modified by users. 

・ Skeleton fixture:  This is modified by the staff in charge of the test. 

(3) Acceptance test phase involving FIT 

After manually detailing the test scenario and fixture, the acceptance test by FIT is carried out. 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 15 of 25 

 

4.2 Generation of skeleton test scenarios using a graph of execution flow 

In this section, the following two topics are explained. 

・ Generation of skeleton test scenarios obtained in the input phase 

・ Detailing of the test scenarios carried out in the detailing phase 

The following two topics are explained in section 4.3. 

・ Generation of skeleton fixture obtained in the input phase 

・ Detailing of the fixture carried out in the detailing phase 

Using the graph of execution flows obtained in section 3.1, skeleton test scenarios are generated.  Then, we 
select a test scenario output using the graph of execution flows on the basis of the selection of the three 
types of coverage defined in section 3.2.  The test scenario selection algorithm is explained next.  

 

Function name: generate_testScenarios    

Outline: Obtains a graph flow of a use case based on a particular coverage  

Input: Coverage and use case  

Output: The set of execution flows of a use case based on the input coverage 

Coverage

criteria Use case

Branch

coverage

Step coverage

All-execution

-f lows coverage

 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 16 of 25 

 

Function name: getEdges    

Outline: Extracts the set of transitions between steps from the set of diagrams of execution flows.  For 
example, if we input {{(s1, s2), (s2, s3)},{(s1, sA)}}, we obtain {(s1, s2), (s2, s3), (s1, sA)}. 

Input: The set of diagrams of execution flows 

Output: The set of transitions between steps shown in the input diagrams of execution flows 

Set of execution flow 

graphs

 

 

Function name: getSteps    

Outline: Extracts the steps from the set of transitions between steps.  For example, if we input {(s1, s2), (s2, 
s3),(s1, sA)}, we obtain {s1, s2, s3, sA}. 

Input: The set of transitions between steps  

Output: The set of steps shown in the set of transitions between steps  

Set of transitions

 

 

For example, the execution flows generated by generate_testScenarios are the same when either step 
coverage, branch coverage, or all-execution-flows coverage is specified for the use case shown in Fig. 2, 
and we obtain 

F = {{(s1, s2), (s2, s3), (s3, s4), (s4, s5), (s5, s6), (s6, s7)}, {(s1, s2), (s2, s3), (s3, s4), (s4, sA1.1)}}.
*1 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 17 of 25 

*1
When step coverage or branch coverage is specified for generate_testScenarios without considering the 

relationship between use cases for the use case shown in Fig. 38, we obtain 

{{(s1, s2), (s2, sA1.1), (sA1.1, sA1.2), (sA1.2, sA1.3), (sA1.3, s3), (s3, s4)}} for step coverage and {{(s1, s2), (s2, s3), (s3, 
s4)}, {(s1, s2), (s2, sA1.1), (sA1.1, sA1.2), (sA1.2, sA1.3), (sA1.3, s3), (s3, s4)}} for branch coverage.  The diagram is 
smaller for step coverage because all the steps are included in branch 1. 

From the above algorithm, test scenarios are selected and output.  Table 1 summarizes an example of the 
generated test scenario.  

・ In the row of test items (definition of variables used as input and output items for FIT), steps are 
described in the order of execution.  For example, as shown in Table 1, steps such as “The system 
displays available facilities,” “The customer chooses to make a reservation for a room,” …  “The 
system terminates the use case” are described in the row of test items (the second row in Table 1). 

・ When class names included in the domain model are described in the steps, the class names 
designated by the user of the proposed system are described in the column prior to that of the step 
in the row of test items.  For example, when “customer,” “room,” and “reservation” are included 
among the class names of the domain model, these three items are the candidate test items for the 
step “The customer chooses to make a reservation for a room.”  If the user of the proposed system 
selects only “room,” then “room” and “The customer chooses to make a reservation for a room” are 
added to the row of test items. 

・ The number of output test scenarios changes with the type of coverage selected.  For example, if 
step coverage is selected, the minimum number of test scenarios that are required to test each step 
at least once is output.  Namely, the following relationship holds for the number of test scenarios 
generated: 

(Number of test scenarios when step coverage is selected) ≤ (Number of test scenarios when branch 
coverage is selected) ≤ (Number of test scenarios when all-execution-flows coverage is selected). 

・ In the third or later rows, “pass” and “null” are described when the columns on the second row are 
the steps and elements of the domain model, respectively.  This is because the output of the 
proposed system simply consists of skeleton test scenarios.  For example, “pass” is written in the 
row immediately below the row “The system displays available facilities,” and “null” is written in the 
row immediately below the row “room.”  In the detailing phase, “pass” and “null” should be modified. 

Table 1 shows a part of the test scenario output when all-execution-flows coverage is selected.  Table 2 
shows an example of the test scenario obtained by manually detailing the test scenario in Tables 1. The 
domain model used as the input is shown in Fig. 7. 

Table 1. Generated test scenario 1 corresponding to use case “Reserve room” before detailing 

ReserveRoom 

systemDisplaysAvailable 
Facilities() 

Room customerChooses 

ToMakeAReservation 

ForARoom() 

… 
systemTerminates 

TheUseCase() 

Pass null pass … pass 

Pass null pass … pass 

 

 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 18 of 25 

Table 2. Example of detailed test scenario 1 corresponding to use case “Reserve room” 

ReserveRoom 

systemDisplaysAvailable 
Facilities() 

Room customerChooses 

ToMakeAReservation 

ForARoom() 

… 
systemTerminates 

TheUseCase() 

List 101 Reserve … exit 

List 201 Reserve … exit 

 

4.3 Generation of fixtures 

In this section, the generation of fixtures in the input phase and the detailing of fixtures carried out in the 
detailing phase are explained.   

Figure 16 shows an example of a fixture generated by the proposed system.  For use case A,  

・ only a fixture with the name AFixture, or 

・ a fixture with the name AFixture and the fixture ConcreteAFixture, which inherits AFixture, 

is generated through the selection of the user.  ConcreteAFixture is implemented as an example of test 
codes and the developer carries out the test using ConcreteAFixture.  The reason for allowing the user to 
select one of the two above options is to prevent the overwriting of the fixture details that are added by the 
developer when a use case is changed and the fixture is regenerated.  For a step defined in use case A, 
AFixture, a parent class corresponding to use case A, owns the operation with the same name as the step.  
Similarly, if the use case description of use case A includes class names of the domain model, AFixture 
owns these classes as attributes.  Figure 17 shows a code fragment of ReserveRoomFixture shown in Fig. 
16. 

In the use case “Reserve room,” there are steps such as “The system displays available facilities,” “The 
customer chooses to make a reservation for a room,” … “The system terminates the use case,” and “If the 
customer indicates that the new reservation is a duplicate one, the system terminates the use case.”  
Therefore, ReserveRoomFixture has the operations with the same names listed above.  Similarly, because 
there are “customer,” “room,” “reservation,” and “facility” in the domain model, AFixture has them as 
attributes. Developers have to manually code detail of the fixture output from the proposed system.    

The column “The system displays available facilities” in Table 2 corresponds to the method 
“systemDisplaysAvailableFacilities” in Fig. 16; similarly, the column “room” in Table 2 corresponds to the 
variable “room” in Fig. 16.  The third row in Table 2 indicates that the system tests the following: (1) whether 
we obtain “List” when the method “systemDisplaysAvailableFacilities” is executed; (2) whether we obtain 
“Reserve” when the method “customerChoosesToMakeAReservationForARoom” is executed by 
substituting 101 for “room”; and (3) whether we obtain “exit” when the method 
“systemTerminatesTheUseCase” is executed. 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 19 of 25 

room

reservation

customer

facility

systemDisplaysAvailableFacilities()

customerSelectsAFacility()

…

systemDisplaysAReservationConfirmationNumber()

systemTerminatesTheUseCase()

 

Figure 16. Example of generated fixture before detailing 

 

public class ReserveRoomFixture extends ColumnFixture { 

  public Room room; 

  … 

  public String systemDisplaysAvailableFacilities() { 

    return “pass”; 

  } 

  … 

Figure 17. Part of fixture corresponding to use case “Reserve room” before detailing 

 

4.4 Generation of fixtures on the basis of relationship between use cases 

The relationship between fixtures corresponding to the use cases is defined by an inter-type declaration (a 
mechanism describing the method fields that should belong to another class

13)
) based on aspect-oriented 

programming (a technique for modularizing cross-sectional interest
12)

).  Owing to the definition of the 
relationship between use cases using aspects, we only need to revise the aspects, instead of the fixtures, 
when the relationship between use cases changes, leading to an increase in the reusability of the fixtures.  
In this study, aspects are generated using AspectJ.   

Include: If there is an include relationship between two use cases, an aspect is generated so that the fixture 
of the including use case has operations with the same name as those of the fixture of the included use 
case by referring to a fixture corresponding to the included use case.   

Generalization: If there is a generalization relationship between two use cases, an aspect is generated so 
that the corresponding fixtures have an inheritance relationship.   



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 20 of 25 

Extend: If there is an extend relationship between two use cases, an aspect is generated so that the fixture 
of the extended use case has operations with the same name as those of the fixture of the extending use 
case by referring to a fixture corresponding to the extending use case.   

Figure 18 shows the fixtures generated for the use cases shown in Fig. 1 using the proposed system on the 
basis of the above rules. 

Added by inter-

type declaration

Added by inter-

type declaration

Added by inter-

type declaration

Added by inter-

type declaration

 

Figure 18. Class diagram of generated fixtures 

 

4.5 Limitations of the proposed technique and system 

The test scenarios prepared by the proposed technique alone are insufficient as the scenarios to be used in 
the acceptance test.  The proposed technique focuses on the coverage of steps.  Nonfunctional 
requirements, such as usability, are not described in the flow and such factors should be tested by other 
techniques. 

Because the proposed technique requires the manual detailing of the output test scenarios and test fixtures, 
errors may occur during these processes.  In the conventional technique, identification of the execution 
flows and implementation of the test scenarios are also carried out manually, whereas in the proposed 
system, identification of the execution flows is automated and only the implementation of the test scenarios 
is carried out manually.  Namely, the proposed technique involves fewer manual processes, leading to a 
decreased likelihood of errors.  However, the proposed technique may not be able to detect errors that 
depend on the data. 

The proposed technique automatically generates the test scenarios of a functional test on the basis of 
specific coverage criteria, leading to an increase in the reliability of the functional test. 

The limitations of the proposed system in terms of implementation are as follows.  These problems do not 
depend on the framework of the proposed technique. 

(A) A special editor is used for use case description. 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 21 of 25 

(B) The generated fixtures are in Java format. 

(C) Because the domain model is input using the Jude application programming interface (API),
11)

 
which is a modeling tool, the domain model is assumed to be written in Jude.  However, the 
framework of the proposed system does not depend on a particular modeling tool.  In practice, the 
use of the Jude API is not a major problem because Jude Professional is compatible with the import 
and export of the extensive markup language metadata interchange (XMI) format. 

 

5. Experiment   

A comparative experiment was carried out using the conventional
9)

 and proposed techniques.  The subjects 
were six students with approximately two years of experience with UML.  The subjects were provided with 
the use case diagram (Fig. 19) in ref. 14) and the use case descriptions, and instructed to identify all the 
execution flows in the use case “Manage a history of clothes sales” and list the test scenarios using branch 
coverage.  The number of use cases was ten, the number of use case descriptions was ten, the number of 
relationships between use cases was ten (nine include relationships and one extend relationship), the total 
number of steps in the ten use cases was 47, the number of branches was 12, and the total number of flows 
was 32.  In the experiment, the numbers of errors and the incomplete coverage of the execution flows were 
compared between the two techniques.  The number of use cases for which the proposed technique and 
system are effective is arbitrary; however, we consider that the proposed technique is more effective for 
large systems with a large number of use cases and a complicated relationship between them.  The 
complexity of the relationship between the use cases adopted in the experiment is considered to be 
sufficient for comparing the effectiveness between the conventional

9)
 and proposed techniques.  The 

purposes of the experiment are as follows. 

・ To demonstrate that incomplete coverage and errors may occur during the manual identification of 
execution flows when there is a complicated relationship between use cases. 

・ To determine that incomplete coverage and error can be eliminated by the automatic identification of 
execution flows of use cases by the proposed system. 

Subjects A, B, and C first identified and listed the execution flows using the conventional technique first.  
Then, they inputted the use case descriptions into the proposed system, regardless of the output from the 
conventional system, and obtained the automatically generated test scenarios.  In contrast, subjects D, E, 
and F first inputted the use case descriptions into the proposed system and obtained the automatically 
generated test scenarios.  After that, they identified the execution flows in the use case descriptions by the 
conventional technique and listed them, regardless of the output from the proposed system.  Table 3 shows 
the number of errors in the execution flows listed by the subjects.  

When the conventional technique was used first, the number of errors was two for subject A and one for 
subjects B, C, E, and F.  The number of errors for subject D was zero both when the conventional technique 
was used first and when the proposed technique was used first.  Subject A forgot to consider the change as 
a result of the extend relationship in the use case “Schedule dates of repeated consultation with customer” 
and transferred to an alternative flow at an incorrect step in the use case “Design clothes.”  Similarly, 
subjects B, E, and F transferred to an alternative flow at an incorrect step in the use case “Design clothes.”  
For subject C, the extend step in the use case “Schedule dates of repeated consultation with customer” was 
in correct. 

These errors may decrease the branch coverage and all-execution-flows coverage.  In the proposed 
technique, execution flows are automatically identified; thus, errors and incomplete coverage can be 
prevented.  We experimentally confirmed that incomplete coverage and errors may occur during the 
manual identification of execution flows.  The effects of such errors were not significant in this experiment 
owing to the small number of use cases; however, the effects may be critical when the number of use cases 
is large, such as several tens or several hundred.  From the results of this experiment, the proposed 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 22 of 25 

technique is considered to be effective because incomplete coverage and errors can be prevented and the 
coverage of the acceptance test is improved.  Figure 20 shows the time required to identify the execution 
flows by the conventional technique.  The minimum and maximum, mean, and median times were 30, 72, 
46.3, and 42 min, respectively.  These times can be reduced using the proposed technique.  

Manage a history 

of clothes sales

Schedule customer‟s

consultation date

Schedule dates of …

Evaluate 

sales trend

Schedule dates of 

repeated consultation 

with customer

Adjust

designer‟s

schedule

Input order

Estimate completion

day and price

Design

clothes

Input the 

cost of clothes

Input sales

 

Figure 19. Use case diagram used in the experiment 

 

Table 3. Number of errors in execution flows listed by subjects (CON: Conventional technique, 
PRO: Proposed technique) 

Subject A B C D E F 

Technique used 
first 

CON CON CON PRO PRO PRO 

Conventional 
technique 

2 1 1 0 1 1 

Proposed 
technique 

0 0 0 0 0 0 

 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 23 of 25 

T
im

e
 [m

in
]

Subject  

Figure 20. Time required for identification by the conventional technique 

 

6. Related work 

Zielczynski discussed the traceability from use cases to test cases.
9)

  In Zielczynski‟s technique, all the test 
scenarios are manually identified using the use cases and appropriate test scenarios are selected.  
Incomplete coverage and errors may occur during the manual identification.  Also, the relationship between 
use cases is not taken into consideration.  Using the proposed technique, incomplete coverage can be 
prevented because execution flows are automatically identified.  Thus, comprehensive test scenarios 
considering the relationship between use cases can be generated. 

Stephane et al. described the generation of test scenarios at the system level on the basis of text-format 
use cases.

15) 
 In their technique, the test scenarios used to check the functions of the entire system are 

generated from the use cases to realize the early verification of the use cases.  However, the purpose of 
their technique is to verify the use cases, and executable test scenarios are not generated by their 
technique.  In contrast, our proposed technique generates both test scenarios and test programs, although 
they are skeletons.  The relationships between use cases considered in the technique of Stephane et al. 
and the proposed technique are different.  In their technique, include relationships, preconditions, and 
postconditions are considered; whereas, in the proposed technique, the include, generalization, and extend 
relationships are considered when generating the test scenarios.  In addition, the definition of the diagram 
of use cases differs between the technique of Stephane et al. and the proposed technique.  Steps are 
defined as nodes in the proposed system.  In Stephane et al.‟s technique, steps are defined as edges, and 
the states of the system before and after a step are defined as nodes. Because the definition of the diagram 
of use cases differs between the two techniques, the definition of the coverage also differs. In Stephane et 
al.‟s technique, state coverage, step coverage, and all-execution-flows coverage are defined, whereas in 
the proposed technique, step coverage, branch coverage, and all-execution-flows coverage are defined.  
From the viewpoint of testing, the proposed technique, which defines branch coverage, is superior because 
bugs are likely to be detected at branches.

4)
  Owing to the definition of branch coverage, errors in the 

description of branch conditions and bugs due to transition to unexpected steps or flows can be detected. 

Amyot et al. proposed the use-case-map (UCM;
17)

 a technique for modeling scenarios)-driven testing of 
Web applications.

16)
  Their technique identifies execution flows, which are targets of the acceptance test, 

using UCM to improve the accuracy of the identification of test scenarios.  However, the relationship 
between different use cases is not taken into consideration, leading to difficulty in generating 
comprehensive test scenarios.  In contrast, the proposed technique can generate comprehensive test 
scenarios considering the relationship between use cases. 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 24 of 25 

Nebut et al. explained the use-case-driven automatic generation of test scenarios.
18)

  A formal limitation is 
applied to the preconditions and postconditions in the use cases to automatically generate test scenarios.  
Although test scenarios can be generated automatically using a formal description, the cost associated with 
the formal description is high.  In addition, comprehensive test scenarios using the preconditions and 
postconditions are generated by Nebut et al.‟s technique.  On the other hand, the proposed technique 
adopts an informal description and considers the relationship between different use cases, but does not 
consider the preconditions and postconditions.  

 

7. Conclusion and future work 

A widely accepted definition for the coverage of the acceptance test using test scenarios identified from use 
cases has not yet been established.  Thus, the judgment of acceptance test completion largely depends on 
individuals, leading to a decrease in the reliability of the acceptance test.  The reliability also decreases 
when the relationship between use cases is complicated because incomplete coverage and errors may 
occur during the manual identification of execution flows.  In this study, we defined three coverages for the 
acceptance test based on the test scenarios identified from use cases.  We also proposed a technique of 
automatically generating skeleton test scenarios and skeleton test programs using FIT that satisfy the 
specified coverage using use case descriptions and a domain model as the input.  An experiment using a 
small number of use cases was carried out using the proposed and conventional techniques.  We confirmed 
that the incomplete coverage can be prevented using the proposed technique.  Because the proposed 
technique automatically identifies the execution flows using the definition of the coverage in the acceptance 
test, acceptance test completion can be determined without depending on individual judgments.  In addition, 
the proposed technique can automatically generate test scenarios that satisfy the coverage required in the 
test, leading to an increase in the efficiency of the acceptance test. 

In the future, experiments using more samples, compatibility with languages other than Java, the 
generation of test cases in addition to execution flows, and XMI input to improve the compatibility with 
multiple modeling tools, should be considered to improve the performance of the proposed technique.  

 

References   

1) Doug Rosenberg, “Guide for Use-Case-Driven Development,” Shoeisha, 2007. 

2) Cem Kaner, Hung Quoc Nguyen, Jack Falk, “Basics for Software Test – Becoming a Professional in 
Testing,” Nikkei Business Publications, Inc., 2001. 

3) Alister Cockburn, “Writing Effective Use Cases,” Shoeisha, 2001. 

4) Boris Beizer, “Software Testing Techniques,” Nikkei Business Publications, Inc., 1994. 

5) Object Management Group, Unified Modeling Language 2.0, http://www.uml.org/. 

6) Sindre Guttorm, ”Eliciting security requirements with misuse cases. ” Requirements Engineering, Vol. 10, 
No. 1, pp. 34 - 44, Jan. 2005. 

7) Martin Fowler,  “UML Distilled, 3rd Edition,” Shoeisha, 2005. 

8) Rick Mugridge, Ward Cunningham, ”Fit for Developing Software: Framework for Integrated Tests,” 
Prentice Hall, 2005. 

9) Peter Zielczynski , ”Traceability from Use Cases to Test Cases,” developerWorks, 
http://www.ibm.com/developerworks/rational/library/04/r-3217/3217 rm14.pdf, 2006. 

10) Jim Heumann, ”Generating Test Cases From Use Cases,” Rational edge, 2001, 
http://www.ibm.com/developerworks/rational/library/content/RationalEdge/jun01/GeneratingTestCasesFro
mUseCasesJune01.pdf 



5th World Congress for Software Quality – Shanghai, China – November 2011 

Acceptance Testing based on Relationships among Use Cases Page 25 of 25 

11) JUDE Professional, http://jude.change-vision.com/jude-web/index.html 

12) Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jffrey Palm, and William G. Griswold, ”An 
Overview of AspectJ ”, Proceedings of the 15th European Conference on Object-Oriented Programming 
(ECOOP 2001), LNCS, Vol.2071, pp. 327-354, 2001 

13) Yoshihide Nagase, Masahiro Amano, Hironori Washizaki, Michiaki Tatsubori, “Introduction to 
Aspect-Oriented Programming by AspectJ,” Softbank Publishing, 2004 (in Japanese). 

14) Daryl Kulak, Eamonn Guiney,  “Use Cases: Requirement in Context,” Pearson Education, 2002. 

15) Stephane S Some , Xu Cheng, ”An approach for supporting system-level test scenarios generation from 
textual use cases”, Symposium on Applied Computing: Proceedings of the 2008 ACM symposium on 
Applied computing, pp.724 - 729, 2008.  

16) Daniel Amyot, Jean-Francois, Roy Michael Weiss, ”UCM-Driven Testing of Web Applications”, 
Proceeding of 12th SDL Forum (SDL 2005), LNCS 3530, Springer, pp.247-264, 2005. 

17) Ray J.A. Buhr, Ron S. Casselman, “Use Case Maps for Object-Oriented Systems,” Toppan Printing Co., 
Ltd., 1998.  

18) Cle‟mentine Nebut, Franck Fl eurey, Yves Le Traon, ”Automatic Test Generation: A Use Case Driven 
Approach,” IEEE Transactions on Software Engineering, Vol.32, No.3, pp.140-155, 2006. 


