
POGen: A Test Code Generator Based on
Template Variable Coverage in Gray-Box
Integration Testing for Web Applications

Kazunori Sakamoto1, Kaizu Tomohiro2, Daigo Hamura2, Hironori Washizaki1,
and Yoshiaki Fukazawa1

1 Waseda University
Tokyo, Japan

kazuu@ruri.waseda.jp, washizaki@waseda.jp, fukazawa@waseda.jp,
2 Google Japan Inc.

Tokyo, Japan
tkaizu@google.com, daigoh@google.com

Abstract. Web applications are complex; they consist of many subsys-
tems and run on various browsers and platforms. This makes it difficult to
conduct adequate integration testing to detect faults in the connections
between subsystems or in the specific environments. Therefore, establish-
ing an efficient integration testing method with the proper test adequacy
criteria and tools is an important issue.
In this paper, we propose a new test coverage called template variable
coverage. We also propose a novel technique for generating skeleton test
code that includes accessor methods and improves the template variable
coverage criterion, using a tool that we developed called POGen. Our
experiments show that template variable coverage correlates highly with
the capability to detect faults, and that POGen can reduce testing costs.

Keywords: software testing, web application, test coverage, test code
generation, template engine

1 Introduction

The importance of web applications has grown immensely with the popular-
ization of the Internet. Web applications are based on the client-server model,
and require collaboration among client and server programs. This indicates that
web applications consist of various subsystems such as web servers, authenti-
cation servers and database servers. Moreover, client programs run on various
browsers and platforms. Some faults might occur in the connections between
the subsystems or in the specific environments [1]. Therefore, an efficient and
comprehensive testing method is required to eliminate these faults.

Software testing methods can be roughly classified by their level and tech-
nique. There are four levels of testing during the development process: unit
testing, which verifies the functionality of a specific section of the code; integra-
tion testing, which verifies the interfaces between components; system testing,

which verifies that the entire software meets its requirements; and acceptance
testing, which verifies that the requirements are met from the user’s perspective.
For simplicity, we consider any testing except unit testing as integration test-
ing in this paper. Testing methods can also be classified into three techniques:
white-box testing (a.k.a. structure based testing), which utilizes knowledge of
how the code is implemented; black-box testing (a.k.a. specification based test-
ing), which tests the functionality of the code without any knowledge of how the
code is implemented; and gray-box testing, which utilizes partial knowledge of
the internal data structures and algorithms.

Testing frameworks such as JUnit automate the testing process by writing
test code. Test code constitutes an executable program including test cases. A
test case consists of a test scenario, which invokes functions of the production
code, and a test oracle, which determines whether the program works as expected
by observing the program state as the test scenario is executed.

Template engines are typically introduced during web application develop-
ment as part of the web framework, such as Struts and Ruby on Rails. There are
two types of template engines: those that run on the server side, such as ejs [2]
and JSF [3], and those that run on the client side, such as Closure Templates [4].
A template engine generates an HTML document by embedding string represen-
tations of variables or expressions referring to the states of executable programs
into the HTML template. Therefore, web applications must be able to handle
both the static content of the HTML document and the dynamic content that
changes as the program is executed. Finding faults related to the static content is
relatively easy, whereas finding faults related to the dynamic content is difficult
because whether the faults are exposed or not depends on the execution path.

In this paper, we propose a new test coverage criterion called template vari-
able coverage. Template variable coverage focuses on the variables and expres-
sions for embedding in HTML templates (hereafter referred to as template vari-
ables), which are important for testing a web application’s functionality related
to the dynamic content of an HTML document. To improve the template variable
coverage criterion, we also propose a gray-box integration testing method using
a tool that we developed called POGen. POGen generates skeleton test code
with accessor methods for template variables by analyzing HTML templates.

The contributions of this paper are as follows:

– Template variable coverage, a new criterion of test adequacy to verify the
dynamic content corresponding to the execution results of web applications,

– POGen, a novel test code generator for improving template variable coverage
criterion,

– An evaluation of the correlation between template variable coverage and the
capability to detect faults and

– An evaluation of POGen with respect to its ability to reduce writing and
maintenance costs.

POGen is released as open source software on http://code.google.com/p/

pageobjectgenerator/.

2 Motivating example

Fig. 1. White-box unit testing (left) and black-box integration testing (right) for a
sample web application

List 1.1. An HTML template of the input page using Closure Templates

1 {template .addition}
2 <form action="result">
3 <input type="text" name="left"> + <input type="text" name="right">
4 <input type="submit" name="calc" value="Calculate">
5 </form >
6 {/ template}

List 1.2. An HTML template of the result page using Closure Templates

1 {template .result}
2 <p>{ $left }+{ $right}=<div >{ $answer}</div ></p>
3 {call .items}{ param list: $histories /}{/ call}
4 {/ template}
5 {template .items}
6 {foreach $item in $list} {$item} {/ foreach}
7 {/ template}

In this section, we present an example to demonstrate our technique. We shall
consider a web application for a simple calculator supporting addition. The calcu-
lator has two additional features for translating string representations of numbers
such as ”fourteen” and for recording and showing past inputs. Figure 1 shows
the architecture of the web application. The web application consists of three
servers: a web server for handling web pages with a template engine, a transla-
tion server for handling number strings and a database server for managing the
input history.

The web application consists of two web pages: an input page for inputting
numbers to add and a result page for showing the result of the calculation.
Lists 1.1 and 1.2 show the HTML templates of the input and result pages using
Closure Templates. The result page shows the translated numbers, the addition
result and the history of the given numbers and results. We discuss three testing
methods regarding this web application.

2.1 White-box unit testing

White-box testing is usually used for the unit testing of web applications and
not for integration testing because it is difficult to consider implementations
of all subsystems and the relations between these implementations due to ex-
tremely large subsystems. White-box unit testing is less dependent on the tester
than black-box testing because it is based on the implementation, including test
coverage. Although white-box unit testing exhaustively verifies features, it con-
centrates on only one module at a time, so the connections between the modules
are not tested. For example, white-box unit testing cannot find mismatches be-
tween variable names in the HTML templates and in the server program, or
the invocation of an inappropriate function from the server program. Therefore,
faults that can be found with white-box unit testing are limited.

2.2 Black-box integration testing

Black-box testing is usually used for the integration testing of web applications
as opposed to white-box testing. Black-box testing only requires the testers to
know what the web application is supposed to do, and the testers can easily try to
manipulate the web application on a web browser. Black-box integration testing
can be done at a low cost, and can find faults between connections of modules
on the real environment. However, it is hard to exhaustively verify the dynamic
content of the HTML document because the testers have no information on
how the application is implemented. Black-box integration testing also depends
heavily on the tester. For example, a tester of our sample web application may
only concentrate on the answer value and not test the left and right values to
verify the calculation feature. As another example, a tester may leave out the
translation feature. Therefore, black-box integration testing may overlook faults
due to its dependency on the tester and the lack of test adequacy criteria.

2.3 Gray-box integration testing

To find faults that can be overlooked by both white-box unit testing and black-
box integration testing, we propose a gray-box integration testing method for
verifying web applications. This method makes use of information gathered from
the HTML templates and the application’s specifications.

List 1.2 contains four template variables: {$left}, {$right}, {$answer} and
{$item}. Note that $histories and $list are not template variables because
they are not inserted into the HTML document replacing them with their values
during execution. The template variables indicate the dynamic content of the
HTML document corresponding to the outputs from the server program of the
web application, and they can be used to verify the connections between subsys-
tems. For example, faults in the addition feature are exposed through {$answer},
while those in the translation feature are exposed through {$left}, {$right}
and {$answer}, and those in the history feature are exposed through {$item}.
Therefore, gray-box integration testing allows testers to find faults efficiently and

exhaustively by exposing the dynamic content of the HTML document marked
by template variables.

3 Template variable coverage

Template engines replace template variables with the string representations of
the template variables’ values. We can extract the dynamic content of an HTML
document by analyzing HTML templates; template variables are marked by spe-
cial notations, such as {$answer} in List 1.2. Note that we make no distinction
between variables and expressions in template variables.

We propose a new coverage criterion called template variable coverage which
indicates test adequacy with respect to the dynamic content of the HTML docu-
ment. Template variable coverage allows testers to conduct exhaustive gray-box
integration testing. Moreover, it provides a quantitative measure for assessing
the quality of a set of test cases.

Definition 1. Let Ctmp be the template variable coverage, Vall the number
of all template variables, and Vtest the number of template variables which are
referred by test cases during testing. Ctmp is defined by formula (1). Note that
Vall ⊇ Vtest and 0 ≤ Ctmp ≤ 1 hold.

Ctmp =
Vtest

Vall
(1)

List 1.3. A test case with JUnit and Selenium for verifying the addition feature

1 WebDriver driver = new ChromeDriver ();
2 // some code to initialize the driver
3 driver.findElementByName("left"). sendKeys("1");
4 driver.findElementByName("right"). sendKeys("two");
5 driver.findElementByName("calc"). submit ();
6 assertEquals("3", findElement(By.cssSelector("p > div")). getText ());

List 1.3 shows a conventional test case to verify the addition feature of the
web application. This test case only refers to one template variable, {$answer},
out of the four template variables: {$left}, {$right}, {$answer} and {$item}.
Thus, the template variable coverage for this test case is 25%. It is 75% if a test
case refers to {$left}, {$right} and {$answer}.

Assumption 1. Template variable coverage is a test adequacy criterion that
indicates how exhaustively the test cases observe outputs from web applications.
We therefore assume that template variable coverage correlates positively with
the test quality, or the capability to find faults with the set of test cases.

4 POGen: test code generator to improve the coverage

We propose a novel technique to generate skeleton test code for improving the
template variable coverage criterion using POGen. POGen supports gray-box
integration testing based not only on the specifications of the web application
but also on the HTML templates.

Fig. 2. Gray-box integration testing for the sample web application (left) and the
architecture of POGen (right)

Fig. 3. Illustration of the role of POGen in gray-box integration testing

The left side of Figure 2 shows the relation between the sample web appli-
cation and gray-box integration testing based on the HTML template. To help
conduct gray-box integration testing, we developed a tool called POGen for an-
alyzing HTML templates and generating skeleton test code with Selenium and
JUnit. POGen extracts template variables which indicates the dynamic content
and the operable HTML elements such as <a>, <link>, <input>, <textarea>,
<select> and <button> elements. POGen also generates skeleton test code de-
signed with the PageObject design pattern [5], which has high maintainabil-
ity and contains accessor methods for the template variables and the operable
HTML elements. POGen thus reduces the writing and maintenance costs.

The right side of Figure 2 shows the architecture of POGen. POGen con-
sists of three components: the HTML template analyzer, the HTML template
transformer and the test code generator. POGen generates accessor methods for
HTML elements containing template variables and operable HTML elements.
To increase maintainability, the methods depend not on the HTML structure
but on the names of template variables and operable HTML elements. POGen
transforms HTML templates for exposing HTML elements containing template
variables and operable HTML elements for test purposes only.

Figure 3 shows the process of gray-box integration testing with POGen.

1. Testers feed the HTML template files to be tested into POGen.
2. POGen analyzes and transforms the HTML templates by inserting unique

values into the specified attributes of the HTML elements containing tem-
plate variables and the operable HTML elements.

3. POGen generates skeleton test code with accessor methods for the HTML
elements by referring to the inserted attribute values.

4. Testers enhance the generated skeleton test code and write test cases.
5. The transformed HTML templates are deployed on the web server.
6. Gray-box integration testing is conducted by running the test cases.

4.1 HTML template analyzer

The POGen HTML template analyzer extracts the HTML elements by finding,
naming and then analyzing the template variables and operable HTML elements.
After these three steps, which are described below, the HTML template analyzer
passes the positions of the template variables and the operable HTML elements
into the HTML template transformer.

The HTML template analyzer first finds the template variables and the op-
erable HTML elements by parsing the HTML template, and records positions.
For the HTML template in List 1.1, the analyzer will find three operable ele-
ments of <input>. For the HTML template in List 1.2, the analyzer will find
four template variables: {$left}, {$right}, {$answer}, and {$item}.

In the next step, the analyzer determines the names of the extracted template
variables and the extracted operable HTML elements to generate accessor meth-
ods. The analyzer names the template variables with the texts of the template
variables removing the head and tail sign characters and replacing the other sign
characters with underscore characters ’ ’. The analyzer also names the operable
HTML by concatenating the types of the HTML elements with the id attribute
values, name attribute values or the texts. For the HTML template in List 1.1,
the analyzer will name the first operable elements "INPUT left". For the HTML
template in List 1.2, the analyzer will name {$left} "left".

In the analyzing step, the analyzer determines if the extracted HTML ele-
ments appear in loop statements, such as for and foreach statements. Depend-
ing on whether the template variables are repeated or not, POGen generates
accessor methods returning a list of HTML elements or a single HTML element,
respectively. In List 1.2, {$item} is a repeated template variable.

POGen currently supports Closure Templates, ejs, erb and JSF. We can
easily extend POGen by adding parsers for other template engines.

4.2 HTML template transformer

The HTML template transformer inserts unique values for user-specified at-
tributes, such as id and class, into HTML elements containing template vari-
ables. This allows the generated accessor methods to depend on the names de-
termined by the analyzer and not on the structure of the HTML document.

If the targeted HTML element already contains a value for the specified at-
tribute, then the transformer uses the existing value, either as is for attributes
like id that only accept a single value, or by inserting another unique value into
the existing value for attributes like class that accept space-separated values.
Users can choose any attribute to be inserted by POGen to avoid changing a
web application’s behavior. In addition, the transformer inserts special HTML
comments into the HTML template so that accessor methods can acquire text
representations of the template variables.

List 1.4. An HTML template transformed by the POGen to generate accessor methods

1 {template .addition}
2 <!-- POGen ,left ,{$left} --><!-- POGen ,right ,{ $right} -->
3 <p class="_pogen_1" >{$left }+{ $right }=
4 <!-- POGen ,answer ,{ $answer} --><div class="_pogen_2">{$answer}</div ></p>
5 {call .items}{ param list: $histories /}{/ call}
6 {/ template}
7 {template .items}
8 {foreach $item in $list}
9 <!-- POGen:item:{ $item} --><li class="item _pogen_3">{$item}

10 {/ foreach}
11 {/ template}

The HTML template in List 1.2 with values of class attributes and HTML
comments inserted by the transformer is shown in List 1.4. POGen backs up the
original HTML templates before they are transformed.

4.3 Test code generator

The test code generator generates skeleton test code containing accessor methods
for the extracted HTML elements. The test code is designed by the PageObjects
design pattern with JUnit and Selenium. The names of the accessor methods
consist of the texts, the types of the HTML elements and the attribute values.
The accessor methods can be invoked using only the names determined by the
analyzer. This makes the test code independent of the HTML structure.

The PageObjects design pattern modularizes test code in terms of page
classes, allowing testers to write test cases as if writing in a natural language
by treating page classes and their methods. The page class contains methods
corresponding to features provided to the user by the web page, such as login
and addition features, as well as fields indicating HTML elements and accessor
methods for acquiring information on the page. The modularization improves
the maintainability of test code by reducing the amount of necessary code mod-
ifications resulting from frequent updates to web applications. Web application
updates commonly result in changes to the structure of HTML documents, which
necessitates modifications in the operations of DOM trees in the methods of page
classes. However, changes in web page features and information are rarely re-
quired. Therefore, modifications to test cases are rarely required.

For each web page, POGen generates page classes that have two accessor
methods for each HTML element containing template variables. One accessor
method returns the object indicating the HTML element. This method allows

testers to write various operations for the HTML element by providing methods
for simulating user manipulations from Selenium. The other accessor method
returns the string representation of the template variable. POGen also gener-
ates an accessor method for each operable HTML element because the operable
HTML elements are frequently referred in test code.

POGen requires users to enhance the generated skeleton test code by writ-
ing feature methods such as login and add methods. Users can write test cases
after enhancing the page classes. The generated test code is distinguished from
the user-written code by the comments GENERATED CODE START and GENERATED

CODE END. When updating the test code to support changes in the web applica-
tions, only the generated test code is changed by POGen.

List 1.5. Skeleton test code generated by POGen for the result page template given
in List 1.2 for the sample web application

1 public class ResultPage extends AbstractPage {
2 /* -------------------- GENERATED CODE START -------------------- */
3 @FindBy(className = "_pogen_1") private WebElement _left , _right;
4 @FindBy(className = "_pogen_2") private WebElement _answer;
5 @FindBy(className = "_pogen_3") private WebElement _item;
6 public WebElement getElementOfLeft () {/* abbrev.*/}
7 public WebElement getElementOfRight () {/* abbrev.*/}
8 public WebElement getElementOfAnswer () {/* abbrev.*/}
9 public List <WebElement > getElementsOfItem () {/* abbrev.*/}

10 public String getTextOfLeft () {/* abbrev.*/}
11 public String getTextOfRight () {/* abbrev.*/}
12 public String getTextOfAnswer () {/* abbrev.*/}
13 public List <String > getTextsOfItem () {/* abbrev.*/}
14 /* --------------------- GENERATED CODE END --------------------- */
15 }

List 1.5 shows the skeleton test code generated by POGen for the HTML tem-
plate in List 1.4. The getElementOfLeft method returns the WebElement object
indicating the <p> element containing {$left} by using the class attribute
value pogen 1. The WebElement object provides various operations such as
sendKeys, which simulates keyboard inputs, and click, which simulates mouse
clicks. The getTextOfLeft method returns the String object of {$left} by
parsing the HTML comment (e.g. <!-- POGen,left,{$left} -->) inserted by
POGen. The generated accessor methods are surrounded by GENERATED CODE

START and GENERATED CODE END so that these methods will be updated accord-
ing to the changes made in the web applications.

List 1.6. Enhanced skeleton test code generated by POGen for the input page template
given in List 1.1 for the sample web application

1 public class InputPage {
2 /* -------------------- GENERATED CODE START -------------------- */
3 // Abbreviate generated skeleton test code
4 /* --------------------- GENERATED CODE END --------------------- */
5 public ResultPage add(String left , String right) {
6 getElementOfINPUT_left (). sendKeys(left);
7 getElementOfINPUT_right (). sendKeys(right);
8 getElementOfINPUT_calc (). submit ();
9 return new ResultPage(driver);

10 }
11 }

List 1.7. A JUnit test case using the skeleton test code generated by POGen

1 public class ResultPageTest {
2 @Test public void add1And2 () {
3 WebDriver driver = new ChromeDriver ();
4 // some code to initialize the driver
5 ResultPage resultPage = new InputPage(driver).add(1, "two");
6 assertEquals(resultPage.getTextOfAnswer (), "3");
7 }
8 }

List 1.6 shows sample test code enhanced by testers to write test cases. List
1.7 shows a test case based on the generated test code in Lists 1.5 and 1.6. This
add1And2 test case asks the web application to add ”1” and ”two”. Then it
determines whether the text representation of the template variable {$answer}
equals the expected value of three. In summary, POGen reduces the writing and
maintenance costs of test code by introducing the PageObjects design pattern,
and by generating skeleton test code that contains accessor methods.

5 Evaluation

To assess the effectiveness of template variable coverage and POGen, we con-
ducted a set of experiments and compared the results against conventional meth-
ods. Specifically, we investigated the following research questions:

– RQ1: Is template variable coverage correlated with a test’s capability to
detect faults?

– RQ2: How can our approach improve a test’s capability to find faults?
– RQ3: How can our approach facilitate writing test code?
– RQ4: How can our approach facilitate maintaining test code?

5.1 Experiment 1

Table 1. The subject web application for Experiment 1

Name Pages Test cases LLOC of LLOC of Killed All
production code test code mutants mutants

booking 11 16 2282 634 58 248

To verify Assumption 1 and investigate RQ1, we measured template vari-
able coverage and the number of killed mutants generated by SimpleJester for
the subject web applications. Note that the mutation testing tools such as Sim-
pleJester embed faults called mutants, and then measure the detected faults
called killed mutants by executing the test with targeted test code. The sub-
ject web application was the Seam Framework example called booking (https:
//github.com/seam/examples). Table 1 shows its name, the number of pages

Fig. 4. The graphs which illustrates the correlation with the template variable coverage
and the killed mutants for the subject web application with the different number of
the test cases (left) and with the same number of the two test cases (right)

and test cases, the logical lines of code (LLOC) of production code and test
code, and the number of killed mutants and all of the mutants. To measure the
correlation with the template variable coverage and the number of the killed
mutants, we randomly reduced test cases.

Figure 1 shows two graphs, whose vertical axis represents the ratio of the
killed mutants over all of the mutants, whose horizontal axis represents the tem-
plate variable coverage and whose labels represent the number of the remaining
test cases. Whereas the graph on the left side shows the correlation with the
different number of the test cases, the graph on the right side shows the cor-
relation with the same number of the two test cases. As the figure shows, the
template coverage correlates highly with the killed mutants, or the capability to
detect faults independently of the number of test cases. Therefore, we confirm
Assumption 1 is approved in this example.

5.2 Experiment 2

To investigate RQ2 and RQ3, we conducted an empirical experiment on an open
source web application (https://github.com/TakenokoChocoHolic/almond-choco),
such as that found on TopCoder, which provides online compiling and execution
of source code to solve problems. Users can create, edit, delete and solve prob-
lems on the web application. A problem consists of a title, a description, an input
and an expected result. The web application determines whether the submitted
source code is correct by comparing the result from compiling and executing the
source code with the expected result. The web application provides five pages: a
page where users can see a list of the problems (index page), a page where users
can make a new problem (create page), a page where users can edit an existing
problem (edit page), a page where users can submit their source code to solve a
problem (solve page), and a page where users can compare results (result page).

We measured the time to write two sets of test cases without test oracles and
counted the template variables referred by test cases which were enhanced with

test oracles within 20 minutes. We tested three bachelor’s and three master’s
degree students studying computer science (S1, S2 … and S6).

Table 2. The results of times to write test cases except for test oracles and the number
of template variables referred in test cases which are enhanced with test oracles within
20 minutes

A set of test cases S1 S2 S3 S4 S5 S6 Average

Test cases 1 13 mins 10 mins 14 mins - - - 12.3 mins
with POGen 9 vars 8 vars 7 vars - - - 8 vars

Test cases 1 - - - 29 mins 52 mins 34 mins 38.3 mins
without POGen - - - 4 vars 3 vars 5 vars 4 vars

Test cases 2 - - - 7 mins 13 mins 15 mins 8.3 mins
with POGen - - - 5 vars 6 vars 8 vars 6.3 vars

Test cases 2 14 mins 36 mins 59 mins - - - 36.3 mins
without POGen 4 vars 4 vars 3 vars - - - 3.6 vars

This experiment consists of two steps: writing test cases without test oracles
and writing test oracles to enhance written test cases within 20 minutes with
or without POGen. In the first step, the examinees wrote two sets of test cases
with the test specification written in natural language. The test cases 1 represent
a set of three test cases: updating a problem, solving a problem correctly and
wrongly with Python. The test cases 2 also represent a set of three test cases:
creating a problem, deleting a problem and solving a problem correctly with
Ruby. S1, S2 and S3 wrote the test cases 1 with POGen and then wrote the test
cases 2 without POGen. On the other hand, S4, S5 and S6 wrote test cases 1
without POGen and then wrote the test cases 2 with POGen. In the next step,
they wrote test oracles for each own test cases within 20 minutes in the same
flow.

Table 2 shows the result of this experiment. As the table shows, POGen
reduced the writing time of the test cases by approximately 66%. Moreover,
the template variables referred by the enhanced test cases with POGen are
more than ones without POGen. POGen helps testers to write test code which
observes more template variables to detect more faults. Therefore, POGen can
reduce costs of writing test code and improve the template variable coverages.

5.3 Experiment 3

Table 3 shows LLOC values for the whole POGen-generated skeleton test code,
for the actually used section of the generated skeleton test code and for a man-
ually written test code for the web application in Experiment 2. There are six
LLOC values for page classes and test cases using page classes and the sum in
Table 3. The test code contains six test cases for creating problems, editing prob-
lems, submitting a source code with Python and Ruby correctly and submitting
a source code with Python wrongly.

Table 3. The LLOC values of skeleton test code generated by POGen, actually used
test code in manually written test code and manually written test code for the web
application in Experiment 2

Index Create Edit Solve Result Test cases Sum

Actually used 82 47 88 44 43 0 304
(Generated by POGen) (164) (54) (164) (65) (49) (0) (496)

Manually written 12 7 13 6 0 105 143

As the table shows, POGen reduced the writing cost of test cases by generat-
ing page classes with accessor methods for HTML elements containing template
variables and for operable HTML elements. Through POGen, the testers were
able to access HTML elements using only the names of the template variables
or the operable HTML elements, without any knowledge of the XPath or CSS
selector. POGen successfully reduced the LLOC by about 68% in this experi-
ment.

5.4 Experiment 4

To evaluate the reduction of maintenance cost and investigate RQ4, we changed
the design of the web application in Experiment 3 to modify the DOM structure.
POGen makes manual changes to the test code unnecessary because the accessor
methods depend on the names of template variables and not on the structure of
the HTML document.

List 1.8. HTML templates of the result page with ejs before and after changing the
design of the web application

1 <!-- Before changing the HTML template of the result page -->
2 <div ><%= result %></div >

3 actual = [<%= out %>]

4 expect = [<%= ex %>]
5 <!-- After changing the HTML template of the result page -->
6 <p> Your answer is <%= result %>! </p>
7 <p> Your program ’s ouput is [<%= out %>]. </p>
8 <p> Then , our expected ouput is [<%= out %>]. </p>

List 1.8 shows the HTML template of the result page with ejs before (top)
and after (bottom) changing the design of the web application. The generated
skeleton test code provided the accessor methods with the same signatures. For
example, the getTextOfResult method returned the string representation of the
template variable result both before and after the change. If the names of the
template variables are changed, then the test code must be changed manually
due to changes in the names of the generated accessor methods. As we investi-
gated web applications in a company, template variable name changes, however,
occurred much less than structural changes to HTML documents. Roest et al.
also [6] claim XPath for selecting DOM elements causes fragile tests. Therefore,
POGen reduce maintainance costs by improving maintainability of test code.

6 Limitations

Dependency on template engines: Our technique cannot elucidate the dy-
namic components which are created using web frameworks or DOM API with-
out template engines. However, many web frameworks such as Struts and Ruby
on Rails have template engines, and developers typically use template engines.

Regeneration of accessor methods for template variables: When a
template variable occurs more than once in an HTML template, POGen names
the corresponding accessor methods differently with sequential numbers. There-
fore, the names of accessor methods are changed when the same template vari-
ables are added into or removed from the HTML template, and the test code
must be changed manually.

Assessing input values for testing: Template variable coverage cannot
assess input values themselves. For example, template variable coverage does not
change when the value “2” is used instead of “two” for {$right}. However, this
limitation are common in structural test coverage criteria.

7 Related works

Staats et al. [7] claim that one should not only refer to the test coverage but
also to the test oracles when discussing test quality. Schuler et al. [8] propose
a new coverage criterion called checked statement coverage, which enhances ex-
isting statement coverage for white-box testing in terms of test oracle quality.
Template variable coverage also considers both test coverage and test oracles,
and therefore, our technique can enhance test quality for web applications.

Kodaka et al. [9] provide a tool for determining if the dynamic text gener-
ated by JSP is equal to the text expected by users. In contrast, POGen generates
accessor methods for both HTML elements and texts containing template vari-
ables. Thus, our technique can test web applications with greater flexibly.

Mesbah et al. [10] propose a new technique for testing web applications with
invariants and their crawler which supports AJAX user interfaces. Roest et al.
also [6] propose a new technique for extracting patterns for invariants from dy-
namic contents such as tables and lists. Whereas their approaches generates
invariants, which are independent on test scenarios, our approach generates ac-
cessors for template variables, which are dependent on test scenarios.

There are many researches of model based testing for web applications and
GUI applications such as [11], [12] and [13]. Their approach only generate test
scenarios without test oracles and cannot treat the web pages which do not
appear in models. POGen, on the other hand, helps testers to write test code
including test oracles. Thus, our technique can work well with conventional meth-
ods and conduct test web applications flexibly and reasonably.

8 Summary and future works

In this paper, we elucidated the problems in existing testing methods through
motivating examples. We proposed a novel coverage criterion called template

variable coverage, as well as a novel technique to improve the template vari-
able coverage with a tool called POGen. POGen generates skeleton test code,
which includes accessor methods for the dynamic components of web applica-
tions, by analyzing HTML templates. Moreover, we evaluated the effectiveness
of the template variable coverage and POGen in empirical experiments.

In the future, we will evaluate our approach and template variable coverage
for real-world web applications with the mutation testing tools specific to web
applications. We will also propose a new set of coverage criteria based on existing
coverage criteria, which will target branches in HTML templates and production
code on the server side to evaluate test quality from various viewpoints.

References

1. Choudhary, Shauvik Roy, Prasad, Mukul R. and Orso, Alessandro: CrossCheck:
Combining Crawling and Differencing to Better Detect Cross-browser Incompatibil-
ities in Web Applications. Proceedings of the 2012 IEEE Fifth International Confer-
ence on Software Testing, Verification and Validation (ICST 2012), 171–180 (2012).

2. Jupiter Consulting: EJS - JavaScript Templates, http://embeddedjs.com/.
3. Oracle: JavaServer Faces, http://www.oracle.com/technetwork/java/javaee/

javaserverfaces-139869.html.
4. Google: Closure Tools – Google Developers, https://developers.google.com/

closure/templates/.
5. Simon Stewart：PageObjects, http://code.google.com/p/selenium/wiki/

PageObjects.
6. Roest, Danny and Mesbah, Ali and Deursen, Arie van: Regression Testing Ajax
Applications: Coping with Dynamism, Proceedings of the Third International Con-
ference on Software Testing, Verification and Validation, pp. 127–136 (2010).

7. Staats, Matt and Whalen, Michael W. and Heimdahl, Mats P.E.: Programs, tests,
and oracles: the foundations of testing revisited, Proceedings of the 33rd International
Conference on Software Engineering (ICSE 2011), pp. 391–400 (2011).

8. Schuler, David and Zeller, Andreas: Assessing Oracle Quality with Checked Cov-
erage, Proceedings of the 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation (ICST 2011), pp. 90–99 (2011).

9. Kodaka, Toshihiro, Uehara, Tadahiro, Katayama, Asako and Yamamoto, Rieko:
Automated testing for Web applications using Aspect-oriented technology, IPSJ SIG
Notes 2007(33), pp. 97–104 (2007).

10. Mesbah, Ali and van Deursen, Arie: Invariant-based automatic testing of AJAX
user interfaces, Proceedings of the 31st International Conference on Software Engi-
neering (ICSE 2009), pp. 210–220 (2009).

11. Andrews, Anneliese A., Offutt, Jeff and Alexander, Roger T.: Testing Web appli-
cations by modeling with FSMs, Software and System Modeling, pp. 326–345 (2005).

12. Sprenkle, Sara and Cobb, Camille and Pollock, Lori: Leveraging User-Privilege
Classification to Customize Usage-based Statistical Models of Web Applications,
Proceedings of the 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation (ICST 2012), pp. 161–170 (2012).

13. Mariani, Leonardo and Pezze, Mauro and Riganelli, Oliviero and Santoro, Mauro:
AutoBlackTest: Automatic Black-Box Testing of Interactive Applications, Proceed-
ings of the 2012 IEEE Fifth International Conference on Software Testing, Verifica-
tion and Validation (ICST 2012), pp. 81–90 (2012).

