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1. INTRODUCTION 

The spread of software services through the Internet has highlighted the growing importance of 

software security. It is imperative to improve security because security is at risk in every phase of 

development but how to do so is not straightforward. Moreover, even when security has been achieved, it 

is necessary to consider the trade-off with other quality characteristics, and a lot of development 

experience is required to make appropriate judgments. Security patterns have been proposed to assist 

developers in handling security concerns. By using security patterns, software developers can utilize 

security specialists‟ knowledge. 

Security patterns have mutual dependencies, and developers should decide the sequences of the 

pattern application by considering such dependencies. If a dependency is not considered, there‟s a chance 

that the affected security patterns will be incorrectly applied and the security of the entire system would 

suffer. The “See Also” and “Related Pattern” sections in [2] describe information of dependencies but it is 

not enough for users to know how to apply security patterns in the correct sequence and place. However, 

as far as we know, no application support technique that considers dependencies between patterns has 

been proposed. 

To remedy this situation, we propose a security pattern application technique that considers 

dependencies between patterns. Patterns are applied by making model transformations. Our approach 

leaves a mark whenever a security pattern is applied in the model, and subsequent security patterns are 

applied at the previously left marks. This enables consecutive applications of security patterns. Also 

“weaving” in area of Aspect Oriented Programming can considers dependencies security patterns but it is 

not as widely used as model transformation. In addition, we think that our approach is adaptable to other 

patterns that have dependencies among them. 

2. CORTICAL PROCESSING OF CONTOURS 

This section describes the ideas behind model-driven development and security patterns. In addition, it 

discusses the concept of dependencies between security patterns. 

2.1 Model Driven Development(MDD) 

Model driven development is a methodology that builds software around a model[7]. The developers 

translate an abstract model into a more concrete model. The developer can obtain the source code semi-

automatically by making repeated transformations to arrive at a more concrete model. Moreover, there are 

various model transformations, e.g., model merging and model marking. 

2.2 Security Pattern 

A pattern is a proven solution to a problem, described in context. Security patterns are proposed in 

[2,13,15] and are described in terms of a structure, context, problem, solution, and consequences [2]. The 

solution is based on proven experience. So it is something that has been tried, tested and refined over a 



number of solutions at a number of different organizations. The advantage of security patterns is that 

pattern users can utilize the knowledge of security specialists. Security patterns provide guidelines for 

improving confidentiality, integrity, and availability in software development. 

Security patterns have dependencies between each other and when developers apply security patterns 

consecutively, they should be applied consistently throughout the development process. Thus, it is very 

important to consider the dependencies in the entire development process. Figure 1 shows an example of 

dependencies between security patterns. For instance, “Authenticator <- Authorization” means that the 

Authenticator pattern should be applied before the Authorization pattern. The sequences of possible 

applications are as follows. 

 Authenticator, Authorization, Reference Monitor 

 Authenticator, RBAC, Reference Monitor 

Notice that four problems can occur. 

P1. The security pattern may be incorrectly applied if the dependencies among patterns are not 

considered. 

P2. The security pattern may be applied to the wrong part of the model. 

P3. Time and labor may be prohibitively large. 

P4. Later applications may cause the applied security patterns to lose their properties (i.e. One of 

properties of the Authorization pattern is that there is no relation between the Subject role and the 

Protection Object role). 

The known supports for developers include only classification [3] and unit security pattern application 

support [5], and these have trouble dealing with the above problems. 

 

Fig. 1. Example of dependencies among security patterns 

 



3. APPROACH 

This section describes the method of making transformation rules, the use of two our system, and the 

solution to the above problems. There are four solutions to the above problems. 

S1. Automation of model transformation  

S2. Making a security pattern transformation rule library  

S3. Leaving marks about the result of a pattern‟s applications in the class, and referring to them to apply 

subsequent security patterns. 

S4. Automatically detecting the applied security pattern in the developing UML model and generating 

validation code from existing transformation rules of security patterns. 

S1 is the solution of P2 and P3. Automation of most of an application by model transformation mitigates 

the possibility of its application to an incorrect class. S2 is the solution of P3. S2 mitigates P3 because 

software developers can utilize the transformation rules at any time after security specialists describe them. 

S3 is the solution of P1 and P2. Our technique leaves a UML stereotype describing the applied pattern 

name and role name as a mark in the class corresponding to role of the applied pattern. Thus, when A 

depends on B, if any marks of B don‟t exist, our technique prevents B from being applied to the developing 

model. S3 thus mitigates P1. Moreover, we prevent security pattern from being applied to the incorrect 

class, because we leave a stereotype homologize, the role of the security pattern, the class in the 

developing model. So S3 mitigates P2. 

3.1 Method of Describing Transformation Rules 

A security specialist describes transformation rules derivable from a security pattern by using ATL 

(ATLAS Transformation Language) [8]. The transformation rules each consist of a pre-condition, an 

argument, and an operation. 

A pre-condition is an assumption of the security pattern application. The definition of a pre-condition 

varies according to the presence of an existing pattern upon which the to-be-applied security pattern 

depends. If there is no pattern on which the applied security patterns depend, security specialists define 

which part corresponds to the role of the security pattern in the model. If such a pattern exists, security 

specialists place a mark in the model that indicates that the existing pattern is a pre-condition for applying 

the new pattern. Our technique supports consecutive applications of security patterns that are dependent 

on other patterns by defining the output of the previous model transformation as a pre-condition in the 

subsequent model transformation. Security specialists should determine the dependencies among patterns 

by referring to the “Related patterns” section in the security pattern catalog. Moreover, there is a possibility 

that the dependency could be ascertained by looking at the problem and the context of the applied pattern, 

and also by looking at the context, solution, and consequence sections of all the other patterns. 



For instance, it is described that "The authenticated user, represented by processes running on its 

behalf, is then allowed to access resources according to their rights" (p. 323) in the context of the 

Authenticator pattern in [1]. On the other hand, it is described that "Any environment in which we have 

resources whose access needs to be controlled." (p. 245)  in the context of the Authorization pattern. It can 

be judged that a relation exists between these two patterns because their context sections resemble each 

other with regard to controlling access to the protected property, even though this relationship is not 

explicitly written in either pattern. Moreover, the description "What the attested user accesses the 

protection property by the authority is permitted" shows that we should authorize after authenticating. We 

can see that the Authenticator pattern should be applied before the Authorization pattern. 

The argument is a parameter that the software developer should input (i.e., the name of the class that 

corresponds to the role of the applied security pattern). 

The operation maps a set of classes and relations among classes in the model when the pattern is 

applied. Security specialists should look for common roles between the applied pattern and to-be-applied 

pattern in their structural description. 

For instance, the Subject role of the Authenticator pattern is described in [1] as, "A Subject, typically a 

user, and requests access to system resources" (p. 324). Moreover, the Subject role of the Authorization 

pattern is described in [1] as, "The Subject class describes an active entity that attempts to access a 

resource (Protection Object) in some way" (p. 246). The Subject roles of the two security patterns are 

identical because the descriptions of the Subject role are very similar. In a word, when there is the 

dependency between the two patterns, a common role is the basis for deriving the transformation rule of 

each pattern. Therefore, security specialists should describe a transformation rule whereby the Subject role 

of the Authenticator pattern corresponds to the Subject role of the Authorization pattern. A security pattern 

is applied by transforming the model by using the above-mentioned transformation rule. 

3.2 Example Description of Transformation Rules 

What follows is an example of describing transformation rules when applying the Authorization pattern.  

The pre-condition is that the class with the stereotype 'Authenticator.Subject' exists. This stereotype 

indicates where the Authenticator pattern, on which the Authorization pattern depends, is applied to the 

model. 

The argument is a class name that corresponds to the Protection Object role of the Authorization 

pattern. 

The operation has five steps. 

 Add the stereotype „Authorization.ProtectionObject‟ to the Class that corresponds to the Protection 

Object role that the developer inputs as an argument.  



 Add the class that corresponds to the Right role. 

 Add the relation between the class that corresponds to the Subject role and the class that 

corresponds to the Right role. 

 Add the relation between the class that corresponds to the Protection Object role and the class that 

corresponds to the Right role. 

 Remove the relation between the class that corresponds to the Protection Object role and the class 

that corresponds to the Subject role. 

Security specialists describe the transformation rules by using ATL. Figure 2 shows part of a 

transformation rule of the Authorization pattern described in ATL. The isProtOb function of the first line in 

Figure 2 judges whether the character string of the class name that corresponds to the Protection Object 

role that the software developer inputs corresponds to the class name in the model. The hasStereotype 

function of the fourth line judges whether the class in the model has the stereotype 'AuthenticatorSubject'. 

Marking by stereotype was chosen as the form of the model transformation in order to show where a 

security pattern is applied. If there is common role between two patterns, the proposed system decides the 

application place with stereotype in developing model.  

The reason for choosing ATL as the model transformation language is that it is easy for software 

developers to understand and it can easily be extended because it is based on 

Queries/Views/Transformations (QVT), which is a standard model transformation. 

helper context UML!Class def:isProtOb() : Boolean = 

if self.name = thisModule.ProtObName  

then true else false endif;  

Helper context UML!Class def:hasStereotype(stereotype : String) : Boolean = self.stereotype -> 
collect(s|s.name)->includes(stereotype)… 

rule AuthorizationProtectionObjectClass { 

from s : UML!Class (s.isProtectionObject())… 

stereotype <- stereotypePO), 

stereotypePO : UML!Stereotype ( 

name <- 'Authorization.ProtectionObject',   … 

rule SubjectClass { 

from s : UML!Class (s.hasStereotype('Authenticator.Subject')) … 

Fig. 2. Part of the transformation rule of the Authorization pattern 

 



3.3 Application Procedure 

The Model Transformation System (MTS) transforms a UML model in XMI format inputted by software 

developers, and the security pattern is applied by making a model transformation. Figure 3 illustrates the 

proposed system. The security pattern is applied as follows. 

1. The developer selects the security pattern. 

2. The developer inputs the model and the parameters to the proposed system. 

3. The system transforms the model and outputs the model with the applied security pattern. 

The system deals with two models as input and output: Class diagram and Communication diagram. 

These are described in XMI format. The transformation rules, once described, can be reused. Consecutive 

application of security patterns considering the dependencies among patterns becomes possible by using 

the obtained output model as the input model for the subsequent transformation. By using marks, it can be 

automatically judged whether the class and the pattern role are the same. 

 

Fig. 3. Model Transformation System (MTS) 



3.4 Validation 

The Validation Code Generator System (VCGS) ensures that the developing model has the properties 

of the applied security pattern. VCGS shows validation results in a new UML note in the developing model. 

Figure 4 illustrates VCGS. The validation code is generated as follows. 

1. The developer inputs the developing UML model in XMI format into VCGS. 

2. VCGS detects security patterns that have been applied to the developing UML model from 

stereotypes in each class of the model. 

3. VCGS generates validation code in ATL format from the transformation rules of the detected 

security patterns. 

VCGS generates a validation code about all properties except “name” because “name” is not a property 

that security patterns should maintain but an identifier that is subject to change by the developer. Figure 5 

shows the validation code generated from a transformation rule. 

 

Fig. 4. Validation Code Generator System (VCGS) 

 

 



rule ValidateAuthorizationProtectionObjectClass01 { 

from s : UML!Class (s.hasStereotype(Authorization.ProtectionObject) == false) 

to t :  UML!Class ( 

comment1 : UML!Note ( 

body <- “No Class corresponding to protection object role of Authorization pattern.”)  

}… 

rule ValidateAuthorizationSubjectClass01 { 

from s : UML!Class (s.hasStereotype('Authenticator.Subject' == true and… 

Fig. 5. Part of the transformation rule of the Authorization pattern 

Figure 6 shows the entire validation procedure. 

1. The developer inputs the validation code and developing models into MTS. 

2. MTS does the model transformation. 

If MTS does the model transformation after the validation code has been inputted, it outputs the model 

with an additional UML note describing the validation result. 

 

Fig. 6. Image of the Entire validation procedure 

4. DISTRIBUTION OF SECURITY PATTERNS 

Our technique can deal with security patterns that have a structural description. It can deal with 27 security 

patterns described in [1]. 19 security patterns in [1] cannot be dealt with because their structures are not 

described. 



5. EXAMPLE APPLICATION 

We shall consider a Patient Information Management System (PIMS) in a hospital as an example 

application. Figure 7 shows the use-case diagram of the PIMS. The PIMS has two security requirements. 

The PIMS faces two problems in regard to meeting the security requirements. 

1. Only hospital employees can access the PIMS. Confidentiality is thus maintained. 

2. The user of the PIMS can only do the use case with the allocated authority. Confidentiality is thus 

maintained. 

The first problem is that there is no way to judge if the user is an employee or not. A third party could 

thus pose as an employee in order to steal patient information and sell it (misuse case 1). The second 

problem is that everyone related to the hospital has read and write access to the patient's information. 

Even if the first problem is solved, the second problem remains. A potential problem is that someone could 

illegally rewrite a patient‟s examination results (misuse case 2). Figure 9 shows the class diagram of the 

PIMS, and Figure 8 shows part of the XMI of the class diagram. Two security patterns are applied as a 

solution to the above-mentioned threats. First, the Authenticator pattern is applied. Then, the Authorization 

pattern is applied. 

 

Fig. 7. Use-case diagram of the PIMS. 

<UML:Class xmi.id = 'a2' name ='Employee' … 

Fig. 8. Part of XMI in the class diagram 

 



 

Fig. 9. Class diagram of the Patient Information Management System (PIMS) 

5.1 Application of the Authenticator Pattern 

After selecting the ATL file in which the Authenticator pattern is described, the developer inputs the model 

and the parameters to the system. If the developer inputs “sbjName =„Employee'”, the system decides that 

the Employee class corresponds to the Subject role of the Authenticator pattern and applies the 

Authenticator pattern. A stereotype is added to indicate that the Employee class corresponds to the 

Subject role. Figure 10 shows the class diagram of the Authenticator pattern, and Figure 11 shows the 

class diagram after the Authenticator pattern has been applied. Figure 12 shows the XMI for the class 

diagram after the Authenticator pattern has been applied. 

The system judges that the Employee class corresponds to the Subject role of the Authenticator pattern 

and applies the Authenticator pattern to the model because developers inputted the parameters of the 

Authenticator transformation rule “sbjName =„Employee'”. At this time, a mark is applied to indicate that 

Employee class corresponds to the Subject role as a result of adding the stereotype to it. 

The authentication structure added to the model as a result of applying the Authenticator pattern is a 

countermeasure against a malicious third party disguised as a user. However, the problem that a malicious 

employee can access patient information remains because every employee is granted access to the 

information. To combat this problem, an Authorization pattern is required. 

 

Fig. 10. Class diagram of the Authenticator pattern 



 

Fig. 11. Class diagram after the Authenticator pattern has been applied 

<UML:Class xmi.id = 'a2' name ='Employee'   … 

<UML:Stereotype xmi.idref = 'a3'/>      … 

<UML:Stereotype xmi.id = 'a3' name = 'Authenticator.Subject'… 

<UML:Class xmi.id = 'a10' name = 'Authenticator'… 

Fig. 12. Part of XMI in the class diagram 

5.2 Application of the Authorization Pattern 

After selecting the ATL file in which the Authorization pattern is described, the developer inputs the model 

and the parameters to the system. If the developer inputs “protObName =„Patient”, the system judges that 

the Patient class corresponds to the Protection Object role of the Authorization pattern and applies the 

Authorization pattern. Moreover, because the Employee class that corresponds to the Subject role applies 

the stereotype „Authenticator.Subject' when the Authenticator pattern was applied, the system judges that 

the Employee class corresponds to the Subject role of the Authenticator pattern and to the Subject role of 

the Authorization pattern. 

A stereotype is added to indicate that the Patient class corresponds to the Protection Object role and to 

indicate that the Subject role corresponds to the Employee class of the Authorization pattern. Figure 13 

shows the class diagram of the Authorization pattern, and Figure 14 shows the class diagram after the 

Authorization pattern has been applied. 

The PIMS had two security problems in that there was no authentication and authorization structure. 

The countermeasure against user impersonation was taken by applying the Authenticator pattern, and the 

countermeasure against use without authorization was taken by applying the Authorization pattern. 

Figure 15 shows the use case diagram after applying the security patterns. Figure 16 shows the 

process of two consecutive security pattern applications. 



 

Fig. 13. Class diagram after the Authenticator pattern has been applied 

 

Fig. 14. Class diagram after applying the Authorization pattern 

 

Fig. 15. Use-case diagram of PIMS after applying security patterns 



 

Fig. 16. Two consecutive security pattern applications 

5.3 Validation of the Authenticator Pattern and Authorization Pattern 

Next, we verified that the developing model keeps the properties of the Authenticator and Authorization 

patterns. 

The developer inputs the class model in XMI format shown in Figure 8 into VCGS. VCGS identifies that 

the inputted model has the Authenticator and Authorization patterns derived from stereotypes described in 

each class. VCGS then generates validation code from the transformations of the two patterns. Figure 17 

shows the resulting validation code. 

rule ValidateAuthenticatorProtectionObjectClass01 { 

 from s : UML!Class (s.hasStereotype(Authenticator.Subject) == false) 

 to t :  UML!Class ( 

              comment1 : UML!Note ( 

                  body <- “No Class corresponding Subject role of Authenticator pattern.”)  

} 

 

rule ValidateAuthenticatorProtectionObjectClass02 { 

 from s : UML!Class (s.hasStereotype(Authenticator.Subject) == true and ) 

 to t :  UML!Class ( 

              comment1 : UML!Note ( 

                  body <- “No Class corresponding Subject role of Authenticator pattern.”)  

}… 

 

rule ValidateAuthorizationSubjectClass01 { 

 from s : UML!Class (s.hasStereotype(Authorization.ProtectionObject) == false) 

 to t :  UML!Class ( 

              comment1 : UML!Note ( 

                  body <- “No Class corresponding Subject role of Authenticator pattern.” 



) … 

rule ValidateAuthenticatorSubjectClass01 { 

 from s : UML!Class (s.hasStereotype('Authenticator.Subject' == true and 
hasRelationTo(„Authenticator.Authenticator‟) 

 to t : UML!Class ( 

              comment1 : UML!Note ( 

                  body <- “No relation between the class corresponding to Subject role of 
Authenticator  pattern and Authenticator role of  Authenticator pattern.”) 

} 

 

rule ValidateAuthorizationProtectionObjectClass01 { 

 from s : UML!Class (s.hasStereotype(Authorization.ProtectionObject) == false) 

 to t :  UML!Class ( 

              comment1 : UML!Note ( 

                  body <- “No Class corresponding Protection object role of Authorization 
pattern.” 

) … 

} 

Fig. 17. Validation code of the Authenticator and Authorization pattern. 

MTS adds a UML note describing the validation results in the inputs the validation code and the model 

in the XMI format of Figure 8. In the example shown in Fig17, the UML note does not describe anything 

because each pattern is correctly applied to the developing model. 

6. EVALUATION 

Here, we weigh the merits of our security pattern application against those of manual security pattern 

application. The comparison will be in terms of the number of work steps and the time required for the 

security pattern application. There are five work steps: (1) addition and deletion of a class, (2) addition and 

deletion of a relation, (3) input the name of a class, (4) automatic model transformation, and (5) input an 

argument in the model transformation. The time required was taken to be the mean of the times required to 

apply security patterns measured in an experiment involving six senior year university students who had 

experience with a UML modeling tool. 

Figure 18 shows the times required for the security pattern application, and Table I lists the number of 

work steps. The proposed technique saves 70-90% of the time spent manually, and it reduces the number 

of steps by more than 50%. 



 

Fig. 18. Time required for the security pattern application 

Table 1 Multivariate Changes in Image Quality Attributes, the Relationship of Psychometric and  

Objective Image Quality Estimations and the IBQ Approach 

METHOD Security Pattern 

Authenticator Authorization Reference Monitor 

MANUAL 7 4 5 

PROPOSED 2 2 1 

7. RELATED WORK 

Yu et al. [3] proposed a security pattern technique that transforms the i* model using ATL. Moreover, 

Horvath proposed a technique for converting a model using the petri net. [5] Ours is different from those 

techniques because its model transformations use UML and its security patterns are written in ATL. 

There is also a technique for ensuring that patterns are correctly applied[12] that works by validating a 

database application model from a stereotype. The validation done in [12] is similar to ours but has a 

different purpose. 

8. CONCLUSION 

Our technique enables automatic consecutive applications of security patterns that depend on each other 

by establishing a method of describing security pattern transformation rules and by marking the point at 

which the model was transformed. Although other patterns besides the ones discussed here can be 

applied, their dependencies may not be as obvious as those illustrated here. Our future work will include 

the following four tasks. 

 Cover all 27 security patterns in [2] that can be treated by the proposed technique. 

 Ensure the security of the entire system by using security patterns that strictly describe the security 

properties. 



 Derive dependencies between patterns from the pattern documents by applying Kubo‟s technique 

[4]. 

 Quantitatively evaluate the accuracy of the security pattern applications. 

At present our technique cannot be used for cloud computing and other area in which that security 

patterns are not used however, we believe that many security patterns will be proposed for such purposes 

in cloud and other field in the future. 
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