
Evaluation of the Application of Design Patterns by Using Classification with a

Support Vector Machine
Jonatan HERNANDEZ

†
, Kubo ATSUTO

††
, Hironori WASHIZAKI

†
, Yoshiaki FUKAZAWA

†

Design patterns are well known for their usefulness in software development. However how to measure its

correct application quantitatively is still a problem. The objective of this proposed technique is to offer a process

to make an evaluation when a Design Pattern was applied by using the change of values of selected metrics in the

source code.

1. Introduction

Design patterns are well known for their usefulness in

software development. The question that I try to solve in

this work is: Is it possible to measure them

quantitatively? Is it possible to know if a Design Pattern

has been applied correctly? This is a problem that has

not been treated deeply enough.

The objective is to provide a view of the evolution of

the source code from a metrics point of view. This

metrics will be related to one particular structure: Design

Patterns. This structure is the one that we are trying to

identify and to measure in the source code. We also

make the assumption that the quality of the design is

related to the presence of Design Patterns. Summarizing

the characteristic in which we will focus is the

application of the Design Patterns and its effects in the

metrics.

To measure the metrics, we devised a small process

in which we have different states of the source code that

represent its evolution through time.

Finally the metrics chosen to measure are a set of

Object Oriented metrics. This metrics are obtained by

using an Eclipse plug-in.

In the following section will be a description of the

process use to obtain the metrics, and to generate a

model for classification using a SVM.

2. Proposed Technique

2.1. The Process

The process proposed for evaluation consists of the

following general steps: 1) Obtain source code before

the application of a Design Pattern. 2) Measure the

metrics of this source code Mb3) Obtain the source code

after the application of a Design Pattern. 4) Measure the

metrics of this source code Ma. 5) Obtain the difference

of the values of the metrics (Mb -Ma) 6) Use this

difference to create an input file for the SVM. 7) From

this data the SVM can creates a model for classification

8) This model can be used to classify source code were a

Design Pattern is applied and made a prediction if it is

correctly applied or not.

In the previous process there are to possible

scenarios for an application of a Design Pattern: 1)

Failure: The Design Pattern has been removed, or 2)

Success: the Design Patterns has been added. For the

purposes of this study, we will assume that if a Pattern

was removed from the source code, always can be

considered as a failure.

In the case of a failure scenario, only the steps 1) and

3) change: 1) Obtain the source code when the Design

Pattern is included in the code … 3) Obtain the source

code after the pattern has been removed from the source

code. The rest of the steps are the same.

To find the metrics it is necessary to identity when to

measure the metrics. In order to do this we can see the

following diagram where M = set of metrics, V =

version. Each set of metrics is composed of individual

metrics m1, m2, m3 … mk. I.E. m1 could be Depth of

Inheritance Tree (DIT), an m2 could be Number of

Methods NOM, etc.

Now, supposing that version V3 has a Design Pattern,

i.e. Singleton, and then in version Vn this Design

Pattern (Singleton) was deleted, we obtain the metrics in

the following way:

Set of metrics from V3 = M3, and set of metrics from
†Waseda University, ††National Institute of Informatics

Vn = Mn.

Mn – M3 = ΔMp = Delta of Metrics for a Pattern p,

which is the difference of value of each individual

metric from version V3 and version Vn.

The next step is input this data in a format suitable

for the input of an SVM.

In this way we fill a file for a particular type of

Design Pattern. Each row is an example of a success or a

failure of that particular Design Pattern. Then we give

that file as an input for the SVM, and we obtain a model

that can be use to classify future inputs.

2.2. Expectations.

When applying a Design Pattern certain values from

the difference between the metrics can be interpreted as

an indication of a success or a failure. This can be done

because of the model previously obtained.

2.3. Problems.

One problem that has to be faced since the beginning

is the recollection of data. One part of the problem is

identifying the Design Patterns inside the code. The

second part of the problem is getting the source code for

that pattern. A variation of the problem is to find

information from a repository history (i.e. CVS, SVN)

where a pattern was deleted. These two problems have

proved to be very difficult to solve in an automatic way.

2.3.1. Problems with Open Source Projects.

One will be oriented to think that in the open source

projects there is a lot of pattern work. Here the problem

is to identify were the Design Patterns have been used.

The problems with the open source projects have been

to find the patterns, and then retrieve the appropriate

versions of the source code in an efficient way.

2.4. Results

The analysis made so far was made with examples

from books, primarily two sources: Refactoring to

Patterns and Pattern Hatching.

From these examples some models have been

obtained, but the samples are still few, so in this point

there is a need for more samples.

2.5. Who can benefit from this

After the model has been created it can have several

uses. The most important is the capacity for a developer

to judge if a Design Pattern is correctly applied or not.

This can be done by measuring the metrics of the code

to check, and then giving those metrics as an input to the

SVM and the model previously obtained.

2.6. Points for improvement.

So far there have been some problems, specifically

with the collection of data. To improve this part one way

is the automation of parts/all of the process.

Another problem is to find suitable examples; so far

all the examples have been extracted from books. One

more point is to get data from other sources, like open

source projects (overcoming the current problems).

Reference Works

[1] Marek Vokac, Defect Frequency and Design

Patterns: An Empirical Study of Industrial Code,

IEEE Transactions on Software Engineering, 2004

[2] Kerievsky J.: Refactoring to Patterns,

Addison-Wesley, 2008

[3] Vlissides, J: Pattern Hatching – Design Patterns

Applied, Addison-Wesley, 1998

[4] L. Prechelt et al., A Controlled Experiment in

Maintenance Comparing Design Patterns to

Simpler Solutions, IEEE Transactions on Software

Engineering, 2001

[5] T. H. Ng et al., Work experience versus

refactoring to design patterns: a controlled

experiment, 14th ACM SIGSOFT , 2006

[6] http://metrics.sourceforge.net/, Eclipse Plugin

Metrics 1.3.6

http://metrics.sourceforge.net/

