Reporting the Implementation of a Framework for Measuring Test Coverage based
on Design Patterns

Kazunori Sakamoto, Hironori Washizaki, Yoshiaki Fukazawa
Dept. Computer Science and Engineering
Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan
kazuu@ruri.waseda.jp, washizaki@waseda.jp, fukazawa@waseda.jp

Abstract—Fault-free software is highly desirable, and so framework or tool that corresponds to a variety of languages
sufficient software testing plays an important role in attempts to including new languages in the future.

realize a fault-free state. Test coverage is an important indicator : ; ;
of whether software has been tested sufficiently. However, ex- In this paper, we propose a consistent and flexible test

isting measurement tools are associated with several problems, COVerage measurement framework that supports multiple
such as the cost of new development, the cost of maintenance, languages. Our framework extracts commonalities among
and inconsistent and inflexible measurement. In this paper, we multiple languages, and disregards variability by focusing on
propose a consistent and flexible test coverage measurement the syntax of the languages. We implemented our framework
framework that supports multiple programming languages. We 5504 on design patterfissuch as Template Method pattern

implemented our framework based on design patterns such as . .
Template Method pattern and Macro Command pattern. Thus and Macro Command pattern, thus we confirm the benefit

we report the success of the implementation of our framework ~ Of design patterns.
based on design patterns, and we confirm the benefit of design Our framework is now freely available via the Internet[2].
patterns.

KeywordsDesign pattern; Framework; Software testing; Test Il. PROBLEMS IN CONVENTIONAL APPROACHES

coverage; Code coverage; Metrics The following summarizes the problems with existing

measurement tools. The problems are in cost of new de-
|. INTRODUCTION velopment, in cost of maintenance, in inconsistent measure-

. . nt, in inflexible m rement and in Incomplete m re-
Test coverage (code coverage) is an important measufS® L exible measurement and complete measure

used in software testing. It refers to the degree to whicqMent but we focus only the_ cost of new develqpment.
the source code of a program has been tested and is an 1 ne variety of languages is becoming more diverse. More-

indicator of whether software has been tested sufficiently?ver’ coverage measurement tools are often unavailable for

Design pattern is an important software pattern which is & number of legacy andfor minor languages due to a lack

general reusable solution to a commonly occurring probler’f‘?f clorfnm:Jhnlty cl)r non-commercial efforts.:o, measuremia?t |
in software design. Pattern formulates the know-how oft0!s for these languages are necessary. A measurement too

solution to a commonly occurring problem to be reusedconS_iStS of the following 4 functions: a syntactic_analyzer

by people. There are multiple levels in test coverage, suc at |_nterprets syntax fror_n source code, a semantic analyzer
as statement coverage, decision coverage and conditidRt mterpre_t; the meaning of syntax such as a stqtement
coverage. Developers select a suitable level according to th%nd a conditional bran_chmg, a mgasurement function for
purpose of their software testing[1] test coverage, and a display function for measurement re-

Measurement tools are necessary in order to measure tl%:lts. Generally, it is difficult to implement these functions.

coverage of various programs accurately, and test coverage erefore, the cost necessary for development is high.
measurement tools have become widely available. Many
measurement tools are offered for major languages such as
C or Java. However, measurement tools for legacy languages
such as COBOL and minor languages such as Lua are not We propose a test coverage measurement framework that
readily available and only at some considerable expensivesupports multiple languages, and which will solve and
Moreover, it is more difficult to have access to measuremenglleviate the problems described above.

tools for newly defined languages and for existing languages The framework is a reusable software architecture and
with some language specification changes because eaghovides a generic design as some similar applications.
existing tool is specific to a certain language specificationThe application can be implemented by adding application-
Such a situation drives the need for the development of somgpecific code as user code to the framework[4].

IIl. COVERAGE MEASUREMENT FRAMEWORK
SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

user code
(language specific)
:external program
:common code
- (framework)
coverage result

| Statement | Decizion |Onndition I Conditiom"Decwsinnl

8/ 24 _ |

16: Line: 243, Pos: 10 - 65
17 Line: 251, Pog: 10 - 50
18: %: Line: 283, Pos: 8 - 63

19: Cx Line: 279, Pos: 8 - 149

the measurement code

coverage
data

we3IsAsgns
uoi3NdaX3y apo)

juauodwo)d

Figure 1. The entire design of our framework

The entire design of our framework and the processingrocessing. In this way, our framework reduces the cost of
flow is shown in Figure 1. Our framework consists of new development and maintenance. However, our framework
three subsystems: the code insertion subsystem, the codrgets only procedure-oriented languages due to the mech-
execution subsystem and the coverage display subsystermmnism used for measurement which involves inserting the
Moreover, the code insertion subsystem consists of foumeasurement code.
components: the AST (Abstract Syntax Tree) generation
component, the AST refinement component, the AST op-
eration component and the code generation component. We We implemented our framework in .NET Framework 3.5
implemented their with design patterns, so we get highSP1. Our framework enables the implementation of language
reusability and reduce the cost of new development. specific processing by adding user code such as assembly

The process of the coverage measurement is as followsfiles that run in .NET Framework 3.5 SP1 or older, or script
files in languages supported by Dynamic Language Runtime
(DLR)[13]. DLR is .NET library that provides language
services for several different dynamic languages. In this way,
pur framework helps to add user code.

We now show sample code as a sample measurement tool
implementation that measures test coverage in Java, C and
Python by using our framework.

Our framework inserts the measurement code into the
source code, and the test coverage is measured by executifig Code insertion subsystem
the program. When our framework inserts the measurement The code insertion subsystem consists of the following
code, it collects information such as the location informationcomponents: the AST generation component, the AST re-
of the measurement elements in the source code. finement component, the AST operation component and the

Our framework is designed as an object-oriented frameeode generation component.
work with object-oriented programming and design patterns. 1) AST generation componentonverts the obtained
Our framework provides common code for language in-source code into an AST as an XML document. In this
dependent processing and also provides structure to hegample, this component consists of two functions: AST
to write user code for language dependent processinduilder and the caller of AST builder. AST builder is user
Moreover, the insertion on AST simplifies the insertion code which is deployed as an external program. AST builder

IV. IMPLEMENTATION OF OUR FRAMEWORK

1) Generation of AST from source code

2) Insertion of code for measurement on AST

3) Generation of source code from AST

4) Execution of generated source code and collection o
measurement information

5) Display of measurement results from test coverage

is implemented using compilers such as SableCC[5] for Java, 3) AST operation componentias roughly three func-
ANTLR][6] for C and Python standard library for Python. tions: the enumeration of subtrees, the generation of subtrees
The caller of AST builder is common code which is designedand the replacement of subtrees. The enumeration function
locates the position in which the measurement code is
The Template Method pattern reorganizes the processinigserted. For example, this function locates the position of
steps between the coarse-grained process flow and final atomic logical terms in conditional expressions in Python.
grained concrete processing steps. The former is placed i@ur framework provides a large part of this function as
a superclass method and the latter is placed in subclasommon code which is designed by using the Template
methods. The latter is triggered by the former by callingMethod pattern.
superclass abstract methods which are actually implemented

by using Template Method pattern[7].

in subclasses.

common code

common code

<<interfacess= <=realize== AtoricBooleanTermSelector

[*ElementSelector

Select{inFilaPath : string) | XTreellst

IzlnfConditionExpressionie | XOhject, p - XElement} : bool

IsBoallermSepartorte | XElerrent) © bool

IsConditionalExpressionfe | XElement) | bool

AtarnicBooleanTermSelectarForG IsConditionaExpressionComponentie | XElzmend) | boof

Select(inFilePath : string) | XTreelist

,/ ==realize=» ':
' v
: <elrterface=> Al eneralor :
. ‘
H I stGenaratar B '
'

+ |GenerateXMLiinFilePath : slring) : XDocument GetProcessorPath) | string E

Getdrgumenis() - stringlj
GenerateX ML{NFilePath : string) : XDocument

ASHG eneratorF orG AgtGeneratorF ordava AstGeneratorF orPython

|sBoalTermSepartor(e : XElement) : boal
IsCaonditionalEx pression (e - XElement) - bool

.Z]}.
|

AtorricBooleanTermSelectorF orPython

i
AtomicBooleanTermSelectorForJava

|sBoalT ermSepartor(e : XElement) : boal
IsConditionalExpression(e - XElerment) - bool

|sBoaTermSepartar(e : XElement) : boal
|sConditionalExpression(e : XElement) - bool

GetProcessarPath) © string
GetArguments) : string(

GetProcessorPath © string
Getargurmentst stringl

GetProcessorPathd : string
Gethrgurentsd © stringl

user code

Figure 2. The class diagram of the AST generation component

shown in Figure 2. ThAstGenerator is an abstract class

user code e

Figure 3. The class diagram of the AST operation component

The class diagram related to this function is shown in
Figure 3. The AtomicBooleanTermSelector

The class diagram of UML[8] related to this component isabstract class that is designed by applying the Template
Method pattern. The sample user code that enumerates the

is an

that is designed by applying the Template Method patternatomic logical terms for Python is shown in List 2.

The sample user code of this component for Java is show
in List 1.

1

2

List 1. AstGeneratorForJava.cs 3

1 | using System.ComponentModel.Composition; :

2

6

3 | namespace CoverageFramework.AstGenerator.Java { .

4 [Export(typeof (IAstGenerator))] s

5 public class AstGeneratorForJava : AstGenerator { 9

6 private static readonly string 0 10

7 _arguments = new[] { 1

8 "jar", "../Javal/Java.jar", 12
9 .

’ - .) 3

10 protected override string FileName { 14

get { return ‘java"; } 15
16
17
18
19
20
21

22

protected override string [l Arguments {
get { return _arguments; }
}
}
}

Therefore, the use of the compiler compilers and commjjr

25

code eases the implementation of this component.
2) AST refinement componenthanges the structure of;
AST to operate AST easily. In the sample, this componen

removes the unnecessary nodes of AST such as nontermjn
nodes which have only nonterminal nodes as child nodes.
Moreover, this component converts single-line if statemeis }

into multi-line if statements. Our framework provides the
almost processing as common code.

n . .
— list2, AtomicBooleanTermSelectorForPython.cs
using System.Ling;

using System.Xml.Ling;

using System.ComponentModel.Composition;

namespace CoverageFramework.Element.Selector.Python {
[Export(typeof (IXElementSelector))]
public class AtomicBooleanTermSelectorForPython
. AtomicBooleanTermSelector {
private static readonly string 0
_condComponentNames
{ "or_test", "and_test", };
private static readonly string
_condNames newf]
{ "or_test", "and_test", };
private static readonly string
_condOpValues new(]
{ "or", "and", };
protected override bool
IsBoolTermSepartor(XElement e) {
return le.HasElements &&
_condOpValues.Contains(e.Value);

new(]

protected override bool
IsConditionalExpression(XElement e) {
return _condNames.Contains(e.Name.LocalName);

protected override bool
IsConditionalExpressionComponent(XElement e) {
return _condComponentNames
.Contains(e.Name.LocalName);
}

}

By implementing processing that judges whether the given

node is the measurement element, this code enumerates tbede that outputs the tokens as they are without exception.

atomic logical terms.

Our framework provides common code that outputs the

In addition, our framework provides some other classes amemorized tokens by applying the Template Method pattern.

common code, such as théElementSelectorUnion
class, which integrates some enumeration results, and tt
XElementSelectorPipe class, which enumerates sub-
trees in other enumeration results. These classes are desigr
by applying the Command pattern[7].

The Command pattern is the design pattern that encapsi
lates a request and the parameters in an object. A commat
object that is combined with certain other command object:

common code ...

==tealizes==

=<irterface=> SourceCodeGeneratar

ISourceCade Generator

Generatetodoc S XDocurment) © string GetDepth) ; int
Initializef) : void
‘walkElermentielement ;X Container) ©void
TreatTerminalzymioie | XElemendl bool
Generatexdoc - ¥Document) : string

pay

SourceCodeGenaratorForc

is called a Macro Command.

c<realize=>

<<redlize>> |+

XElemeniselectorunion <<irterfacer>

[XElementSelector

1 0.7

Select(r : XElement) : XTreeList

Ihion(zels &)

14 [Belect(r - XElement) -xCTresList

ControlFlowSelectorForG

Select(r : KElement) : XTreeList

yay

7. T
| <srealize»
i

XElementSelectorPipe 1 ParenthesisSelector

sl XEfermen : ool
IsRightParenthesisie : XElemend) * ool

Select(r : XElement) | XTreeList

H o
H i
1 |Belectir :}Element) : XTreeList

i

+ | 1sLefParenthesis(e : xElerent) : baol

ITSelectorForC

ParenthesisSelectaF oG

RightP arerthesis(e : XElement - bool|

user code ----/

Figure 4. The class diagram according to enumeration subtrees

TreatTerminalSyrmbal e | XElemsnt) : bool

SourceCodeGeneratorForlava

SourceCodeGeneratarForPython

The class diagram related to the enumeration function

TreatTerrmiralSyrbal(e | XElement) : bool TreatTerriralSymbolie | XElement) © bool

user code

Figure 5. The class diagram of the code generation component

The class diagram related to this component is shown
in Figure 5. TheSourceCodeGenerator is an abstract
class that is designed by applying the Template Method
pattern. The sample user code of this component for Python
is shown in List 4.

List 4. SourceCodeGeneratorForPython.cs

is shown in Figure 4. Th&ElementSelectorPipe is
a class as a Macro Command by applying the Comman
pattern. The usage of this class is shown in List 3. :

[

. .
var ifSelector = new XElementSelectorPipe(

new IfSelectorForC(),
new ParenthesisSelectorForC());

© © N o 0N

10
11

By combining the instance of th#SelectorForC .

class, which enumerates the subtrees correspondingut
the conditional sentence, and the instance of tfe
ParenthesisSelectorForC class, which enumerates”
the subtrees corresponding to the parenthetic expressjp
this code enumerates the subtrees corresponding to zil’
conditional expression for C.

Therefore, our framework reduces the size of the classes

and promotes code reuse. Moreover, flexible measurenié
is achieved by adding processing that locates subtrees. 2

i using System.ComponentModel.Composition;

using System.Xml.Ling;

namespace CoverageFramework.CodeGenerator.Python {
[Export(typeof (ISourceCodeGenerator))]
public class SourceCodeGeneratorForPython
: SourceCodeGenerator {
protected override bool
TreatTerminalSymbol(XElement element) {
switch (element.Name.LocalName) {
case "NEWLINE"
WriteLine();
break ;
case "INDENT™
Depth++;
break ;
case "DEDENT":
Depth--;
break ;
default
return false ;

}

return true)

In addition, the generation functions are used to gener-

ate the subtrees corresponding to the measurement code.Neither the linefeed nor the indent is memorized in AST
Our framework requires user code for this function. Thefor Python. Accordingly, this component requires user code
replacement functions are used to insert the subtrees &0 output the linefeed and the indent to the corresponding
the measurement code into the source code on AST. Oderminal nodes.

framework provides this function completely as common Therefore, in our framework, most of this component is
code. common code.

4) Code generation componentonverts the obtained

AST into source code. When the AST has memorized

almost all of the tokens corresponding text in source code, We evaluate our framework by comparing sample im-
this component can be implemented simply by adding useplementation that is developed by using our framework

V. EVALUATION

with typical existing measurement tools, namely, Cobertura Kiri et al. propose the idea of developing a measurement
supporting Java and Statement coverage for Python[9] supeol which inserts the measurement code into source code.
porting Python. Their idea measures statement coverage, decision coverage

We evaluate the new development cost by using the LOGnd a special coverage called RCO. RCO is special statement
(Lines of Code) of the program that inserts the measuremertdoverage for only the revised statement. However, their idea
code and by the number of supporting coverage levels. can measure only statement coverage and decision coverage
because their idea measures coverage by simply inserting a
simple statement. Moreover, though their idea can measure
the coverage of four languages, including Java, C/C++,
Visual Basic, and ABAP/4, it cannot support any other
languages. Conversely, our framework cannot measure RCO.
However, our framework can support new coverage such as
RCO easily by adding user code.

1200
1056

1000

800

600

LOC

VIl. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a coverage measurement
framework for multiple languages and report the imple-
mentation of our framework based on design patterns. We
achieved reduction of cost by reusing common code because
we implemented our framework based on design patterns.
Thus we conclude design patterns produce high reusability.

We plan to evaluate more completely our framework,

Figure 6 shows the comparison results obtained withaChiVe more reu_sability using design patterns, and improve
LOC. The LOC of Cobertura is 1056 lines, and the LOC ofthe framework in order to support languages other than

400
215
200

:]

framework(Java) framework(Python)

Statement coverage for Python

163

Cobertura

Figure 6. The LOC

the sample implementation for Java is 215 lines. COberturgrocedure-onented languages, such as functional program-

uses BCEL[10] to insert byte code into the Java class file.
BCEL is a library that conveniently provides users with the
option to analyze, create, and manipulate (binary) Java clas
files. However, the sample implementation does not use th
library except for our simple helper methods and the .NET 2]
standard library.

On the other hand, the LOC of Statement coverage for[3]
Python is 131 lines, and the LOC of the sample imple- [4]
mentation with our framework for Python is 153 lines in
Figure 6. Statement coverage for Python uses only the
Python standard library. In addition, the LOC of the language
independent and reusable part in the framework is 654 lines.
Our framework can support new language with less cost than
new development of the measurement tool. [6]

Cobertura supports statement coverage and decision covf7]
erage, and Statement coverage for Python supports only the
statement coverage. On the other hand, the sample imple-
mentation with our framework supports statement coverage,
decision coverage, condition coverage and condition/deci-[]
sion coverage. The same functionality can be implemented
with fewer LOCs. [10]

Therefore, our framework succeeded in alleviating the
problem of high cost for new development using design11]
patterns and we confirm high reusability of design patterns.

VI. RELATED WORK

Here, we explain the ideas of Kiri et al.[12] as other
researches that relate to the mechanism and purpose of our
framework. [13]

1]

(5]

(12]

ming languages.

REFERENCES

Lee Copeland, "A Practitioner's Guide to Software Test
Design”, Artech House, 2003.

Kazunori Sakamoto, Open Code Coverage Framework,
http://sourceforge.jp/projects/codecoverage/.

Cobertura, http://cobertura.sourceforge.net/.

Mohamed Fayad and Douglas C. Schmidt, "Object-Oriented
Application Frameworks”, the Communications of the ACM,
Special Issue on Object-Oriented Application Frameworks,
\ol. 40, No. 10, October 1997.

Etienne M. Gagnon, Ben Menking, Mariusz Nowostawski,
Komivi Kevin Agbakpem and Kis Gergely, SableCC,
http://sablecc.org/.

ANTLR, http://www.antlr.org/.

E. Gamma, R. Helm, R. Johnson and J. Vlissides, "Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley, 1994.

8] OMG, Unified Modeling Language (UML) specification, ver-

sion 2.2, http://www.omg.org/spec/UML/.

Gareth Rees, Statement coverage for
http://garethrees.org/2001/12/04/python-coverage/.
Apache Software Foundation, The Byte Code Engineering
Library, http://jakarta.apache.org/bcel/.

Haruhiko Okumura, Houki Satoh, Kazuo Turu, Kazuyuki

Shudo and Tutimura Nobuyuki, "Algorithm cyclopedia by

Java’(in Japanese), Gijutuhyoronsya, 2003.

Takashi Kiri, Tatuya Miyoshi, Satoru Kishigami, Tatuo Osato,

Tuyoshi Sonehara "About the source code insertion type
coverage tool”, The 69th Information Processing Society of
Japan National Convention, 2003.

Microsoft, http://dIr.codeplex.com/.

Python,

