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Open Code Coverage Framework: A Framework for Consistent,
Flexible and Complete Measurement of Test Coverage Supporting
Multiple Programming Languages∗

Kazunori SAKAMOTO†a), Fuyuki ISHIKAWA††b), Hironori WASHIZAKI†c),
and Yoshiaki FUKAZAWA†d), Members

SUMMARY Test coverage is an important indicator of whether soft-
ware has been sufficiently tested. However, there are several problems with
the existing measurement tools for test coverage, such as their cost of de-
velopment and maintenance, inconsistency, and inflexibility in measure-
ment. We propose a consistent and flexible measurement framework for
test coverage that we call the Open Code Coverage Framework (OCCF).
It supports multiple programming languages by extracting the commonal-
ities from multiple programming languages using an abstract syntax tree
to help in the development of the measurement tools for the test cover-
age of new programming languages. OCCF allows users to add program-
ming language support independently of the test-coverage-criteria and also
to add test-coverage-criteria support independently of programming lan-
guages in order to take consistent measurements in each programming lan-
guage. Moreover, OCCF provides two methods for changin the measure-
ment range and elements using XPath and adding user code in order to
make more flexible measurements. We implemented a sample tool for C,
Java, and Python using OCCF. OCCF can measure four test-coverage-
criteria. We also confirmed that OCCF can support C#, Ruby, JavaScript,
and Lua. Moreover, we reduced the lines of code (LOCs) required to imple-
ment measurement tools for test coverage by approximately 90% and the
time to implement a new test-coverage-criterion by over 80% in an exper-
iment that compared OCCF with the conventional non-framework-based
tools.
key words: software testing, test coverage, code coverage, metrics, frame-
work

1. Introduction

Test coverage or code coverage, which we refer to as just
coverage from here on, is an important measure used in soft-
ware testing. It refers to the degree to which the source code
of a program has been tested and indicates whether a soft-
ware has been sufficiently tested or not. There are multiple
criteria in a coverage, such as the statement and decision
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coverage. For instance, statement coverage is the ratio of
the statements that have been executed at least once from
all the statements. The developers select a suitable criterion
according to the purpose of their software testing [1].

Test coverage measurement tools, which will be re-
ferred to as just tools from here on, are necessary to ac-
curately measure the kinds of coverage necessary for var-
ious programs, and these tools have become widely avail-
able. Many tools are provided for major programming lan-
guages, which we will refer to as just languages from here
on, such as Java. However, tools for legacy or minor lan-
guages such as COBOL or Squirrel are not readily available
or are considerably expensive. Moreover, it is more difficult
to measure the coverage of newly defined languages such
as Go and of existing languages with some changes to their
language specifications because each existing tool is specific
to a certain language specification. These types of situations
have driven the need to develop some framework or tool that
will correspond to a variety of languages including new lan-
guages in the future.

Other drivers have been under development that sup-
port multiple languages. For instance, in the development
of a typical client-server-based enterprise system, the client
and server applications are developed separately in different
languages. This causes fewer problems during unit testing,
which separately tests each module, but a number of prob-
lems have arisen during integration testing, which tests the
integration of a set of modules. Therefore, tools are required
that can consistently support multiple languages.

We propose a framework for consistent, flexible, and
complete coverage measurement called the Open Code Cov-
erage Framework (OCCF), which supports multiple lan-
guages∗. The framework has a reusable software architec-
ture and has a generic design like some similar applica-
tions. The application can be implemented by adding an
application-specific code to the framework [13].

OCCF extracts the commonalities from among multi-
ple languages, disregards the variability, and lets users focus
on only the small differences in languages using a concrete
syntax tree (CST) or abstract syntax tree (AST) to help with
the development of the tools that can measure the coverage
of the new languages.

Figure 1 outlines the concept behind the simplification,
which is provided by OCCF. There are many-to-many re-
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Fig. 1 Simplification of connection between languages and coverage.

lationships between languages and their coverage criteria in
the existing tools, and thus all possible combinations must
be implemented.

OCCF simplifies the many-to-many relationships into
many-to-one relationships between the languages and
OCCF, and the one-to-many relationships between OCCF
and the coverage criteria. OCCF lets users implement ad-
ditional languages not depending on coverage criteria and
also implement the additional coverage criteria that do not
depend on the languages. Such simplification helps users to
develop tools and then helps them to freely select their fa-
vorite languages and the suitable coverage criteria. OCCF
provides a default implementation of the three languages:
C, Java, and Python; and four coverage criteria: statement
coverage, decision coverage, condition coverage and condi-
tion/decision coverage. OCCF lets users add languages that
support the default coverage criteria and add coverage cri-
teria that support the default languages. Moreover, OCCF
provides two methods to flexibly customize the coverage
criteria.

We were able to reduce through experimentation the
development and maintenance costs of tools and to develop
sample tools that could consistently and flexibly measure
the various coverage criteria of several languages by using
OCCF as a novel framework for developing tools. In par-
ticular, we reduced by approximately 90% the lines of code
(LOCs) required for implementing tools and the time to im-
plement a new coverage criterion by 80% or more in an ex-
periment comparing OCCF with the conventional tools that
were non-framework based.

OCCF is now freely available via the Internet [2].

2. Existing Tools and Conventional Measurement Ap-
proaches

There are roughly three approaches for measuring coverage:
extending the programming-language processors to add a
measurement function, and inserting a measurement code
into an executable code or into a source code.

The first approach analyzes both the syntax and se-
mantics of the languages because it parses the source code,
analyzes its semantics, and executes it. This approach
can adjust the behavior of the program measuring cover-
age because the programming-language processor decides
the program behavior. However, this approach requires a
high development cost and it has few measurement features
because the programming-language processor is a com-
plex system and it is difficult to add measurement func-
tions. Examples of the tools that use this approach in-
clude the Statement coverage for Python (SCP) [5],
which supports Python, and gcov, which supports the lan-

guages that the GNU Compiler Collection (GCC) [6] sup-
ports. The SCP uses a trace module in the Python standard
library. Gcov is a subset of the GCC that includes a measure-
ment code in the object files, and thus, gcov also uses the
second approach.

The second approach also analyzes both the syntax and
semantics of languages because it parses the source code
to show the users part of the covered source code and ana-
lyzes the executable code in order to insert a measurement
code into the executable code. This approach also requires a
large development cost since it requires an analysis of both
the source and executable codes. Moreover, this approach is
unable to adjust well with the program behavior into which
the measurement code is inserted because the behavior of
the executable code is influenced by the compilers and ex-
ecution environment. Some examples of the tools that use
this approach include Cobertura [7], which supports Java,
EMMA [8] for Java, and NCover [9] .NET languages. These
tools include measurement codes in the intermediate lan-
guage codes.

The last approach analyzes only the syntax because it
parses the source code in order to decide where to insert the
measurement code by analyzing the grammar of the given
language. However, this approach cannot adjust the pro-
gram behavior into which the measurement code is inserted
as well as the second approach can. According to our inves-
tigations, the tools that use this approach are not widespread
although this approach is known.

There is a narrow commonality in both the first and sec-
ond approaches among the measurement features because
these approaches strongly depend on each language. There
is also a narrow commonality in the last approach among
the measurement features because this approach uses an ad-
hoc processing that focuses on only the grammar. Moreover,
it is difficult for the last approach to measure the coverage
flexibly without having the semantics of the language.

3. Problems with Conventional Measurement Ap-
proaches

3.1 P1: Cost of New Development

Tools are often unavailable for many new, legacy or minor
languages due to a lack of community or non-commercial
efforts. However, tools for these languages are necessary.

There are many combinations of languages and cover-
age criteria and it is difficult to implement all the combina-
tions. It is also difficult to extract the commonality in the
conventional approaches as already described. Moreover, it
is especially difficult to implement the flexible tools that are
mentioned after this that can change the measurement range
and elements. Therefore, a mechanism that can help to de-
velop these new tools is required.

3.2 P2: Cost of Maintenance

Language specifications change according to the paradigm
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changes and expanded features. Large changes cause the
varieties of syntax to increase and cause the semantics to
change. For instance, when Java was upgraded to 5.0 from
1.4, new syntax and semantics, such as a ‘foreach’ statement
and a generic type, were added to the language specifica-
tions. In addition, when Python was upgraded to 3 from 2,
a print statement changed to just a function call.

When taking into consideration the existing tools, the
range of the features needing to be maintained need to be
expanded because the existing tools analyze both the syntax
and semantics.

Therefore, a mechanism that can help to maintain new
tools is required.

3.3 P3: Inconsistency in Measurement

Developers measure the coverage of multiple languages dur-
ing the development of software involving multiple lan-
guages, such as software designed on the basis of the client-
server model. However, when different tools are used to-
gether during integration testing, the measurement results
are inconsistent because of the effect of differences in the
measurement criteria. These differences, such as differences
of whether tools do count logical statements or line state-
ments, are not described in the tool specifications (manual
documents). Developers may analyze measurement results
erroneously and may incorrectly conclude test adequacy ow-
ing to the lack of knowledge about the differences.

Suppose, for instance, developers obtained a measure-
ment result showing 100% statement coverage for a pro-
gram written in Java and Python by using EMMA and SCP,
respectively. EMMA and SCP support only statement cover-
age. EMMA divides a ternary expression (i.e. condition ?
true-expression: false-expression) into two state-
ments and can determine whether both branches of the
ternary expression have been executed. SCP, on the other
hand, does not divide ternary expressions and cannot de-
termine whether both branches have been executed. When
developers recognize incorrectly that both EMMA and SCP
divide ternary expressions into two statements, they may
judge erroneously that all ternary expressions have been
well tested. However, untested ternary expressions may ex-
ist in the Python program.

Similarly, there are many differences, such as a dif-
ference of whether tools do count conditional expressions
without control-flow statements as conditional branching, in
coverage criteria of existing tools that can mislead develop-
ers.

According to our investigations, except for gcov and
NCover, free tools that support multiple languages do not
exist. We will discuss these points in Sect. 6. Therefore,
consistent tools supporting multiple languages are required.

3.4 P4: Inflexibility in Measurement

Coverage results that are 100% indicate that a piece of soft-
ware has been sufficiently tested. However, coverage re-

sults that are less than 100% can also indicate software has
been sufficiently tested since this is sufficient if the part
deemed necessary by the developers has been tested. In
addition, the time to run software testing has increased be-
cause software-testing techniques, such as test-driven devel-
opment [11], have become quite advanced and the number
of test cases has increased. From the perspective of the time
efficiency, it is better to limit the measurement range and the
elements, such as those for only a specific method and the
elements, such as only assignment statements.

For instance, Sakata et al. [12] proposed an idea for
only measuring the functions that are needed in the mea-
surements of the coverage for the components. Therefore,
flexible measurements that can limit the measurement range
and elements are required to achieve a 100% sufficient re-
sult.

Tools that can freely change the measurement range
and elements and that can measure the user-defined cover-
age criteria do not exist, according to our investigation. In
addition, many existing tools can only limit the measure-
ment range and only change the size of the measurement
elements, such as the statements and blocks. Therefore, the
flexibility to allow for user-defined coverage criteria is re-
quired (with support for multiple languages).

3.5 P5: Incompleteness in Measurement

Coverage is measured by using the information on the exe-
cuted elements obtained when the software testing is carried
out. However, when the coverage is measured for an ex-
ecutable binary file, the existing measurement elements in
the source code are often ignored because of the difference
in semantics between the source code and executable binary
file. The optimization facility of the compiler often removes
the dead code such as a private method that is not called or
an ‘if’ statement in which a conditional expression is always
evaluated as false.

There is an example of a source code that includes dead
code in Fig. 2. Cobertura has a 100% statement coverage
for this source code, but the correct measurement result is
only a 50% statement coverage. A dead code is undesir-
able because the cost of the maintenance increases when
the developers cannot judge whether the description of a
dead code is intentional or not. The measurement results of
the coverage should express the existence of the dead code.
Therefore, tools that completely measure the coverage are
required.

Fig. 2 Sample code of Dead code in Java.



SAKAMOTO et al.: OPEN CODE COVERAGE FRAMEWORK: A FRAMEWORK FOR MEASUREMENT OF COVERAGE SUPPORTING MULTIPLE LANGUAGES
2421

4. Framework for Measuring Coverage Supporting
Multiple Programming Languages

We propose OCCF to support multiple languages, and
which will alleviate the problems outlined in Sect. 3.

4.1 Measurement Approach of OCCF

OCCF inserts a measurement code into the source code us-
ing AST, and the coverage is measured by executing the pro-
gram. Our approach analyzes the syntax and the required
part of the semantics because our approach parses the source
code to get the AST and locates the position of the node
where the measurement code is inserted. There is wide com-
monality in our approach among the measurement features
because the insertion processing using the AST in each lan-
guage is similar.

The source code before it is inserted is outlined in
Fig. 5. The source code after being inserted is outlined in
Fig. 6. The stmt record and decision record subrou-
tines measure the statement coverage and decision cover-
age in the example. The decision record subroutine re-
turns the evaluation value of the original conditional expres-
sion. OCCF inserts the stmt record into each statement
and each variable initializer to measure statement coverage.
OCCF also inserts the decision record into each condi-
tional expression of the control-flow statement and inserts
the stmt record into each case clause of the switch state-
ment to measure the decision coverage, condition coverage,
and condition/decision coverage.

Fig. 3 Overview of OCCF.

Fig. 4 Overview of relation between user code, common code and external program.

The measurement code does not have any side effects
except for the processing to collect the coverage information
and the changing time behavior. This means that there is a
possibility that the semantics of a program using a thread
might change. However, it seems that this change can be
disregarded by the change due to the execution environment.
Therefore, the measurement code has no side effects, and
does not change the semantics of the source code.

4.2 Overview of OCCF

An overview of OCCF and the processing flow in shown in
Fig. 3. OCCF adopts the general architecture of the mea-
surement tool that used the insertion approach of the mea-
surement code. OCCF consists of three subsystems: the
code-insertion, code-execution, and coverage-display sub-
systems. Moreover, OCCF reduces the size of the code-
insertion subsystem for reuse. The code-insertion sub-
system consists of three components: the AST-generation,
AST-operation, and the code-generation components.

The process for measuring coverage includes six steps
for expanding the code-insertion subsystem.

1. Generation of AST from source code
2. Refinement of AST

Fig. 5 Before insertion.

Fig. 6 After insertion.
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3. Insertion of code for measurement on AST
4. Generation of source code from AST
5. Execution of generated source code and collection of

measurement information
6. Display of measurement results from coverage

OCCF provides a common code for the language-
independent processing that operates the AST in the simi-
lar structures and also provides a design to help user codes
to be written for language-dependent processing. There is
a relation between the common code, user code, and exter-
nal program listed in Fig. 4. In this way, OCCF reduces the
cost of development and maintenance in order to solve P1

and P2. However, OCCF only targets the procedural pro-
gramming languages and impure functional programming
languages due to its insertion approach.

OCCF supports the measurement of new languages and
the coverage criteria by adding in a user code. Users can
implement the AST-generation and code-generation com-
ponents, and the part of the AST-operation component for
adding new languages. When they appropriately implement
them, they can measure four default coverage criteria: state-
ment coverage, decision coverage, condition coverage, and
condition/decision coverage for the new languages. Users
can also implement the part of the AST-operation compo-
nent for adding new coverage criteria. When they appropri-
ately implement them, they can measure the new coverage
criteria for default languages such as C, Java, and Python.
We also confirmed that the source code and AST are mutu-
ally converted in several languages: Ruby, JavaScript, and
Lua by using OCCF in the same way that it implements de-
fault languages. In this way, OCCF consistently supports
multiple languages in order to solve P1 and P3.

OCCF provides two methods for limiting the measure-
ment range and elements: the filter condition described by
XPath and the adding of new coverage criteria. OCCF sup-
ports the filter condition in which the parent/child/sibling
nodes include/exclude the elements that are described by
the XPath. OCCF also supports the addition of new cov-
erage criteria to freely change the measurement range and
elements. In this way, OCCF flexibly measures the cover-
age in order to solve P4.

Since OCCF inserts the measurement code before the
dead code is removed by the compiler optimization, it rec-
ognizes all the measurement elements in the source code. In
this way, OCCF completely measures the coverage in order
to solve P5.

5. Implementation of OCCF

We implemented OCCF in .NET Framework 4.0. OCCF
enabled language-specific processing to be implemented by
adding a user code, such as the assembly files that ran
in .NET Framework 4.0 or older or the script files in the
languages supported by the Dynamic Language Runtime
(DLR) [14]. The DLR is a .NET library that provides
language services for several different dynamic languages.

Moreover, OCCF uses the Managed Extensibility Frame-
work (MEF) [15]. The MEF is a .NET library that automat-
ically creates an instance of the class that implements a spe-
cific interface and it is annotated with an attribute provided
by the MEF. Consequently, OCCF eliminates the need for a
user code that explicitly loads the assembly files and script
files and helps to add in the user code.

We will show the implementation of OCCF by dividing
the hot spots from the cold spots and also show the imple-
mentation of a sample tool.

5.1 Code-Insertion Subsystem

The code-insertion subsystem consists of the following
components: the AST-generation, AST-refinement, AST-
operation, and code-generation components.

5.1.1 AST-Generation Component

converts the obtained source code into an AST as an XML
document. This component has to parse the source code,
and the parser can be implemented by using the existing
software, such as the compilers and parser libraries. This
component may generate what kind of syntax tree if the fol-
lowing components operate correctly, and OCCF does not
limit the schema of the syntax tree.
Cold spots: OCCF provides an AstGenerator class that is
designed using the Template Method pattern [16].

The Template Method pattern reorganizes the process-
ing steps between the coarse-grained process flow and fine-
grained concrete processing steps. The former is placed in
the superclass method and the latter is placed in the subclass
methods. The latter is triggered by the former by calling
on the superclass abstract methods that are actually imple-
mented in the subclasses.

A class diagram of a UML [17] that is related to this
component is shown in Fig. 7. The AstGenerator and
AntlrAstGenerator are an abstract class that is provided
by OCCF and designed using the Template Method pattern.

The AstGenerator calls the parser with a specified
command, inputs the result using a standard input/output
and outputs the AST as an XML document to help the
users to use the parser of the external program. The

Fig. 7 Class diagram of AST-generation component in OCCF.
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Fig. 8 PythonAstGenerator.cs.

AntlrAstGenerator calls the parser, which is generated
by ANTLR [18], and outputs the AST as an XML document
to help the users to use the ANTLR. Therefore, the users only
have to implement the parser and the caller of the parser by
using the existing software.
Hot spots: Users can implement this component by
using the existing software and the inheritance of the
AstGenerator class by giving the command to call the
parser.

The sample tool uses the ANTLR for a Java and C parser,
and the parser module in the Python standard library for a
Python parser. A sample of the user code of this component
for Python is outlined in Fig. 8.

5.1.2 AST-Refinement Component

changes structure of AST in order to more easily operate it.
For instance, this component converts single-line ‘if’ state-
ments into multi-line ‘if’ statements. Users have to imple-
ment this component for languages that have such grammar
structures by using the AST-operation component.
Cold spots: OCCF provides the BlockInserter class that
creates a new block. The users only have to pass the block
symbols to it.
Hot spots: Users have to implement this component for lan-
guages such as C and Java because the measurement code
is not easily inserted into some of the statements, such as
single-line ‘if’ statements. However, this component is not
required for Python because the statement can be inserted
before any statement. Users can easily implement this com-
ponent for C and Java because all ‘if’ statements can be
added to a new block without changing the semantics. The
sample user code of this component for C is provided in
Fig. 9.

5.1.3 AST-Operation Component

This component has roughly four functions: the selector,
generator, inserter, and tagger. The selector finds the corre-
sponding node on the AST for each language to locate the
position in which the measurement code has been inserted.
The generator generates the subtrees corresponding to the
measurement code. The inserters insert the subtrees of the
measurement code into the source code on the AST. The
tagger provides the place information of the measurement
element in the source code as a tag.
Cold spots: A class diagram of the selector is shown in

Fig. 9 CLackingBlockSelector.cs.

Fig. 10 Class diagram of selector in OCCF.

Fig. 11 ConditionalTermSelector.cs.

Fig. 10. OCCF provides the ISelector interface to show
the function necessary for the selector. OCCF provides
some classes to help users to implement the ISelector in-
terface. The ConditionalTermSelector class is outlined
in Fig. 11 is designed by using the Template Method pattern.
OCCF lets users extend it in order to implement the selector
for locating the position of all the atomic logical terms in
the conditional expressions. The SelectorUnion class in-
tegrates some of the selection results. The SelectorPipe
class selects the subtrees from other selection results. These
two classes are designed as Macro Commands by using the
Command pattern [16].

The Command pattern is a design pattern that encapsu-
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Fig. 12 PythonConditionalTermSelector.cs.

lates a request and the parameters in an object. A command
object that is combined with certain other command objects
is called a Macro Command.

In addition, OCCF provides a FilteredSelector
class, which limits the measurement range and element by
using the filter condition described by XPath.

OCCF provides an INodeGenerator interface to show
the function necessary for the generator.

OCCF completely provides the CoverageInserter
class as a common code for the inserter. Users pass
the instance that implements the ISelector and the
INodeGenerator to the Insert method of these classes to
Insert the measurement code. OCCF provides this class
to support the default coverage criteria as guidelines for im-
plementing the coverage criteria.

OCCF provides an ITagger interface to show the func-
tion necessary for the tagger.
Hot spots: Users have to implement the ISelector inter-
face for the selector to select the statements, the conditional
expressions in control-flow statements such as ‘if’, ‘for’,
‘while’ statements and ternary expressions, and the atomic
logical term in the conditional expressions in the control-
flow statements. Users can implement the selector by using
the reusable classes that are provided.

For example, the selector for the condition coverage
selects the atomic logical term elements in the conditional
expressions of the control-flow statements, such as the
and test and not test nonterminal symbols, that have
more than three brothers and is not a descendant of the
trailer in the Python grammar. There is a sample user
code of the selector for the atomic logical term elements of
Python is outlined in Fig. 12.

Users have to implement both the callee and caller
of the measurement code for the generator. The callee in
C/C++ is provided by OCCF so that the users can use SWIG
to implement it. Users only have to learn to use SWIG or
manually port the C/C++ code to the code of the target lan-
guage. The caller is the code that calls the callee and the
users simply implement the processing that describes the
caller code as a token element in the AST. Users have to
implement the INodeGenerator interface as the caller of
the measurement code.

Users can implement all the AST-generation, Code-
generation, and AST-operation component except for the
inserter to add new languages. Users can also implement

Fig. 13 Class diagram of code-generator component in OCCF.

the inserter that uses the existing selectors for languages
to add new coverage criteria. At present, OCCF provides
only the necessary selector for the default coverage criteria.
For example, when users modify an inserter to measure the
modified condition/decision coverage (MCDC), they have
to implement the selectors that locate the terms of the log-
ical disjunction and logical production separately for each
language. OCCF simplifies the many-to-many relationships
between the languages and the coverage criteria because the
inserter does not depend on the other components.

Users can implement the tagger to narrow down the
measurement results by using the tag. For example, the user
code gets the class and method names of the measurement
elements by scanning the parent nodes of the measurement
elements in the AST. Users can narrow down the measure-
ment results for the GUI when implementing the tagger al-
though the users may not implement the tagger.

5.1.4 Code-Generation Component

converts the obtained AST into a source code. When the
AST has memorized almost all the tokens for the corre-
sponding text in the source code, this component can be
simply implemented by adding the user code that outputs
the tokens as they are without exceptions. This means that
the AST-generation component has to add sufficient text in-
formation from the source code into the AST to restore the
source code with the code-generation component.
Cold spots: A class diagram of the code-generator compo-
nent is shown in Fig. 13. OCCF provides a CodeGenerator
class that is designed by using the Template Method pattern
and scans the AST and outputs the memorized tokens.
Hot spots: Users can easily implement this component by
using the CodeGenerator class provided by OCCF when
the AST has memorized almost all the tokens for the corre-
sponding text in the source code. Thus, users should design
the AST-generation component to take the AST memoriza-
tion into account. For example, all the tokens except for the
linefeed and indent are memorized in the AST for Python.
Consequently, users only have to implement the processing
that outputs the linefeed and indent to the corresponding ter-
minal nodes for Python. A sample user code of this compo-
nent for Python is outlined in Fig. 14.
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5.2 Code-Execution Subsystem

The code-execution subsystem executes the program in
which the measurement code has been inserted. By execut-
ing the program, this subsystem sends the coverage infor-
mation to the coverage-display subsystem. OCCF supports
communications using TCP/IP, the shared memory, and the
file output as the sending mechanisms. Although OCCF
does not provide this subsystem, users can use any runtime
system for the corresponding language. Therefore, they do
not need to implement this subsystem.

5.3 Coverage-Display Subsystem

The coverage-display subsystem presents the measurement
results by analyzing the information received from the code
execution subsystem.

The information contains the position and tags. The
position expresses the line and column number of the mea-
surement element in the original source code. The tag is a
character string that expresses the layered structure. OCCF
filters the results of the coverage with the package hierarchy,
the class hierarchy, and other hierarchies with the tags.

There is a sample window of the coverage-display sub-
system shown in Fig. 15. The upper progress bar indi-
cates the coverage ratio. The central text box indicates
whether the measurement element was executed during soft-
ware testing and also shows the position.

A sample can output the results as a csv and an XML
file. Therefore, users can customize this subsystem to
change the display for all the supported languages and can

Fig. 14 PythonCodeGenerator.cs.

Fig. 15 GUI Reporter in coverage-display subsystem.

process the output files using other tools. OCCF provides
this entire subsystem as a common code.

6. Evaluation

We evaluated OCCF by comparing implemented samples
that were developed by using OCCF with standard tools that
are used as described in Sect. 3. There are two main types of
standard tools, those that extend the programming-language
processors and those that insert a measurement code into the
intermediate language code. Table 1 provides a comparison
between OCCF and the other tools.
Experiment 1: We obtained measurement results for state-
ment coverage and condition coverage using OCCF and the
state-of-the-art tools to confirm that OCCF measures cover-
age as accurately as the state-of-the-art tools. We targeted
three Java programs presented in a book [20] that use typ-
ical programming constructors and algorithms. We trans-
lated these Java programs into C and Python.

Table 2 lists the measurement results for each program.
The columns with the headings “statement” and “condition”
indicate the measurement results for statement coverage and
condition coverage, respectively. The measurement results
are described as “XX%(YY/ZZ)”. XX, YY, and ZZ indi-
cate measurement results as a percentage, and numbers of
executed measurement elements and total executable mea-
surement elements, respectively. We adopted gcov as the
state-of-the-art tool for C, Cobertura as the state-of-the-art
tool for Java and SCP as the state-of-the-art tool for Python
because these are well accepted. “-” in Table 2 indicates the
tools can not measure condition coverage.

The measurement results cannot be directly compared.
There are three differences between OCCF and the state-of-

Table 1 Summary of comparison.

OCCF Cobertura EMMA SCP gcov NCover

N. coverage criteria 4 2 1 1 3 3
Adding language yes no no no yes no
Adding criteria yes no no no no no

Multiple languages yes no no no yes yes
Flexibility yes yes no no no no

Completeness yes no no yes no yes
Non-commercial yes yes yes yes yes no

Table 2 Comparison of measurement results.

statement statement of condition condition of
of OCCF tools of OCCF tools

BTree (C) 57%(92/162) 55%(80/145) 55%(45/82) 55%(45/82)
LZ (C) 95%(161/169) 97%(114/117) 92%(79/86) 92%(79/86)

BoyerMoore (C) 57%(20/35) 67%(20/30) 47%(14/30) 47%(14/30)
All (C) 81%(29/36) 81%(29/36) 70%(14/20) 70%(14/20)

BTree (Java) 63%(102/162) 62%(78/124) 54%(45/84) 52%(45/86)
LZ (Java) 97%(181/186) 100%(113/113) 92%(79/86) 92%(79/86)

BoyerMoore (Java) 64%(29/45) 66%(24/36) 53%(15/28) 53%(15/28)
All (Java) 86%(38/44) 86%(38/44) 69%(18/26) 69%(18/26)

BTree (Python) 66%(114/173) 65%(99/152) 46%(25/54) -
LZ (Python) 99%(140/141) 100%(130/130) 93%(39/42) -

BoyerMoore (Python) 78%(42/54) 78%(35/45) 41%(9/22) -
All (Python) 81%(29/36) 81%(29/36) 50%(4/8) -
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the-art tools.
First, OCCF measures statement coverage with respect

to each logical statement, whereas the state-of-the-art tools
measure statement coverage with respect to each line. How-
ever, we think that the statement coverage where the number
of lines does not influence is more accurate than the state-
ment coverage where the number of lines influences.

Second, OCCF does not count conditional expressions
without control-flow statements as conditional branching,
whereas Cobertura does count all conditional expressions
such as “cond = a > 1”. However, we think that the
condition coverage which does not count these conditional
expressions is more accurate than the condition coverage
which does count these conditional expressions because
conditional expressions without control-flow statements are
not conditional branching in a narrow sense.

Last, OCCF does not count abbreviated default con-
structors as a statement, whereas Cobertura does count
abbreviated default constructors. There are two ideas. We
can think that abbreviated default constructors are not state-
ments because abbreviated default constructors do not ap-
pear in source code. We can also think that abbreviated
default constructors are statements because abbreviated de-
fault constructors are executed by programming-language
processors. Moreover, OCCF, gcov and Cobertura can
measure condition coverage, whereas SCP cannot measure
condition coverage.

However, OCCF can obtain the same measurement re-
sults by adding a user code that measures statement cover-
age with respect to each line, a user code that does count all
conditional expressions, and a user code that supplements
default constructors and inserts the measurement code. We
actually obtained the same measurement results.

Measurement tools have to do count the following
measurement elements for C to measure statement cover-
age accurately: expression, goto, continue, break, return,
if, switch, while, do-while and for statements. They also
have to do count the following measurement elements for
Java: expression, continue, break, return, assert, throw, if,
switch, while, do-while, for, enhanced for, try and synchro-
nized statements. They also have to do count the following
measurement elements for Python: expression, assignment,
assert, pass, del, print, yield, with, function-definition and
class-definition statements. Moreover, OCCF and the state-
of-the-art tools do count variable initializers as statements
because variable initializers can contain instruments as ex-
pressions.

Measurement tools have to do count the following mea-
surement elements for C to measure condition coverage ac-
curately: conditional terms that are separated logical oper-
ators in if, while, do-while, for statements and ternary ex-
pressions; and case clauses in switch statements. They also
have to do count additionally the following measurement
elements for Java and Python: enhanced for statements.
Moreover, Python does not have switch, for and do-while
statements.

The rows with the headings “All” indicate the mea-

Fig. 16 LOCs for five different tools.

surement results of source code that contains all the above-
mentioned measurement elements and that is written by us.
OCCF and the state-of-the-art tools obtained the same mea-
surement results.

Therefore, we confirmed that OCCF measures cover-
age accurately.

6.1 Reduced Cost of New Developments

We evaluated the cost of new developments by comparing
the LOCs of the program that inserted the measurement
code, by measuring the time to implement two coverage cri-
teria and by counting the number of supported coverage cri-
teria.
Experiment 2: We obtained the LOCs of the program that
inserted the measurement code to evaluate the cost of new
developments. The results of the comparison of the LOCs
are given in Fig. 16 To implement the sample for Java, 1056
LOCs were required for Cobertura, 2031 LOCs were re-
quired for EMMA, and 125 LOCs were required for OCCF.
Cobertura uses BCEL [19] to insert the measurement code
into the Java bytecode. BCEL is a library that provides users
with the convenient feature to analyze, create, and manip-
ulate the Java bytecode. EMMA does not use such a library.
However, the samples were implemented without using a li-
brary with the exception of our simple helper methods and
the .NET standard library. To implement the sample for
Python, 131 LOCs were required for SCP and 93 LOCs were
required for OCCF. SCP uses only the Python standard li-
brary. In addition, 221 LOCs were required for the language
independent and reusable parts in the framework. It was dif-
ficult to obtain the LOCs of the extension tools; however,
the cost of development was clearly high. In addition, we
did not find any insertion tools for the source code level. By
using simple insertion in the source code level, OCCF can
support new languages at a lower cost than that required to
develop new tools.
Experiment 3: We carried out an experiment on the imple-
mentation of statement coverage and decision coverage for
C because C is a major and practical language. We evaluated
the cost of developing two coverage criteria.

We tested five master’s degree students studying com-
puter science, who are able to read and write C and Java
code. We explained our framework to them in 50 min and
then provided them with the AST-generation and the AST-
refinement components for C, which we implemented for
them in 40 min. Table 3 lists the number of people who
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Table 3 Number of people who implemented a coverage tool success-
fully and average time required to implement.

N. people average time
Statement coverage for C with OCCF 5 24.8 min
Decision coverage for C with OCCF 5 53.4 min
Statement coverage for C with GCC 0 -
Decision coverage for C with GCC 0 -

New decision coverage for Java with OCCF 5 34.2 min
New decision coverage for Java with Cobertura 0 -

New coverage for Python 2 with OCCF 4 13.5 min
Change in upgrade to Python 3 with OCCF 4 47.5 min

New coverage for Python 2 with SCP 0 (Nobody) -
Change in upgrade to Python 3 with SCP 0 (Nobody) -

implemented the coverage tools for C within 300 min. The
average time required to implement the statement coverage
tool for C using OCCF was 24.8 min, and the time required
to implement the decision coverage tool for C using OCCF
was 53.4 min. The examinees attempted to extend GCC to
measure the two coverage criteria. However, nobody com-
pleted this task within 300 min. “-” in Table 3 indicates
these task were not completed and they required more than
300 min.

Existing compiler frameworks such as GCC provide fea-
tures to add support for new languages. However, there are
differences between these compiler frameworks and OCCF
regarding cold spots and hot spots. The compiler frame-
works provide fewer cold spots to measure coverage than
OCCF because they do not specialize in the development
of coverage tools and they require developers to consider
how to measure coverage. For example, OCCF provides
cold spots to insert measurement code into the location se-
lected by the selector. Thus GCC requires more hot spots than
OCCF. For example, GCC requires both a semantic analyzer
and a syntax analyzer to add a new language. OCCF, on the
other hand, requires a syntax analyzer and only the part of a
semantic analyzer related to measurement elements. More-
over, OCCF can reuse an existing parser such as the fron-
tends of GCC as AST-generation component. Experiment 3
indicated that a developer can develop a coverage tool using
the OCCF more easily than using GCC.

The implementation of samples using OCCF supports
the measurement of the statement coverage, decision cov-
erage, condition coverage, and condition/decision coverage.
However, the number of coverage criteria that the other tools
support was less than that of OCCF according to Table 1;
thus, the same functionality was implemented with fewer
LOCs.

Therefore, we succeeded in alleviating the problem
(P1) of the high cost of new developments for a given lan-
guage.

6.2 Reduced Maintenance Cost

We evaluated the maintenance cost by measuring the times
required to extend existing decision coverage for Java, to
implement special coverage for Python version 2, and to up-
date special coverage from Python version 2 to Python ver-

sion 3, and by assessing the changes to the language speci-
fications.
Experiment 4: We carried out an experiment on the imple-
mentation of a new coverage criterion for Java that was a
special decision coverage that takes try statements for ex-
ception handlers in Java as conditional branching. This spe-
cial decision coverage is required to judge a catch block that
has no statement was executed. However, the existing tools
cannot measure decision coverage in consideration of try
statements. We evaluated the cost of maintenance required
to extend the existing decision coverage.

We tested five master’s degree students as those in ex-
periment 3. We provided the source code of the sample tool
that supports decision coverage and then explained the ex-
isting decision coverage to them in 15 min. Table 3 lists the
number of people who extended the tool for Java to support
the special decision coverage within 180 min. The average
time required to extend the tool for Java using OCCF was
34.2 min. The examinees attempted to modify Cobertura
to measure the special decision coverage. However, nobody
completed this task within 180 min.
Experiment 5: We carried out an experiment on the imple-
mentation of a new coverage criterion for Python that was
a special statement coverage limited to print statements.
Moreover, we investigated the maintenance required for an
upgrade from Python version 2 to Python version 3 because
Python version 3 does not have backward compatibility to
version 2. We evaluated the cost of developing a new cov-
erage criterion and the cost of the maintenance required to
change the language specifications.

We tested four first year master’s degree students study-
ing computer science, who were not the examinees in exper-
iment 4. We explained our framework to them in 30 min and
then provided them with the AST-generation component for
Python 3, which we implemented for them in 25 min. Ta-
ble 3 lists the number of people who implemented a tool for
Python 2 and responded to the upgrade to Python version 3
within a total of 240 min. The average time required to im-
plement a tool for Python 2 using the OCCF was 13.5 min,
and the time to respond to the upgrade to Python 3 using the
OCCF was 47.5 min. The examinees attempted to modify
SCP to measure the print statement coverage. However,
nobody completed this task within 240 min.

The reason why we gained the above results in exper-
iments 4 and 5 is that the numerous tools that exist are not
highly modularized, making it difficult to find the part of
the code that has to be modified in order to extend the tool.
OCCF, on the other hand, is highly modularized and the ex-
aminees could easily extend and update tools, i.e., they only
implemented and modified the ISelector interface in ex-
periments 4 and 5.

For the standard tools, both the syntax analyzer and
the semantics analyzer have to be maintained. However,
only the code insertion subsystem has to be maintained in
tools using OCCF. The AST-generation component can be
updated by using existing software. The code-generation
component does not need to be changed because the tokens
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there are not memorized in the AST are not often changed.
The inserter of the AST-operation component also does not
need to be changed because the inserter does not depend on
specific languages. Moreover, the selector, generator, and
tagger of the AST-operation component do not need to be
changed as long as the syntax corresponding to the seman-
tics that are focused on does not change. As OCCF only
focuses on the syntax, only limited maintenance is required.

For example, when Java is upgraded from 1.4 to 5.0,
OCCF would only be required to locate the enhanced for
statement. Cobertura and EMMA, on the other hand, would
also be required to respond to the generic types. Moreover,
experiments 4 and 5 indicate that it is easier to modify tools
using OCCF than with Cobertura and SCP.

Therefore, we succeeded in alleviating the problem
(P2) of the high cost of maintenance for a given language
and AST that the four components can easily operate.

6.3 Consistency in Measurement

We evaluated the consistency of measurement by assessing
the developments with multiple languages.

We measured the coverage for the software that was
developed in Java and Python as an example. When the
software was tested using integration testing, the coverage
was measured by using Cobertura and SCP. Cobertura
could measure the statement coverage and decision cover-
age, but SCP could only measure the statement coverage.
In this case, coverage with a different criterion or the same
statement coverage was measured. Therefore, there is a pos-
sibility that only coverage that is ineffective can be obtained
as an indicator of the software testing.

However, OCCF could measure the coverage with the
same criterion, such as the decision coverage, for all lan-
guages. Thus, the effective coverage as an indicator of the
software testing could be obtained.
Gcov and NCover can also measure the coverage for

many languages. However, gcov only runs under GCC, e.g.,
it does not run under Visual C++ [10]. It is difficult to add
new languages because gcov requires users to implement
compilers in GCC. NCover only supports languages that run
under the .NET Framework.

OCCF can measure the coverage in any environment
where the inserted code is running because it does not de-
pend on a specified language processor. Moreover, OCCF
lets users add new coverage criteria and languages more eas-
ily than gcov and NCover because it is not just a tool but a
framework.

Therefore, we solved the problem (P3) with the incon-
sistency in measurement.

6.4 Flexibility in Measurement

We evaluated the flexibility of measurement by assessing the
change in the measurement range.

The existing tools do not flexibly change the measure-
ment range or elements. EMMA and NCover could change the

measurement range according to only the hierarchy of the
package, the class, and the method. EMMA could also change
the size of the measurement elements such as the lines,
blocks, methods, and classes. Cobertura could change the
measurement elements by using regular expressions.

OCCF, on the other hand, could freely change the mea-
surement range and elements based on the conditions set by
XPath and the customized coverage criteria. For example,
OCCF could limit the measurement range to the methods
that contained ‘while’ statements based on the conditions
set by XPath. Moreover, OCCF could limit the measure-
ment elements to the statements that called on a specific
method set by the customized coverage criteria in order to
measure the special statement coverage that were limited to
only the statements that called a specific method. This cov-
erage could be used in library testing. Moreover, we con-
firmed that developers can add new coverage criteria in the
experiment 4 and 5.

Therefore, we solved the problem (P4) of inflexibility
in measurement.

6.5 Completeness in Measurement

We evaluated the degree of completeness in measurement
by assessing the measurement of dead code.
Cobertura inserts the measurement code into a Java

bytecode. However, it does not measure the coverage of
dead code because the compiler optimization facility re-
moves the dead code from the bytecode.

However, OCCF inserts the measurement code into the
source code before the compiler optimization facility re-
moves the dead code. Therefore, OCCF can be detected at
a part where the dead code has not been tested because the
information that was inserted there remains. For instance,
OCCF had 50% statement coverage as shown in Fig. 2 in
Sect. 3.

Note that exception handlers are not dead code because
they are not always executed. Both the existing tools and
OCCF measure coverage for exception handlers. However,
sometimes developers want to ignore exception handlers so
that they obtain 100% coverage as already mentioned in
Sect. 3.3 by executing only all statements except for excep-
tion handlers. OCCF can exclude exception handlers from
the measurement elements by adding an exclusion condition
described by XPath to user code.

Therefore, we have solved the problem (P5) of incom-
pleteness in measurement.

6.6 Time Efficiency

We evaluated the time efficiency by using the time to execute
three Java programs presented in a book [20]. This evalua-
tion provided good results compared with the existing tools
although we are not referring to the problem corresponding
to this evaluation.
Experiment 6: We measured the time to execute three Java
programs presented in a book. Measuring the coverage de-
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Table 4 Execution time on the millisecond time scale during software
testing.

original code Cobertura OCCF (TCP/IP) OCCF (file)

Huffman 60 2473 317 17691
Hash 17 283 28 8910

QuickSort 1 194 14 5350

creased the time efficiency for the test because it inserted
measurement code into the source code. The execution time
when using OCCF was suppressed from 2 to about 10 times
the execution time by using a TCP/IP communication com-
pared with the former source code, as shown in Table 4.
OCCF is about 10 times faster than Cobertura.

However, it is more than 1000 times slower than the
original source code when used with the file output, and
it is 10 to 30 times slower than Cobertura. The TCP/IP
communication is overwhelmingly faster than a simple file
output.

Therefore, we confirmed that there were no problems
with the decrease in execution efficiency of the test when
using OCCF with a TCP/IP communication.

7. Related Work

Kiri et al. [21] and Rajan et al. [22] among others had sim-
ilar ideas and we will now refer to their study results, and
our approach bares a resemblance to the following existing
techniques.

Kiri et al. proposed the idea of developing a tool that in-
serts measurement code into a source code. Their idea was
to measure the statement coverage, decision coverage, and
a special coverage called RC0. RC0 is a special statement
coverage for only revised statements. However, their idea
was to measure only the statement coverage and decision
coverage because they measured the coverage by simply in-
serting a simple statement. Moreover, even though their idea
could be used to measure the coverage of four languages, in-
cluding Java, C/C++, Visual Basic, and ABAP/4, it did not
support any other languages. Conversely, OCCF does not
measure RC0. However, it can easily support new cover-
ages like RC0 by adding a user code.

Rajan et al. proposed the idea of specifying the mea-
suring elements using a description style of pointcut that
is used in Aspect-oriented programming languages. They
demonstrated a tool that supported C#. Measuring the el-
ements, such as the method calls, ‘if’ statements, excep-
tion handlers, and variable writes could be specified. How-
ever, the description style that specified the measurement
elements was specialized for only C#. Therefore, the de-
scription style could not be used for other languages that
had different paradigms to C#. However, OCCF can mea-
sure this coverage with a modified description style that is
language independent by easily adding user code.

8. Conclusion and Future Work

We proposed OCCF, reduced development and maintenance

costs, made flexible measurement, and made complete mea-
surements by extracting the commonalities from multiple
languages using an AST.

We plan to improve OCCF to support non procedure-
oriented languages, such as impure functional programming
languages. Moreover, we intend to semi-automatically gen-
erate all the components by using a wizard and the required
user input through the GUI to further reduce the develop-
mental costs. We believe OCCF can contribute to the de-
velopment of the implementation of a processing system
that transforms source code such as a refactoring tool into
language-independent models.
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