
Two patterns for distributed systems: Enterprise Service
Bus (ESB) and Distributed Publish/Subscribe

EDUARDO B. FERNANDEZ, Dept. of Comp. Science and Eng., Florida Atlantic University, Boca Raton, FL, USA,

ed@cse.fau.edu
NOBUKAZU YOSHIOKA, GRACE Center, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan,

nobukazu@nii.ac.jp

HIRONORI WASHIZAKI, Waseda University / GRACE Center, National Institute of Informatics, 3-4-1, Okubo, Shinjuku-ku,

Tokyo, Japan, washizaki@waseda.jp

We present two common patterns for distributed systems: Enterprise Service Bus (ESB) and Distributed Publish/Subscribe (P/S).
ESB defines a common bus structure that provides basic brokerage functions as well as a set of other appropriate services. The ESB
has been used mostly for web services but it can be used for any distributed system. The P/S realizes a system structure where
subscribers register to receive events produced by a publisher. The P/S has been described usually in a centralized environment and
we emphasize here its distributed nature. These patterns are mainly intended for web services application and distributed systems
architects and designers. In those applications, the ESB and the Distributed P/S are architectural units that need to be combined with
other architectural units.

Categories and Subject Descriptors: H.3.4 [Information Systems]: Systems and Software—Distributed systems

General Terms: Design

Additional Key Words and Phrases: Service-oriented architecture (SOA), web services, architecture pattern

ACM Reference Format:

Fernandez, E.B., Yoshioka, N. and Washizaki, H. 2012. Two patterns for distributed systems: Enterprse Service Bus (ESB) and
Distributed Publish/Subscribe. Proceedings of the 2011 Conference on Pattern Languages of Programs, 1013 pages.

1. INTRODUCTION

Most current applications are distributed. An important subset of them use web services and are designed
using Service-Oriented Architecture (SOA) principles. We define SOA as an architectural style in which a
system is composed from a set of loosely coupled services that interact with each other by sending
messages (packets of data). In order to interoperate, each service publishes its description, which defines
its interface and expresses constraints and policies that must be respected in order to interact with it. In
this architectural style, applications are built by coordinating and assembling services in the form of a
workflow that invokes services as needed, as well as standard software components [Zim05]. A service is
a logical representation of a business activity that has a specified outcome. A key principle about services
is that they should be easily reusable and discoverable, even in an inter-organizational context.
Furthermore, the channels of communication between the participating entities in a service-oriented
application are much more vulnerable than in operating systems or within the boundaries of an
organization’s intranet, since they are established on public networks. The complexity of the software used
to handle web services adds to the total complexity and can be a source of attacks, which makes security
an important concern [Pap07].

Papazoglou, and van den Heuvel [Pap07] give a review of technologies and approaches that unify the
principles and concepts of SOA with those of event-based programming. It focuses on the Enterprise
Service Bus and describes a range of functions that are designed to offer a manageable, standards based
SOA backbone that extends middleware functionality throughout by connecting heterogeneous
components and systems and offers integration services. They propose an approach to extend the
conventional SOA to cater for essential Enterprise Service Bus (ESB) requirements that include
capabilities such as service orchestration, “intelligent” routing, provisioning, integrity and security of
messages as well as service management.

The Organization for the Advancement of Structured Information Standards (OASIS) produced a SOA
Reference Model (SOA RM) [OAS]. This model is an abstract framework for understanding significant
entities and relationships between them, and for the development of consistent standards or specifications
supporting that environment. It is based on unifying concepts of SOA and may be used by architects

Neural Modeling of Flow Rendering Effectiveness: Page - 2

developing specific service oriented architectures or in training and explaining SOA. It uses the ESB as an
important concept.

Because the ESB is a fundamental unit in SOA, it has been described as a pattern, e.g. in [Erl09,
Zdu06]. However, these patterns present mostly the idea of the ESB but not enough detail to help a
designer use an ESB effectively in her designs. The ESB has a value beyond SOA and can be used for all
types of distributed systems. We present here a pattern for ESBs that provides more detail, including
sections following a POSA template including problem, solution, consequences and related patterns. Our
pattern also incorporates explicitly nonfunctional aspects.

Many activities in SOA and distributed systems in general require a Publish/Subscribe (P/S) approach,
where subscribers register to receive events produced by a publisher. We know of at least one pattern for
Publish/Subscribe [Bus96], which has a more general context, our pattern is explicitly intended for
distributed systems.

Our patterns are mainly intended for web services application and distributed systems architects and
designers. In those applications, the ESB and the P/S are architectural units that need to be combined with
other architectural units. This work requires an understanding of their functions as well as non-functional
aspects (e.g. security or performance). Typically, these units would not be built from scratch but the
architect would select a commercial offering and the patterns would help guide this selection. However, the
patterns may be also useful to those who build web service products and to the end users of this type of
applications.

Section 2 presents the Enterprise Service Bus pattern, while Section 3 describes the Distributed
Publish/Subscribe pattern. We end with some conclusions.

2. ENTERPRISE SERVICE BUS

Intent
Provide a convenient infrastructure to integrate a variety of distributed services and related components in
a simple way.

Example
A travel agency interacts with many services to do flight reservations, check hotel availability, check
customer credit, and others. This interaction is being done now by direct interaction, which results in many
ad hoc interfaces, and requires many format conversions. The system is not scalable and it is hard to
support standards.

Context
Distributed applications using web services, as well as related services such as directories, databases,
security, and monitoring. There may be also other types of components (J2EE, .NET). There may be
different standards applying to specific components and components that do not follow any standards.

Problem
When an organization has many scattered services, how can we aggregate them so they can be used
together to assemble applications, at the same time keeping the architectural structure as simple as
possible, and apply uniform standards?

The solution to this problem is affected by the following forces:
 Interoperability. It is fundamental for a business unit in an institution to be able to interact with a variety

of services, internal or external.
 Simplicity of structure: we want a simple way to interconnect services; this simplifies the work of the

integrators.
 Scalability: we need to have the ability to expand the number of interconnected services without

making changes to the basic architecture.
 Message flexibility: we need to provide a variety of message invocation styles (synchronous and

asynchronous) and formatting. We can thus accommodate all component needs.
 Simplicity of management: we need to monitor and manage many services, perform load balancing,

logging, routing, format conversion, and filtering.
 Flexibility: new types of services should be accommodated easily.
 Transparency: we should be able to find services without needing to know their locations.

Neural Modeling of Flow Rendering Effectiveness: Page - 3

 Quality of service: we may need to provide different degrees of security, reliability, availability, or
performance.

 Use of policies: we need a policy-based configuration and management. This allows convenient
governance and systematic changes. Policies are high-level guidelines about architectural or
institutional aspects and are important in any system that supports systematic governance [Sch06].

 Standard interfaces: we need explicit and formal interface contracts.

Solution
Introduce a common bus structure that provides basic brokerage functions as well as a set of other
appropriate services. Figure 1 shows a typical structure. One can think of this bus as an intermediate layer
of processing that can include services to handle problems associated with reliability, scalability, security,
and communications disparity. An ESB is typically part of a Service-Oriented Architecture Implementation
Framework, which includes the infrastructure needed to implement a SOA system. This infrastructure may
also include support for stateful services.

Structure
Figure 2 shows the class diagram of the ESB pattern. The ESB connects Business Applications with each
other providing support for the needs of services through a Service Infrastructure made up of Business
Application Services (BASs), which in turn use Internal Services to perform their functions. BASs are
accesses through Service Interfaces (SIs).

Fig. 1. Enterprise Service Bus (based on [Zdu06])

Enterprise Service Bus (ESB)

Process

Services

Infrastructure

Services

Information

Services

Service Interface

Business

Application

Business Application Services

Service Interface

Business Object

Repository

Service Interface

Workflow Engine

Service Interface

Business

Application

Interaction

Services

Partner

Services

*Client
1

Enterprise

Service

Bus (ESB)

address

Service

name

address

connectsTo

Application /

Component
Internal

Service

Service

Interface (SI)

*

Business

Application (BA)

Business

Object

Repository

Microflow

Engine

* *

BA is seen as

Business Application

Service (BAS) via SI

Neural Modeling of Flow Rendering Effectiveness: Page - 4

Fig. 2. Class model of ESB pattern

Dynamics.
Figure 3 shows the sequence to access a service.

Fig. 3. Service Access.

Implementation
The ESB itself is an example of a SOA architecture since it performs its functions using internal services.
An important decision is supporting stateful services or not. Stateless services are easier to design and
manage but there are some applications that require stateful execution.

Known uses
 BEA AquaLogic Service Bus, now Oracle Service Bus, has operational service-management. It allows

the interaction between services, routing relationships, transformations, and policies [BEA].
 WebSphere Application Server [Sph]. IBM’s Business Integration Reference Architecture consisting of

products from the WebSphere family. The Service Provider Delivery Environment (SPDE) architecture
is an implementation of this reference architecture for the Telecommunications industry [WSE].

 Microsoft BizTalk Server [Biz]. Microsoft’s Reference Architecture also uses ESBs.
 Mule ESB Enterprise is a supported version of the open source product Mule ESB [Mul]. [Swa08]

shows its use to integrate web services written in Java and Ada using SOAP and REST protocols with
an Ada web server.

Variants
According to [Fer], the ESB will evolve into an Internet Bus.
The Secure Broker has access control for web services, secure channels, and logging [Mor06].

Consequences
This pattern provides the following benefits:
 Interoperability. The ESB through its architecture and use of adapters provides a way to interact with a

variety of services, internal or external.

<<actor>>

:Client

service(...)

answer

:ESB

service(...)

answer

:SI

service(...)

:BA

Neural Modeling of Flow Rendering Effectiveness: Page - 5

 Simplicity of structure: much simpler than point-to-point or any other interconnection structure.
 Scalability: the number of interconnected services can be increased easily.
 Message flexibility: we can provide a variety of message invocation styles (synchronous and

asynchronous) by using different message patterns.
 Flexibility: New types of services can be accommodated easily since they only need to conform to the

interface standards.
 Simplicity of management: we can centralize the functions of monitoring and management of services,

as well as any other needed functions.
 Transparency: we can find services conveniently by having lookup services.
 Quality of service: by using appropriate associated services we can provide different degrees of

security, reliability, availability, or performance.
 Use of policies: we can use institution policies for configuration and management. This allows

convenient governance and systematic changes. Security policies can define rights for the users with
respect to the services.

 Standard interfaces: we can define explicit and formal interface contracts that must be followed by all
aggregated functions.

Liabilities include:
 Extra overhead compared to point-to-point, because of the indirection involved and the overhead of

the ESB itself.
 The bus is a single point of failure, but this can be overcome using redundancy
 A common interface standard may not be the most convenient for some services. Some applications

may need more functions or parameters to interact with others than the ones defined in the common
interfaces. Designing such a common interface may not be easy either.

 The bus may hide component dependencies.

Related patterns
 The ESB is a type of Message Channel and it is also closely related to the Message Bus pattern, both

described in [Hop04]. Because of its role as a communicator, the ESB is related to a variety of
patterns that provide communication or adaptation. The ESB can be seen also as a microkernel in that
it forwards client requests to a set of services [Bus96].

 The Enterprise Service Bus can be considered a composite pattern comprised of the following
patterns [Erl09]:
 The (Service) Broker pattern which itself is a composite pattern that consists of a set of

integration-centric patterns used to translate between incompatible data models, data formats,
and communication protocols [Bus96].

 Asynchronous Queuing pattern which establishes an intermediate queuing mechanism that
enables asynchronous message exchanges and increases the reliability of message
transmissions when service availability is uncertain.

 Intermediate Routing pattern which provides intelligent agent-based routing options to facilitate
various runtime conditions.

 Adapters are necessary to connect some services to the bus because their interfaces may not follow
the standard interface defined in the bus architecture. Database systems will typically need an
Adapter [Gam94].

 A Repository for web services and objects is usually attached to and used by the ESB [Gar10].
 Microflows and macroflows can be realized using a Process Manager [Hop04].
 A Lookup pattern may be used to find a specific service or a service of some given type [Kir04]
 Mediator. Encapsulates how a set of objects interacts [Gam94].
 Security Logger, intended to keep track of security-sensitive actions [Fer11].
 [Chat04] considers several channel patterns, including point–to-point but not bus channels. His

patterns are mostly ideas, without much detail.
 [Erl09] considers also Asynchronous Queuing, Event-Driven Messaging, and other patterns.
 The Distributed Publish/Subscribe pattern can perform its communication functions using an ESB.

Inversely, the Distributed Publish/Subscribe pattern adds a way for the ESB to communicate events to
its services.

Neural Modeling of Flow Rendering Effectiveness: Page - 6

 The ESB can be seen as a Façade [Gam94] of underlying services for clients. Moreover, the ESB can
be seen as a Wrapper Façade [Sch00] to provide interfaces of legacy systems if these systems are
connected to the ESB.

 Activator [Sta05] can help the activation of services within the ESB.

Figure 4 shows how some of these patterns are related.

Fig. 4. Some of the related patterns of the ESB.

3. DISTRIBUTED PUBLISH/SUBSCRIBE

Intent
In a distributed system, decouple the publishers of events from those interested in the events (subscribers).

Context
Distributed applications using web services, as well as related services such as directories, databases,
security, and monitoring. There may be also other types of components (J2EE, .NET). There may be
different standards applying to specific components and components that do not follow any standards.

Problem
Having each client call a publisher to find out if they have something of interest to them is inefficient and
non-scalable. Also, more than one client could be interested in the same events. How do we organize
publishers and subscribers in a more efficient way?

The solution to this problem is affected by the following forces:
 Interoperability: It is useful for a business or institution to send or recive events from many other

places.
 Freedom: Clients only need to register to receive some events; after this they can go on with their own

businesses.
 Dynamicity: The number of clients may be dynamic and customers may change their interests along

time. We should allow clients come and go and to receive different types of events along time.

Façade Adapter
Wrapper

Façade

ESB

Broker Activator Lookup

activate

service

find

 service

 forward

message

adapt WS

interface

 interface

Legacy systems
provide

interfaces

Neural Modeling of Flow Rendering Effectiveness: Page - 7

 Scalability: We should be able to add an arbitrary number of clients without needing to redo the
system.

 Loose coupling: Publishers are loosely coupled to subscribers, and need not even know of their
existence. This allows both publishers and subscribers to evolve independently.

 Location Transparency: the subscribers may be remote to the publisher and neither subscribers nor
publishers need to know each other’s locations.

 Security: if events are sensitive we may need to protect the confidentiality of their communication. The
sender of events needs also to protect its own information.

 Selectivity: there should be different criteria to select the published events.
 Role changing: A sender of events may also need to receive events.

Solution
Use an event channel where publishers send their events and interested subscribers can receive the
events. Subscribers register for the events on which they are interested.

Structure
Figure 5 shows the participant classes. Subscribers can register to receive specific events. Their conditions
are described in the class Subscription. The Channel represents different ways of publishing events.

Dynamics
Figure 6 shows a sequence diagram for the use case Publish Event. Other use cases include Register
Subscriber and Remove Subscriber.

Implementation
For event transmission it is possible to use push and pull approaches----this is incorrect in POSA: the
queue is an implementation aspect that belongs to a lower level, one can also use a broker for example.
The event channel can be any type of asynchronous channel and may use an ESB. Subscribers usually
receive only a subset of the total messages published. The process of selecting messages for reception
and processing is called filtering. There are two common forms of filtering: topic-based and content-based
[wik]. An example of implementation is given in [Rou02].

Fig. 5. Class diagram for the Publish/Subscribe pattern

Subscription

type

rate

*id

type

publish(subscribers)

define filter

add subscriber

delete subscriber

Publisher

1

1 1 1 *
forward

register,

publish

(subscribers)

Channel

type

speed

forward

Subscriber

id

subscribe

unsubscribe

change type of

subscription

Neural Modeling of Flow Rendering Effectiveness: Page - 8

Fig. 6. Sequence diagram for use case Publish Event.

Known uses
 The IBM MQSeries provides guaranteed, once-only delivery of messages between IT systems. It can

connect different types of platforms, including those from IBM, Microsoft, Sun, and HP using a variety
of communications protocols [MQ].

 Software AG has an Integrator Server that distributes documents using a Broker as publishing
channel [Sag09].

 Oracle uses Publish/Subscribers in conjunction with their database architectures [Ora02].

Variants
If we add security mechanisms we can define a Secure Publish/Subscribe; which uses the Secure Channel
pattern [Sch06] for event channel, uses Role-Based Access Control (RBAC) pattern [Sch06] for control of
contents, provides mutual authentication, and includes logging.

[Cor06] describes variants based on the type of service provided: topic-based, content-based, concept-
based, and type-based.

We can also define a Publish/Subscribe focusing on its functional or conceptual aspects, not in its software
realization as we have done here.

Consequences
The pattern presents the following advantages:
 Interoperability. Because of its decoupling effect, this pattern allows the interaction of any type of

publishers and subscribers.
 Freedom: Subscribers only need to register to receive some events; after this they can go on their

own businesses and they are notified when there is something new.
 Dynamicity: We can add or remove subscribers at any time. Subscribers can also change their

interests by changing their type of subscription.
 Scalability: The number of subscribers can be extended by just extending the subscriber list as far as

we have appropriate communication channels for the events.

<<actor>>

:Publisher

publish

(subscribers)

:Channel

publish

.

subscriber1:

publish

subscriberN:

.

.

. . .

Neural Modeling of Flow Rendering Effectiveness: Page - 9

 Loose coupling: Publishers can work without knowledge of their subscriber details and vice versa. As
far as their interfaces remain constant, both can change independently.

 Location Transparency: Neither subscribers nor publishers need to know each other’s locations; a
lookup service can find their locations.

 Security: if events are sensitive we can encrypt the event channel. We can also use digital signatures
for authenticity. See the description of the Secure Publish/Subscribe variant.

 Selectivity: it is possible for the clients to select the published events according to different criteria,
e.g., topic-based, content-based, concept-based, and type-based [Cor06].

 Role changing: Publishers and subscribers are just roles that can be taken by any entity.
.
Possible liabilities include:
 There is some overhead in the event structure, i.e. a tight coupling of subscribers to their publishers

would have better performance at the cost of flexibility.
 There may be coordination problems because of the decoupling.

Related patterns
 Broker. A Broker can be used as distribution channel. It typically includes a look up service and can

distribute events to subscribers in a transparent way.
 The Secure Channel Communication pattern [Bra98], supports the encryption/decryption of data. This

pattern describes encryption in general terms. It does not distinguish between asymmetric and
symmetric encryption. Another version is given in [Sch06].

 [Erl09] considers also Asynchronous Queuing, Event-Driven Messaging, and other message patterns
that could be used in the P/S Channel.

 ESB. An ESB includes all the services needed for the P/S functions and uses the P/S functions for its
own functions.

 A Party can be responsible for some Subscribers. Parties can be Individuals or Institutions. The Party
pattern is useful to define general subscribers [Fow97]

 The Subscriber is a type of Observer [Gam94], in that it receives updates from the publisher.
 The Lookup pattern is used to locate remote publishers or subscribers [Kir04].

4. CONCLUSIONS

We have presented two common patterns used in distributed systems. The ESB has been used mostly for
web services but it can be used for any distributed system. The P/S has been described usually in a
centralized environment and we have emphasized here its use in distributed applications. We have
provided detail for an application designer or integrator to make good use of the functionality of these
patterns. Of course, there are many other patterns that are needed to have a catalog really useful for
designers.

We are writing these two patterns considering only their functional/conceptual aspects. Those are
abstract versions of the patterns presented here, leaving out their software aspects.

ACKNOWLEDGEMENTS

We thank our shepherd Philipp Bachmann for his precise and careful comments that significantly improved
the quality of our paper. The participants of the PLoP 2011 workshop provided useful improvements.

REFERENCES

[BEA] BEA Aqualogic Service Bus, http://en.wikipedia.org/wiki/AquaLogic (retrieved June 27, 2011)
[Biz] SOA Patterns with BizTalk Server 2009, http://www.packtpub.com/soa-patterns-with-biztalk-server-2009/book (retrieved on July
13, 2011)
[Bra98] Braga, A., Rubira, C., and Dahab, R. 1998. Tropyc: A pattern language for cryptographic object-oriented software. Chapter
16 in Pattern Languages of Program Design 4 (N. Harrison, B. Foote, and H. Rohnert, Eds.). Also in Procs. of PLoP’98, DOI=
http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/
[Bus96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and M. Stal., Pattern- oriented software architecture, Wiley 1996.
[Chap04] David A. Chappell, Enterprise Service Bus, O'Reilly, 2004
[Chat04] Soumen Chatterjee, “Messaging patterns in Service-Oriented Architectures”
http://msdn.microsoft.com/en-us/library/aa480027.aspx

Neural Modeling of Flow Rendering Effectiveness: Page - 10

[Cor06]Angelo Corsaro, “Quality of service in Publish/Subscribe middleware”,
http://www.omgwiki.org/dds/sites/default/files/Quality_of_Service_in_Publish-Subscribe.pdf
[Erl09] Thomas Erl, SOA Design Patterns, Prentice Hall PTR; 1st edition, 2009
[Fer] D.F. Ferguson, D. Pilarinos, and J. Shewchuck, “The Internet Service Bus”, The Architecture Journal 13,
http://www.architecturejournal.net
[Fer11] E.B.Fernandez , Sergio Mujica, and Francisca Valenzuela, "Two security patterns:
Least Privilege and Secure Logger/Auditor.", Procs.of Asian PLoP 2011.
[Fow97] M. Fowler, Analysis patterns -- Reusable object models, Addison- Wesley, 1997.
[Gam94] E. Gamma, R.Helm, R.Johnson, and J.Vlissides. Design patterns: elements of reusable object-oriented software, Boston,
Mass:Addison-Wesley, 1994.
[Gar10] J.P. Garcia-Gonzalez, Veronica Gacitua, and C. Pahl, “Service registry : a key piece for enhancing reuse in SOA service
oriented architecture”, The Architecture Journal;21,Microsoft, 2010. 29-36.
[Hop04] G. Hoppe and B. Woolf, Enterprise integration patterns: Designing, building, and deploying message solutions, Addison-
Wesley 2004.
[Kir04] M. Kircher and P. Jain, Pattern-oriented software architecture, vol. 3: Patterns for resource management, J. Wiley & Sons,
2004.
[Mor06] P. Morrison and E.B.Fernandez, "Securing the Broker pattern", Procs. of the 11th European Conf. on Pattern Languages of
Programs (EuroPLoP 2006) http://www.hillside.net/europlop/
[Mul] MuleSoft, Mule Enterprise Service Bus, http://www.mulesoft.com/mule-esb-open-source-esb
[MQ] http://www.redbooks.ibm.com/redbooks/pdfs/sg246282.pdf
[OAS] OASIS, Reference Model for Service Oriented Architecture, http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
[Ora02]Oracle,“Using the Publish-Subscribe model for applications”,
http://download.oracle.com/docs/cd/B10501_01/appdev.920/a96590/adg15pub.htm
[Pap07] M. P. Papazoglou, and W.-J. Heuvel, ‘Service oriented architectures: approaches, technologies and research issues’, The
VLBD Journal, Vol 16, No 3, 2007, 389—415.[Rou02] P. Rousselle, “Implementing the JMS Publish/Subscribe API”, Dr. Dobbs
Journal, April 2002, 28-32.
[SAG] Software AG webMethods Integrator Server, December 2009
http://documentation.softwareag.com/webmethods/wmsuites/wmsuite8_ga/Developer/Guides/8-0-
SP1_Publish_Subscribe_Developers_Guide.pdf
[Sch00] D.C. Schmidt, M. Stal, H. Rohnert and F. Buschmann, “Pattern-Oriented Software Architecture: Patterns for Concurrent and
Networked Objects”, Wiley & Sons, 2000.
[Sch06] M. Schumacher, E. B.Fernandez, D. Hybertson, F. Buschmann, and P. Sommerlad, “Security Patterns: Integrating security
and systems engineering", Wiley 2006. Wiley Series on Software Design Patterns.
[Sph] Patterns: SOA with an Enterprise Service Bus in WebSphere Application Server V6.
http://www.redbooks.ibm.com/redpieces/abstracts/sg246494.html
[Sta05] M. Stal and D.C. Schmidt, “Activator”, Proc. of PLoP 2005.
[Swa08] R. E. Sward, K. J. Whitacre; “A multi-language service-oriented architecture using an enterprise service bus”, Proceedings of
the 2008 ACM Annual International Conference on SIGAda, October 26–30, 2008, Portland, Oregon, USA.
[wik] Wikipedia, “Publish/subscribe”, http://en.wikipedia.org/wiki/Publish/subscribe
[WSE] Solution design in WebSphere Process Server and WebSphere ESB
http://www.ibm.com/developerworks/websphere/library/techarticles/0908_clark/0908_clark.html
[Zdu06] U. Zdun, C. Hentrich, and W.M.P. van der Aalst, ‘A Survey of Patterns for Service-Oriented Architectures’, Int. Journal of
Internet Protocol Technology, Vol 1, No 3, 132—143, 2006
[Zim05] O. Zimmermann, V. Doubrovski, J. Grundler, and K. Hogg, “Service-oriented architecture and business process choreography
in an order management scenario: Rationale, concepts, lessons learned”, Procs OOPSLA, ACM, 2005.

Received June 2011; revised September 2011; accepted June 2012

