
Learning System for Computational Thinking using
Appealing User Interface with Icon-Based
Programming Language on Smartphones

Kazunori Sakamoto
National Institute of Informatics

Tokyo, Japan
exkazuu@nii.ac.jp

Koichi Takano
OBIC Co., Ltd.

Tokyo, Japan
furbishbiaskoichi7331306@gmail.com

Hironori Washizaki, Yoshiaki Fukazawa
Waseda University

Tokyo, Japan
washizaki@waseda.jp, fukazawa@waseda.jp

Abstract—Computational thinking is one of the most impor-
tant skills for using computers. Most existing learning environ-
ments for computational thinking work only on desktop or laptop
computers although the popularity of smartphones has rapidly
been growing. Moreover, Most existing programming languages
are based on English. However, Japanese students tend to not
like such languages due to English.

We propose a gamified learning system using an appealing
user interface with a novel icon-based non-verbal programming
language. Our system works on smartphones with which many
Japanese teenager students are more familiar than PCs. Our
system uses an appealing interface and icons to motivate uni-
versity students to learn programming through playing. We
applied an appealing interface which a female student designs
for other female students into our system, and then, conducted
an experiment with 16 female students from Waseda University
in Tokyo, Japan to evaluate our system. We confirmed our system
encouraged and motivated the students to learn programming.

I. INTRODUCTION

Computers are widely used and necessary for daily tasks.
The achievement of ubiquitous computing will become reality
due to the wide use of smartphones [1]. Although the spread
of computers gives birth to the necessity of computational
thinking [2], investigation results of the ACM and other orga-
nizations show the relative unpopularity of computer science
compared to more traditional mathematical disciplines [3].

Redmond et al. studied students in computer science at
Stanford University [4]. They reported that one of the biggest
obstacles to the students taking a computer science (CS)
major was starting CS classes too late in their undergraduate
education. They also argued that starting computer science
early is important.

To motivate students for learning programming, we propose
a gamified learning system that is suitable for Japanese uni-
versity students, using an appealing user interface with a novel
icon-based non-verbal programming language. We summarize
eight features of our learning environment as follows.

• Affinity for smartphones Our system is an An-
droid application working on smartphones instead of
desktop or laptop computers. Smartphones are more
popular and familiar than PCs with this demographic.

• Game Our system provides a game which requires
users to write programs in our icon-based language.
Users unconsciously learn essences of programming
through playing our system.

• Problem Our game provides problems called stages
that users should solve. Users can easily understand
what they should do due to these stages with obvious
goals.

• Appealing user interface Our system uses appealing
graphics for the user interface. Such graphics motivate
students to play a game and learn computational
thinking.

• Visualization of behavior Our system is equipped
with a language processor that visualizes an execution
of a user program by showing the user avatar dancing
and highlighting an executing line.

• Icon-based non-verbal language Our language con-
sists of only 11 icon images, which indicate the user
avatarfs actions. Users can more easily write programs
using icons than text.

• Native language (Japanese) The icons can be con-
verted into Japanese so that users can confirm what
the icons mean.

Users write code using our language to complete the
stages in the game. Users can experience programming through
playing our game and writing code. Our system motivates
Japanese students to learn programming.

II. KEY DESIGNS

We investigated why many Japanese students tend not
to want to study computer science and learn programming.
We found the following three obstacles: unfamiliarity with
PCs, programming languages with difficult English words, and
poorly designed user interfaces. To remove such obstacles, we
designed our system as follows.

A. Affinity for Smartphones

The popularity of smartphone is growing rapidly. In par-
ticular, young people who are between 10 and 19 ages use
smartphones rather than PCs in Japan to access the Internet.



TABLE II. UTILIZATION RATE OF SMARTPHONES BY GENDER AND AGE GROUP IN 2012

Gender Male Female
Ages 10-19 20-29 30-39 40-49 50-59 60- 10-19 20-29 30-39 40-49 50-59 60-
Rate of smartphone utilization 51.7 58.9 53.7 44.3 33.8 16.8 47.6 58.5 46.3 33.1 23.6 12.4

TABLE I. TIME SPENT USING SMARTPHONES AND PCS BY GENDER
AND AGE GROUP IN 2012

Smartphone PC
Male (10 - 19 ages) 121 113
Male (20 - 34 ages) 102 162
Female (10 - 19 ages) 149 101
Female (20 - 34 ages) 121 151

Nielsen Co., Ltd. reported that the time people spent on
the Internet with smartphones is longer than with PCs in
Japan [5]. The company also reported that the monthly time a
person spent on the Internet with smartphones and with PCs
in September 2012 was 1,492 and 1,301 minutes on average,
respectively.

ASATSU-DK INC. reported that teenagers use smart-
phones to access the Internet more than other age groups
[6]. Table I lists the time people spent on the Internet with
smartphones and PCs per day in 2012. The company reported
that the time a teenage male spent on the Internet with
smartphones and PCs in 2012 per day was 121 and 113 minutes
on average, respectively. They also reported that the time a
teenage female spent was 149 and 101 minutes on average,
respectively.

Impress R&D reported that more young people use smart-
phones more often than older people [7]. Table II lists the
rate of utilization of smartphones by gender and age group.
Approximately half the teenagers surveyed had smartphones.

While many people have and use PCs, the above surveys
indicate smartphones will be more ubiquitous than PCs in the
future. However, writing programs with current programming
languages on smartphones is obviously more difficult than on
PCs. Therefore, a learning system should work on smartphones
rather than PCs and should provide an educational program-
ming language designed for smartphones.

B. Icon-Based Educational Programming Language

Many Japanese students tend not to like programming
because most of programming languages are based on English.

Igo et al. conducted questionnaire study on reasons bach-
elor Japanese students from Yamaguchi University dislike
programming [8]. They reported that 69% of 39 students who
attended the programming lecture at Yamaguchi University
disliked C programming language, and 31% liked it; 46%
were intimidated by English, and 54% were not. They reported
that 78% of the students who were intimidated by English
disliked C programming language and 22% liked it, and 52%
of the students who disliked C programming language were
intimidated by English and 48% were not.

That is, the students who were intimidated by English
tended to dislike C programming language and the students
who hated C programming language tended to be intimidated
by English. This result indicates that one of the reasons stu-
dents dislike C programming language is because C program-

ming is based on English. Therefore, a learning environment
for Japanese students should avoid using English.

C. Appealing User Interface

A user interface is one of the most important things to
motivate users to use the software. Cho et al. reported that good
user-interface designs could motivate learners to continue using
their e-learning tools [9]. Nittono et al. found that viewing such
cute (or Kawaii in Japanese) images promoted careful behavior
and narrow attentional focus regardless of gender [10].

That is, an appealing user interface (e.g. using Kawaii
images) can motivate students to learn programming and
help students concentrate on programming. However, existing
learning environments have no such user interface. Therefore,
a learning environment for students should employ such an
appealing user interface.

III. OVERVIEW OF OUR SYSTEM

We developed our system with an icon-based non-verbal
programming language. Users learn programming based on
three computational thinking concepts; sequences, loops, and
parallelisms, through playing a game. The game consists of
13 stages which are similar to problems of puzzle games.

Each stage shows an example dancing avatar (chicken).
Users write a set of commands which replicates the dance
steps. The userfs avatar (baby chick) and the example avatar
(chicken) dance the same when the userfs dance steps correctly
replicate the examplefs. Our system then shows the user that
the dance steps are correct.

Figure 1 shows two game screenshots in which a user
successfully (right) and unsuccessfully (left) solved a stage.
The left screenshot is wrong because the example avatar raised
the left wing while the user avatar raised the right wing. The
avatars were designed by a female university student for other
female university students. Note that we can replace these
images with other images designed for others.

Our system was developed as an Android application;
therefore, users can learn computational thinking concepts
with our system anytime and anywhere. Moreover, people
communicate with others via smartphones more frequently
than PCs in Japan. Thus, smartphones will be more familiar
and deep for people than PCs. This tendency does not apply
to only Japan but also worldwide.

IV. PROGRAMMING LANGUAGE DESIGN

We designed our programming language to address the
following issues for Japanese students.

• Most programming languages are based on characters
and it is assumed that users write code not with
smartphones but with PCs. People who frequently use
smartphones rather than PCs tend to believe program-
ming is not easy.



Fig. 1. Screenshot of our Android application (wrong and correct answers
on left and right sides, respectively)

• Most programming languages force users to write
code containing English words, symbols, and num-
bers. People who dislike English or mathematics tend
to believe that programming is difficult and boring.

Figure 2 shows the Backus-Naur Form (BNF) of our language.
Our language consists of nine action commands for making
the user avatar dance and one loop command for representing
repetition behavior. Eight of the nine action commands indicate
raising or lowering the user avatarfs left wing, right wing, left
leg, or right leg. The last action command indicates jumping.
The loop command indicates repeated action commands with
the specified numbers. Our language use only numbers for
indicating the number of repetitions.

Fig. 2. Backus-Naur Form of our icon-based programming language

The images in the BNF are icons similar to emoticons
that are commonly used in e-mail in Japan. The nine action
commands, the loop command, and ending sing of loops can
be represented by Japanese statements or icons, which are
interconvertible. That is, users can write programs with only
icons and numbers for loops without character-based state-
ments. Figure 3 shows same program written using character-
based statements (Japanese) and numbers and using icons and
numbers. Users can convert programs by changing the upper
tabs, as shown in Figure 3.

The eight action commands, except jumping, indicate
changes in the state of the user avatar. For example, after
executing the raising right wing command, the user avatar
continues to raise the right wing until executing the lowering

Fig. 3. Same program written using Japanese and numbers (on left side) and
using icons and numbers (on right side)

right wing command. On the other hand, the jumping com-
mand indicates just that command, i.e., after executing the
jump command, the user avatar will automatically land without
executing any other command.

The stmt indicates each line in the program written in
our language. It can contain multiple actions, which are
the action commands, or one loop_stmt, which is the loop
command. Our system executes each line of the program
sequentially from the top line to the bottom line at a constant
time interval. Note that our system skips lines which contain no
action command. The stmt is executed at the same time, that
is, multiple action commands on the same line are executed
simultaneously.

For example, the third line of the program in Figure 3
contains the raising left wing and the raising right wing
commands. When executing the third line, the user avatar
raises both wings simultaneously. The user avatar will lower
both wings at the next time because the fourth line contains
the lowering left wing and the lowering right wing commands.
When executing the sixth line containing only the jumping
command, the user avatar jumps and will land at the next
timing.

Our system conducts syntax and semantic analyses sim-
ilarly to other programming languages. Our system parses
programs written in our language and reports syntax errors
such as the lack of ending signs of the loop commands and
wrong Japanese statements to users in the syntax analysis.
Our system also analyzes and executes programs and reports
semantic errors due to impossible actions such as raising both
legs during execution to users in the semantic analysis. When
semantic errors occur, the user avatar falls down. Our system
provides an appealing user interface even if errors occur.
Moreover, to make the program understandable, our system
highlights the current execution line with red when executing
the program.

There are four reasons our system uses icons instead of
words. Icons are 1) familiar to smartphone users, 2) informa-
tive, 3) appealing, and 4) language-independent.



1) In Japan, most of people use icons to write e-mails
with mobile phones and smartphones. Thus, icons are familiar
with smartphones users. 2, 3) Icons contain more information
than characters. Users can write programs with fewer icons
than characters. Moreover, icons can be designed to be more
appealing than characters. The icons were also designed by a
female university student for other female university students.
Note that we can replace these icons with other icons designed
for others.

4) Icons do not depend on characters so users can learn
computational thinking concepts independently from native
languages. If users do not want to use Japanese, they can write
programs using icons with our language. Our system supports
the inter-conversion between Japanese statements and icons
to just explain what icons mean. Moreover, we can replace
Japanese statements with other statements in other languages.

V. COMPUTATIONAL THINKING CONCEPTS

Users can learn three computational thinking concepts:
sequences, simultaneity, and loops. We now explain how these
concepts are learned. We provide 13 stages; 3 stages for
learning sequences, 3 sages for learning simultaneity, 4 stages
for learning loops, and 3 stages for revising the three concepts.

A. Sequences

In general, programs are executed in a certain order. Most
procedural programming languages execute programs from the
top line to the bottom line. Our system executes each line
sequentially from the top line to the bottom line at a constant
time interval. For example, when the third line in Figure 3 is
executed, the next line will be executed after the expiration of
that time interval.

The first stage requires users to write programs where the
user avatar 1) raises the left wing, 2) lowers the left wing,
3) raises the right wing and 4) lowers the right wing. Users
will notice that there is a rule about the sequence of executing
commands through playing this stage. Therefore, users learn
sequences.

B. Simultaneity

In computer science, parallelism is one of the most im-
portant concepts. Although simultaneity is different from par-
allelism, we should learn about simultaneity and distinguish
simultaneity from sequences to understand parallelism. Our
system executes multiple action commands simultaneously on
the same line. For example, when the third line in Figure 3
is executed, the user avatar raises both left and right wings
simultaneously.

The fifth stage requires users to write programs where the
user avatar 1) raises the left wing and the right leg, 2) lowers
the left wing and the right leg, 3) raises the right wing and the
left leg, and 4) lowers the right wing and the left leg. Users
will notice that there is a rule about simultaneously executing
commands through playing this stage. Therefore, users learn
simultaneity.

C. Loops

Loops are also one of the most important concepts, and
most programs contain loops. Our system supports only repe-
tition with the specified number of iterations because such rep-
etition is the most basic loop. Our system repeatedly executes
commands, which are surrounded with a loop command and
an ending symbol. For example, the third and fourth lines in
Figure 3 are executed six times and the sixth line is executed
three times because there are two loops with three and two
iterations.

The seventh stage requires users to write programs in which
the user avatar repeats the following four action commands
three times: 1) raises the left leg, 2) lowers the left leg, 3) raises
the right leg and 4) lowers the right leg. Users will learn that a
loop command is useful for writing repeated action commands
through playing this stage. Therefore, users learn loops.

VI. EVALUATION

We conducted an experiment for evaluating the following
research questions (RQs). Although our system does not dis-
tinguish users by gender and native language, we investigate
the following RQs for female university students because
the user interface of our system is designed by a Japanese
female university student for other Japanese female university
students.

• RQ1: Does our learning environment improve
Japanese female university studentsf impressions of
programming?

• RQ2: Does our learning environment motivate
Japanese female university students to learn program-
ming?

• RQ3: Is our learning environment more effective for
learning three computational thinking concepts than
by reading lecture notes?

• RQ4: Do Japanese female university students have a
good impression of our learning environment?

Sixteen Japanese female university students from Waseda
University in Tokyo, Japan participated in our experiment.
Nine out of the 16 were liberal arts students and 7 were science
students. We divided the 16 students into a group that used our
learning environment and a group that did not. Note that we
divided the liberal arts students and science students into the
two groups as evenly as possible.

We conducted the following steps of our experiment for
the group that used our learning environment.

1) We gave a preliminary questionnaire to determine
the studentsf impressions on programming and their
motivations for learning programming.

2) The students used our learning environment for ap-
proximately 40 minutes.

3) We conducted an achievement test for determining
the depth of understanding of the three computational
thinking concepts of sequences, simultaneity, and
loops.

4) We gave a post-investigation questionnaire with the
same questions as the preliminary one.



The group that did not use our learning environment learned
computational thinking concepts with lecture notes for approx-
imately 40 minutes instead of the third step.

To investigate RQ1 and RQ2, we gave preliminary and
post-investigation questionnaires to eight of the students who
used our learning environment. We asked the following four
questions about their impressions of programming. A) Do you
feel programming is mainly geared toward males? B) Do you
feel programming is scientific and not suitable for liberal arts
students? C) Do you feel programming is difficult? D) Do
you feel programming is boring? We also asked the following
question about their motivations for learning programming. E)
Do you not want to learn programming? The students answered
our questions based on a six-point scale (1 strongly agree and
6 strongly disagree).

Figure 4 is a box plot of the questionnaires results. The
result indicates that the studentsf impressions of programming
and motivations for learning programming improved because
the positions of all the boxes moved upwards compared with
the preliminary results. Moreover, all the highest values and the
central values, except for the question A, of the answers for our
post-investigation questionnaires improved in comparison with
them of our preliminary investigation questionnaires. On the
other hand, all the lowest points of the answers did not change
between our preliminary and post-investigation questionnaires.
Thus, our learning system can generally improve Japanese
female university students’ impressions of programming, but
it is difficult to mitigate very bad preliminary impressions of
programming.

Fig. 4. Questionnaire results on impressions of programming (A-D) and on
motivations for learning programming (E). Note that A-E and Af-Ef indicate
preliminary and post-investigation questionnaires.

To investigate RQ3, we gave an achievement test to all
16 students. Our achievement test consists of three problems
for determining how effectively they understood the three
computational thinking concepts of sequences, simultaneity,
and loops. We used a different game where the avatarfs
movements were two-dimensional instead of the dancing for
fairness. We also provided a programming language similar to
our dance language in our learning system for our achievement
test. The language consisted of four action commands; left,
right, up, and down on a one-hundred-square board instead of
nine action commands. The language also had the same loop
command as the one in our dance language.

The first and second problems required the students to
write the track of the avatar which moves on the board with
the given programs with loop commands. The programs of
the first and second problems used one loop command and
dual loop commands, respectively. The third problem required
the students to write a program that moved the avatar in a
zigzag line with sequential commands. The fourth problem
required the students to write a program that moved the avatar
diagonally with simultaneous commands.

Figure 5 shows the results of our achievement test. All the
students that used our system solved the first, second, and third
problems correctly. On the other hand, several students that did
not use our system did not solve these problems. Moreover,
more students that used our system solved the fourth problems
correctly than those who did not use it. Thus, our system
helped them learn the three computational thinking concepts
more effectively compared with using lecture notes.

Fig. 5. Percentages of questions answered correctly in achievement test

To investigate RQ4, we gave a questionnaire to the eight
students who used our system to determine their impressions
of the system. We asked the following four questions. F) Do
you feel our system is fun? G) Do you feel our system is easy
to play? H) Do you feel you want to introduce our system to
your friends? I) Do you feel you want to use our system more?
The students answered our questions based on a six-point scale
(1 strong disagree and 6 strongly agree).

Figure 6 shows our questionnaire results. All the students
except one said our system was fun, easy, and attractive. Thus,
our system may be attractive to Japanese female university
students so that our system is very useful to teach the fun
and the attractive of programming. Only one student said our
system reminded her of a bad and boring programming lecture
she previously attended. This impression relates to the ques-
tionnaire about impressions of programming and motivations
for learning programming and indicates that it is difficult to
improve impressions of Japanese female university students
who believe programming is boring and who are not skilled
in programming.

VII. RELATED WORK

There have been studies on how to encourage young girls
to learn programming and computational thinking [11], [12].
Scratch is a programming environment that enables young
people to create their own interactive stories, games, and



Fig. 6. Results of questionnaire on impressions of our system

simulations [11]. The core users are between the ages of eight
and 16. Young people can learn seven computational thinking
concepts: sequences, loops, parallelism, events, conditionals,
operators, and data. CodeSpells is a video game that enables
young people to learn Java programming [12]. CodeSpells
successfully taught 40 girls between the ages of 10 and 12
Java programming for the first time in their experiment.

Although the effectiveness of Scratch and CodeSpells is
confirmed in their experiments, their environments work on
only PCs. However, our system works on smartphones, thus,
it is more familiar with smartphone users who are increasing.

There also have been studies on learning environments
which work on smartphones. Martin et al. developed a learning
environment called IPRO which works on the iPod Touch
with a visual programming language [13]. Wolfgang pro-
posed a visual programming system which works on Android
smartphones for children [14]. Tillmann et al. proposed a
programming environment which works on smartphones with
a simple programming languages based on English [15]. Their
system has a smart editor which suggests next inputs similarly
to integrated development environments.

Although their environments work on smartphones well,
they have no appealing user interface and image in their
programming languages which motivates users to use and
learn programming languages. However, our system have an
appealing user interface with an icon-based programming
languages including appealing icons, thus, it is more effective
to motivate for learning programming.

VIII. CONCLUSION AND FUTURE WORK

We developed a novel learning system using an appealing
user interface with an icon-based programming languages. Our
system motivates university students to learn programming
and aids to learn three concepts of computational thinking.
Although our current system uses an user interface and icons
which a female university student designs for other female
university students, our system can switch them to other
user interfaces and other icons for suitable other people.
Eight female university students improved their impressions of
programming and their motivations for learning programming,
and results of our achievement test by using our system in our
experiment. Therefore, our system is effective and useful to
learn programming and computational thinking.

In future, we will prepare other user interfaces and icons
for other students and will confirm user interfaces and icons

which students like are different and learning effectiveness
depends on user interfaces and icons. Moreover, we will add
new feature to convert our icon-based programming language
to real programming languages such as Java, then, will help
students to migrate from our programming language to real
programming languages.

ACKNOWLEDGMENTS

This research was partially supported by the Benesse
Corporation and the Leave a Nest Co., Ltd.. We would like
to thank Akari Nozawa, Aya Harashima and Daichi Katayama
for their help with this research.

REFERENCES

[1] R. Ballagas, F. Memon, R. Reiners, and J. Borchers, “istuff mobile:
rapidly prototyping new mobile phone interfaces for ubiquitous com-
puting,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’07. ACM, 2007, pp. 1107–1116.

[2] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no. 3,
pp. 33–35, Mar. 2006.

[3] M. Felleisen and S. Krishnamurthi, “Viewpoint: Why computer science
doesn’t matter,” Commun. ACM, vol. 52, no. 7, pp. 37–40, Jul. 2009.

[4] K. Redmond, S. Evans, and M. Sahami, “A large-scale quantitative
study of women in computer science at stanford university,” in Pro-
ceeding of the 44th ACM technical symposium on Computer science
education, ser. SIGCSE ’13. ACM, 2013, pp. 439–444.

[5] L. Nielsen Co., “Report on pilot data of use trend of android
smartphones (in japanese).” [Online]. Available: http://www.netratings.
co.jp/news release/2012/12/Smartphone20121210.html

[6] A.-D. INC., “The device most frequently used by teenagers for
accessing the internet is a smartphone (in japanese).” [Online].
Available: http://marketing.itmedia.co.jp/mm/articles/1301/30/news129.
html

[7] I. R&D, “Report on rate of utilization of smartphones (in japanese).”
[Online]. Available: http://www.impressrd.jp/news/121120/kwp2013

[8] H. Igo, Y. Hara, S. Matue, and C. Yoshimoto, “Introduction of
nadeshiko programming language to education (in japanese).” [On-
line]. Available: http://www.edu.yamaguchi-u.ac.jp/∼mis/www-page/
mis/kaisetu/sotsuron2007/n-ihmy-main.pdf

[9] V. Cho, T. E. Cheng, and W. J. Lai, “The role of perceived user-
interface design in continued usage intention of self-paced e-learning
tools,” Comput. Educ., vol. 53, no. 2, pp. 216–227, Sep. 2009.

[10] H. Nittono, M. Fukushima, A. Yano, and H. Moriya, “The Power
of Kawaii: Viewing Cute Images Promotes a Careful Behavior and
Narrows Attentional Focus,” PLoS ONE, vol. 7, no. 9, pp. e46 362+,
Sep. 2012.

[11] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: programming for all,” Commun. ACM, vol. 52,
no. 11, pp. 60–67, Nov. 2009.

[12] S. Esper, S. R. Foster, and W. G. Griswold, “On the nature of fires
and how to spark them when you’re not there,” in Proceeding of the
44th ACM technical symposium on Computer science education, ser.
SIGCSE ’13. ACM, 2013, pp. 305–310.

[13] T. Martin, M. Berland, T. Benton, and C. P. Smith, “Learning pro-
gramming with ipro: The effects of a mobile, social programming
environment,” Journal of Interactive Learning Research, vol. 24, no. 3,
pp. 301–328, July 2013.

[14] W. Slany, “Catroid: a mobile visual programming system for children,”
in Proceedings of the 11th International Conference on Interaction
Design and Children, ser. IDC ’12. New York, NY, USA: ACM,
2012, pp. 300–303.

[15] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich, “Touchde-
velop: programming cloud-connected mobile devices via touchscreen,”
in Proceedings of the 10th SIGPLAN symposium on New ideas, new
paradigms, and reflections on programming and software, ser. ON-
WARD ’11. New York, NY, USA: ACM, 2011, pp. 49–60.


