
Reporting the Implementation of a Framework for Measuring Test Coverage based
on Design Patterns

Kazunori Sakamoto, Hironori Washizaki, Yoshiaki Fukazawa
Dept. Computer Science and Engineering

Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan

kazuu@ruri.waseda.jp, washizaki@waseda.jp, fukazawa@waseda.jp

Abstract—Fault-free software is highly desirable, and so
sufficient software testing plays an important role in attempts to
realize a fault-free state. Test coverage is an important indicator
of whether software has been tested sufficiently. However, ex-
isting measurement tools are associated with several problems,
such as the cost of new development, the cost of maintenance,
and inconsistent and inflexible measurement. In this paper, we
propose a consistent and flexible test coverage measurement
framework that supports multiple programming languages. We
implemented our framework based on design patterns such as
Template Method pattern and Macro Command pattern. Thus
we report the success of the implementation of our framework
based on design patterns, and we confirm the benefit of design
patterns.

Keywords-Design pattern; Framework; Software testing; Test
coverage; Code coverage; Metrics

I. I NTRODUCTION

Test coverage (code coverage) is an important measure
used in software testing. It refers to the degree to which
the source code of a program has been tested and is an
indicator of whether software has been tested sufficiently.
Design pattern is an important software pattern which is a
general reusable solution to a commonly occurring problem
in software design. Pattern formulates the know-how of
solution to a commonly occurring problem to be reused
by people. There are multiple levels in test coverage, such
as statement coverage, decision coverage and condition
coverage. Developers select a suitable level according to the
purpose of their software testing[1].

Measurement tools are necessary in order to measure the
coverage of various programs accurately, and test coverage
measurement tools have become widely available. Many
measurement tools are offered for major languages such as
C or Java. However, measurement tools for legacy languages
such as COBOL and minor languages such as Lua are not
readily available and only at some considerable expensive.
Moreover, it is more difficult to have access to measurement
tools for newly defined languages and for existing languages
with some language specification changes because each
existing tool is specific to a certain language specification.
Such a situation drives the need for the development of some

framework or tool that corresponds to a variety of languages
including new languages in the future.

In this paper, we propose a consistent and flexible test
coverage measurement framework that supports multiple
languages. Our framework extracts commonalities among
multiple languages, and disregards variability by focusing on
the syntax of the languages. We implemented our framework
based on design patterns　 such as Template Method pattern
and Macro Command pattern, thus we confirm the benefit
of design patterns.

Our framework is now freely available via the Internet[2].

II. PROBLEMS IN CONVENTIONAL APPROACHES

The following summarizes the problems with existing
measurement tools. The problems are in cost of new de-
velopment, in cost of maintenance, in inconsistent measure-
ment, in inflexible measurement and in Incomplete measure-
ment but we focus only the cost of new development.

The variety of languages is becoming more diverse. More-
over, coverage measurement tools are often unavailable for
a number of legacy and/or minor languages due to a lack
of community or non-commercial efforts. So, measurement
tools for these languages are necessary. A measurement tool
consists of the following 4 functions: a syntactic analyzer
that interprets syntax from source code, a semantic analyzer
that interprets the meaning of syntax such as a statement
and a conditional branching, a measurement function for
test coverage, and a display function for measurement re-
sults. Generally, it is difficult to implement these functions.
Therefore, the cost necessary for development is high.

III. C OVERAGE MEASUREMENT FRAMEWORK

SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

We propose a test coverage measurement framework that
supports multiple languages, and which will solve and
alleviate the problems described above.

The framework is a reusable software architecture and
provides a generic design as some similar applications.
The application can be implemented by adding application-
specific code as user code to the framework[4].



Figure 1. The entire design of our framework

The entire design of our framework and the processing
flow is shown in Figure 1. Our framework consists of
three subsystems: the code insertion subsystem, the code
execution subsystem and the coverage display subsystem.
Moreover, the code insertion subsystem consists of four
components: the AST (Abstract Syntax Tree) generation
component, the AST refinement component, the AST op-
eration component and the code generation component. We
implemented their with design patterns, so we get high
reusability and reduce the cost of new development.

The process of the coverage measurement is as follows.

1) Generation of AST from source code
2) Insertion of code for measurement on AST
3) Generation of source code from AST
4) Execution of generated source code and collection of

measurement information
5) Display of measurement results from test coverage

Our framework inserts the measurement code into the
source code, and the test coverage is measured by executing
the program. When our framework inserts the measurement
code, it collects information such as the location information
of the measurement elements in the source code.

Our framework is designed as an object-oriented frame-
work with object-oriented programming and design patterns.
Our framework provides common code for language in-
dependent processing and also provides structure to help
to write user code for language dependent processing.
Moreover, the insertion on AST simplifies the insertion

processing. In this way, our framework reduces the cost of
new development and maintenance. However, our framework
targets only procedure-oriented languages due to the mech-
anism used for measurement which involves inserting the
measurement code.

IV. I MPLEMENTATION OF OUR FRAMEWORK

We implemented our framework in .NET Framework 3.5
SP1. Our framework enables the implementation of language
specific processing by adding user code such as assembly
files that run in .NET Framework 3.5 SP1 or older, or script
files in languages supported by Dynamic Language Runtime
(DLR)[13]. DLR is .NET library that provides language
services for several different dynamic languages. In this way,
our framework helps to add user code.

We now show sample code as a sample measurement tool
implementation that measures test coverage in Java, C and
Python by using our framework.

A. Code insertion subsystem

The code insertion subsystem consists of the following
components: the AST generation component, the AST re-
finement component, the AST operation component and the
code generation component.

1) AST generation component:converts the obtained
source code into an AST as an XML document. In this
sample, this component consists of two functions: AST
builder and the caller of AST builder. AST builder is user
code which is deployed as an external program. AST builder



is implemented using compilers such as SableCC[5] for Java,
ANTLR[6] for C and Python standard library for Python.
The caller of AST builder is common code which is designed
by using Template Method pattern[7].

The Template Method pattern reorganizes the processing
steps between the coarse-grained process flow and fine-
grained concrete processing steps. The former is placed in
a superclass method and the latter is placed in subclass
methods. The latter is triggered by the former by calling
superclass abstract methods which are actually implemented
in subclasses.

Figure 2. The class diagram of the AST generation component

The class diagram of UML[8] related to this component is
shown in Figure 2. TheAstGenerator is an abstract class
that is designed by applying the Template Method pattern.
The sample user code of this component for Java is shown
in List 1.

List 1. AstGeneratorForJava.cs
1 using System.ComponentModel.Composition;
2

3 namespace CoverageFramework.AstGenerator.Java {
4 [Export( typeof (IAstGenerator))]
5 public class AstGeneratorForJava : AstGenerator {
6 private static readonly string []
7 _arguments = new[] {
8 "-jar", "../Java/Java.jar",
9 };

10 protected override string FileName {
11 get { return "java"; }
12 }
13 protected override string [] Arguments {
14 get { return _arguments; }
15 }
16 }
17 }

Therefore, the use of the compiler compilers and common
code eases the implementation of this component.

2) AST refinement component:changes the structure of
AST to operate AST easily. In the sample, this component
removes the unnecessary nodes of AST such as nonterminal
nodes which have only nonterminal nodes as child nodes.
Moreover, this component converts single-line if statements
into multi-line if statements. Our framework provides the
almost processing as common code.

3) AST operation component:has roughly three func-
tions: the enumeration of subtrees, the generation of subtrees
and the replacement of subtrees. The enumeration function
locates the position in which the measurement code is
inserted. For example, this function locates the position of
all atomic logical terms in conditional expressions in Python.
Our framework provides a large part of this function as
common code which is designed by using the Template
Method pattern.

Figure 3. The class diagram of the AST operation component

The class diagram related to this function is shown in
Figure 3. TheAtomicBooleanTermSelector is an
abstract class that is designed by applying the Template
Method pattern. The sample user code that enumerates the
atomic logical terms for Python is shown in List 2.

List 2. AtomicBooleanTermSelectorForPython.cs
1 using System.Linq;
2 using System.Xml.Linq;
3 using System.ComponentModel.Composition;
4

5 namespace CoverageFramework.Element.Selector.Python {
6 [Export( typeof (IXElementSelector))]
7 public class AtomicBooleanTermSelectorForPython
8 : AtomicBooleanTermSelector {
9 private static readonly string []

10 _condComponentNames = new[]
11 { "or_test", "and_test", };
12 private static readonly string []
13 _condNames = new[]
14 { "or_test", "and_test", };
15 private static readonly string []
16 _condOpValues = new[]
17 { "or", "and", };
18 protected override bool
19 IsBoolTermSepartor(XElement e) {
20 return !e.HasElements &&
21 _condOpValues.Contains(e.Value);
22 }
23 protected override bool
24 IsConditionalExpression(XElement e) {
25 return _condNames.Contains(e.Name.LocalName);
26 }
27 protected override bool
28 IsConditionalExpressionComponent(XElement e) {
29 return _condComponentNames
30 .Contains(e.Name.LocalName);
31 }
32 }
33 }

By implementing processing that judges whether the given



node is the measurement element, this code enumerates the
atomic logical terms.

In addition, our framework provides some other classes as
common code, such as theXElementSelectorUnion
class, which integrates some enumeration results, and the
XElementSelectorPipe class, which enumerates sub-
trees in other enumeration results. These classes are designed
by applying the Command pattern[7].

The Command pattern is the design pattern that encapsu-
lates a request and the parameters in an object. A command
object that is combined with certain other command objects
is called a Macro Command.

Figure 4. The class diagram according to enumeration subtrees

The class diagram related to the enumeration function
is shown in Figure 4. TheXElementSelectorPipe is
a class as a Macro Command by applying the Command
pattern. The usage of this class is shown in List 3.

List 3. The usage example of XElementSelectorPipe
1 var ifSelector = new XElementSelectorPipe(
2 new IfSelectorForC(),
3 new ParenthesisSelectorForC());

By combining the instance of theIfSelectorForC
class, which enumerates the subtrees corresponding to
the conditional sentence, and the instance of the
ParenthesisSelectorForC class, which enumerates
the subtrees corresponding to the parenthetic expression,
this code enumerates the subtrees corresponding to the
conditional expression for C.

Therefore, our framework reduces the size of the classes
and promotes code reuse. Moreover, flexible measurement
is achieved by adding processing that locates subtrees.

In addition, the generation functions are used to gener-
ate the subtrees corresponding to the measurement code.
Our framework requires user code for this function. The
replacement functions are used to insert the subtrees of
the measurement code into the source code on AST. Our
framework provides this function completely as common
code.

4) Code generation component:converts the obtained
AST into source code. When the AST has memorized
almost all of the tokens corresponding text in source code,
this component can be implemented simply by adding user

code that outputs the tokens as they are without exception.
Our framework provides common code that outputs the
memorized tokens by applying the Template Method pattern.

Figure 5. The class diagram of the code generation component

The class diagram related to this component is shown
in Figure 5. TheSourceCodeGenerator is an abstract
class that is designed by applying the Template Method
pattern. The sample user code of this component for Python
is shown in List 4.

List 4. SourceCodeGeneratorForPython.cs
1 using System.Xml.Linq;
2 using System.ComponentModel.Composition;
3

4 namespace CoverageFramework.CodeGenerator.Python {
5 [Export( typeof (ISourceCodeGenerator))]
6 public class SourceCodeGeneratorForPython
7 : SourceCodeGenerator {
8 protected override bool
9 TreatTerminalSymbol(XElement element) {

10 switch (element.Name.LocalName) {
11 case "NEWLINE":
12 WriteLine();
13 break ;
14 case "INDENT":
15 Depth++;
16 break ;
17 case "DEDENT":
18 Depth--;
19 break ;
20 default :
21 return false ;
22 }
23 return true ;
24 }
25 }
26 }

Neither the linefeed nor the indent is memorized in AST
for Python. Accordingly, this component requires user code
to output the linefeed and the indent to the corresponding
terminal nodes.

Therefore, in our framework, most of this component is
common code.

V. EVALUATION

We evaluate our framework by comparing sample im-
plementation that is developed by using our framework



with typical existing measurement tools, namely, Cobertura
supporting Java and Statement coverage for Python[9] sup-
porting Python.

We evaluate the new development cost by using the LOC
(Lines of Code) of the program that inserts the measurement
code and by the number of supporting coverage levels.

Figure 6. The LOC

Figure 6 shows the comparison results obtained with
LOC. The LOC of Cobertura is 1056 lines, and the LOC of
the sample implementation for Java is 215 lines. Cobertura
uses BCEL[10] to insert byte code into the Java class file.
BCEL is a library that conveniently provides users with the
option to analyze, create, and manipulate (binary) Java class
files. However, the sample implementation does not use the
library except for our simple helper methods and the .NET
standard library.

On the other hand, the LOC of Statement coverage for
Python is 131 lines, and the LOC of the sample imple-
mentation with our framework for Python is 153 lines in
Figure 6. Statement coverage for Python uses only the
Python standard library. In addition, the LOC of the language
independent and reusable part in the framework is 654 lines.
Our framework can support new language with less cost than
new development of the measurement tool.

Cobertura supports statement coverage and decision cov-
erage, and Statement coverage for Python supports only the
statement coverage. On the other hand, the sample imple-
mentation with our framework supports statement coverage,
decision coverage, condition coverage and condition/deci-
sion coverage. The same functionality can be implemented
with fewer LOCs.

Therefore, our framework succeeded in alleviating the
problem of high cost for new development using design
patterns and we confirm high reusability of design patterns.

VI. RELATED WORK

Here, we explain the ideas of Kiri et al.[12] as other
researches that relate to the mechanism and purpose of our
framework.

Kiri et al. propose the idea of developing a measurement
tool which inserts the measurement code into source code.
Their idea measures statement coverage, decision coverage
and a special coverage called RC0. RC0 is special statement
coverage for only the revised statement. However, their idea
can measure only statement coverage and decision coverage
because their idea measures coverage by simply inserting a
simple statement. Moreover, though their idea can measure
the coverage of four languages, including Java, C/C++,
Visual Basic, and ABAP/4, it cannot support any other
languages. Conversely, our framework cannot measure RC0.
However, our framework can support new coverage such as
RC0 easily by adding user code.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have proposed a coverage measurement
framework for multiple languages and report the imple-
mentation of our framework based on design patterns. We
achieved reduction of cost by reusing common code because
we implemented our framework based on design patterns.
Thus we conclude design patterns produce high reusability.

We plan to evaluate more completely our framework,
achive more reusability using design patterns, and improve
the framework in order to support languages other than
procedure-oriented languages, such as functional program-
ming languages.

REFERENCES

[1] Lee Copeland, ”A Practitioner’s Guide to Software Test
Design”, Artech House, 2003.

[2] Kazunori Sakamoto, Open Code Coverage Framework,
http://sourceforge.jp/projects/codecoverage/.

[3] Cobertura, http://cobertura.sourceforge.net/.
[4] Mohamed Fayad and Douglas C. Schmidt, ”Object-Oriented

Application Frameworks”, the Communications of the ACM,
Special Issue on Object-Oriented Application Frameworks,
Vol. 40, No. 10, October 1997.

[5] Etienne M. Gagnon, Ben Menking, Mariusz Nowostawski,
Komivi Kevin Agbakpem and Kis Gergely, SableCC,
http://sablecc.org/.

[6] ANTLR, http://www.antlr.org/.
[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides, ”Design

Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley, 1994.

[8] OMG, Unified Modeling Language (UML) specification, ver-
sion 2.2, http://www.omg.org/spec/UML/.

[9] Gareth Rees, Statement coverage for Python,
http://garethrees.org/2001/12/04/python-coverage/.

[10] Apache Software Foundation, The Byte Code Engineering
Library, http://jakarta.apache.org/bcel/.

[11] Haruhiko Okumura, Houki Satoh, Kazuo Turu, Kazuyuki
Shudo and Tutimura Nobuyuki, ”Algorithm cyclopedia by
Java”(in Japanese), Gijutuhyoronsya, 2003.

[12] Takashi Kiri, Tatuya Miyoshi, Satoru Kishigami, Tatuo Osato,
Tuyoshi Sonehara ”About the source code insertion type
coverage tool”, The 69th Information Processing Society of
Japan National Convention, 2003.

[13] Microsoft, http://dlr.codeplex.com/.


