
Supporting Commonality and Variability Analysis of
Requirements and Structural Models

Kentaro Kumaki
Ryosuke Tsuchiya

Dept. Computer Science
Waseda University

Tokyo, Japan
ken-kumaki@fuka.
info.waseda.ac.jp

ryousuke t@asagi.waseda.jp

Hironori Washizaki
Dept. Computer Science,

Waseda University
GRACE Center, National

Insitute of Informatics
Tokyo, Japan

washizaki@waseda.jp

Yoshiaki Fukazawa
Dept. Computer Science

Waseda University
Tokyo, Japan

fukazawa@waseda.jp

ABSTRACT
The commonality and variability analysis of legacy software
assets requires high costs in terms of personnel and time in
extractive core asset development. We propose a technique
for supporting the commonality and variability analysis, tar-
geting the requirements and structural models of legacy soft-
ware assets for the development of a feature diagram and a
product line architecture (PLA). We analyze the common-
ality and variability of the sentences as requirements and
classes as structural models by calculating similarities based
on a vector space model. By using our technique, the costs
in terms of personnel and time required for the analysis of
legacy software assets can be reduced.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Reuse models

General Terms
Design, Documentation

Keywords
Feature Diagram, Product Line Architecture, Traceability

1. INTRODUCTION
There are three approaches to developing core assets in

software product line development: proactive, reactive, and
extractive[1]. In the proactive approach, core assets are de-
veloped prior to software development. In the reactive ap-
proach, common and variable components are repeatedly
developed during software development. In the extractive
approach, existing legacy software assets are analyzed and
organized to extract core assets.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SPLC - Vol. II, September 02 - 07 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1095-6/12/09 ...$15.00.

In the information industry marked by rapid changes in
technology, market, and environment, the risk associated
with the development of core assets by the proactive ap-
proach is high because the prediction of software assets that
will be necessary for future development is difficult. There-
fore, rather than the proactive approach, it is more reason-
able to develop products in specific domains to a certain
degree, then extract them as core assets once their quality
is confirmed[2]. Therefore, the development of core assets
by the extractive approach is considered to be effective.

In the extractive core asset development, we need to an-
alyze the commonality and variability of requirements and
structural models to extract the commonality and variability
characteristic of a product line, and to develop a product-
line architecture (PLA). However the work associated with
the manual commonality and variability analysis of the re-
quirements of many legacy software assets is complicated
and has high cost.

Moreover, to reuse the PLA as core assets effectively, it
is necessary to determine traceability links between features
and structures. However, it is usually difficult to determine
traceability links because structural models are developed to
realize various functional and non-functional requirements.

2. SUPPORTING FEATURE DIAGRAM AND
PLA DEVELOPMENT

To address the above-mentioned problems, we propose a
technique for analyzing the commonality and variability of
requirements and structural models automatically to sup-
port developing a feature diagram and a PLA.

2.1 Overview
We use a set of sentences as requirements and a set of

classes represented in design-level UML class diagrams as
structural models1. Targeting these materials, we analyze
commonality and variability using a vector space model, and
traceability links between sentences and classes focusing on
requirements and structural models from which sentences
and classes are extracted.

By automating the analysis process, the costs in terms
of personnel and time required for the commonality and
variability analysis can be reduced. In addition, our tech-

1We do not consider the multiplicity, association name, role,
or package of class diagrams.

nique recommends traceability links between requirements
and structural models. On the basis of the results of the
commonality and variability analysis and the recommenda-
tion of traceability links, we aim to support the development
of a feature diagram and a PLA with clear traceability.
The target of our technique is a product line developed by

a single development group. The purpose of restricting the
domain range is to suppress the variety of inputs. Inputs are
multiple combinations between product requirements and
structural models. The output is the results of the com-
monality and variability analysis of sentences and classes,
as well as the recommended traceability links between sen-
tences and classes. We support developing a feature diagram
and a PLA by showing these outputs.
In our technique, it is assumed that the requirements and

class diagrams, which are the input, are the correspondence.
The overview of our technique is shown in Figure 1. The
automatic support by our technique entails step 1 to 3.

1. Analyze the commonality and variability of sentences
as requirements.

2. Analyze the commonality and variability of classes as
structural models.

3. Recommend traceability links between requirements
and structures.

4. SPL experts develop a feature diagram and a PLA.

Figure 1: Overview of our technique

2.2 Commonality and Variability Analysis of
Sentences

We deal with sets of sentences so that we can use the vec-
tor space model proposed by Salton et al [3] which can mea-
sure the similarity between sentences. By using the vector
space model, we measure the similarity between sentences to
extract similar sentences from all the combinations of prod-
uct requirements as the commonality and variability analysis
of sentences. With such a vector space model, a sentence is
represented by one vector depending on valid words appear-
ing in the sentence and that are nouns, verbs, and adjectives

in our technique. When valid words, i.e., v1, v2, · · · , vM ,
are extracted from a sentence Sx in the vector space model,

the M-dimensional vector
−→
dx is expressed as

−→
dx=(w(v1, Sx), w(v2, Sx), · · · , w(vM , Sx)).

Where w(vp, Sx) (1 ≤ p ≤ M) is the number of appear-
ances of vp in the Sx. Here, the similarity between the two
sentences Si and Sj is obtained as the cosine of the angle

between the two sentence vectors
−→
d i and

−→
d j(cosine similar-

ity), which can be obtained by dividing the inner products

of
−→
d i and

−→
d j by the magnitudes of

−→
d i and

−→
d j . We define

SSim(Si, Sj) (Sentence Similarity, 0 ≤ SSim ≤ 1) using the
cosine similarity as follows:

SSim(Si, Sj =

−→
d i

−→
d j

|
−→
d i||

−→
d j |

.

As an example of the cosine similarity calculation, let us
consider the following two sentences: ”Trace a line” and
”Trace a running line”. The sentence vectors of the two
sentences can be disassembled as in Table 1.

Table 1: Sentence vectors of two sentences
Sentence trace running line

Trace a line 0 1 1
Trace a running line 1 1 1

By using the sentence vectors in Table 1, the cosine simi-
larity is calculated as

SSim(”Trace a line”, ”Trace a running line”)

=
1 ∗ 0 + 1 ∗ 1 + 1 ∗ 1√

02 + 12 + 12
√
12 + 12 + 12

=.. 0.819

2.3 Commonality and Variability Analysis of
Classes

We measure the similarity between classes using the vec-
tor space model to extract similar classes from all the com-
binations of class diagrams as the commonality and vari-
ability analysis of classes. With the vector space model, a

class Cy is represented by one N-dimensional vector
−→
dy de-

pending on valid elements, i.e., ey1, ey2, · · · , eyN , which
are class names, operations, and attributes appearing in the
class. Here, we distinguish class names, operations, and at-
tributes even if the strings of elements are the same. For
example, operations are compared with operations and not
with class names nor attributes. We define the similarity
between two classes Ci and Cj as CSim(Ci, Cj) (Class Sim-
ilarity, 0 ≤ CSim ≤ 1) using the cosine similarity as follows:

CSim(Ci, Cj) =

−→
d i

−→
d j

|
−→
d i||

−→
d j |

.

−→
d i

−→
d j = max

∑
SSim(eis, ejt)

sim(eis, ejt) is the cosine similarity between eis and ejt.

When we calculate
−→
d i

−→
d j , all eis and ejt are used only once

and we do not calculate similarities between different types
of elements, like attribute and operation.

As an example of the class similarity calculation, let us
consider the two classes in Figure 2. First, class names,

attributes, and operations are assumed to be sentences for
calculating the cosine similarity and determining the combi-
nations of high similarity. The cosine similarity is calculated
using the sum of the above similarities as the inner product
and is used as the class similarity.

Figure 2: Example of measureing class similarity

CSim(Drive, Drive) =
1.0 + 0.5 + 1.0 + 1.0 + 1.0 + 1.0√

6
√
7

=.. 0.85

2.4 Recommendation of Traceability Links be-
tween Sentences and Classes

We focus on the combinations of requirements and that
of class diagrams from which sentences and classes are ex-
tracted to recommend traceability links between sentences
and classes. Figure 3 shows the core idea of determining
traceability links between sentences and classes. The venn
diagram on the left is classification of sentences based on
from which requirements sentences are extracted, and that
on the right is classification of classes based on from which
class diagrams classes are extracted.
A set of classes extracted from class diagrams in a set of

legacy software assets is considered to be designed to realize
a set of sentences extracted from requirements in the same
set of legacy software assets. Therefore, we assume that
there are correspondences between sentences and classes ex-
tracted from requirements and class diagrams in the same
set of legacy software assets.

Figure 3: Traceability links between sentences and
classes

For example, the two sentences ”Trace a running line”
and ”Efficient development” and the four classes ”Drive”,
”DriveMethod”, ”Line”, and ”RoadSurface”are both extracted
from requirements and class diagrams in a set of legacy soft-
ware assets, {x,y,z} in Figure 3. Therefore, we consider that
there are traceability links between these two sentences and
four classes.

3. CASE STUDY
We conducted experiments to evaluate the usefulness and

validity of our technique by using data obtained from a team
that participated in the experiment (participating team).

3.1 Setting
The target domain is the ET Software Design Robot Con-

test (ERC)[4]. In the ERC, participants compete in terms of
the running performance of robots designed to autonomously
run on a course by sensing the black line using optical sen-
sors. The legacy software assets of a group that participated
in the ERC for four consecutive years were used in the ex-
periment. Each asset is composed of 31–69 (46 on average)
sentences in requirements and 16–29 classes (21 on average)
in structural models. Some of those sentences and classes
are shown in Figure 3.

A participating team was a team who participated in the
ERC 2011 championship, consisted of six Master’s students
experienced in software development, and developed combi-
nations of a feature diagram and a PLA with the output of
our technique. The results of the experiment were evaluated
by comparing the followings.

• SOM: a set of a feature diagram and a PLA with def-
inite traceability links developed and reviewed by the
participating team using our technique.

• STA: a set of a feature diagram and a PLA developed
and reviewed by the participating team without using
our technique as the answer.

By this comparison, we evaluated the level of the reduc-
tion in the costs required for the commonality and variability
analysis of legacy software assets and the validity of the rec-
ommended traceability links between sentences and classes.
Figures 4, 5 show excerpts of a feature diagram and a PLA
of SOM. There are traceability links between features and
classes having the same shade and frame.

Efficient

Verification

Trace a Line

Drive

Parallel

Development

Easily adjustable

structure

Drive Dotted

Short Cut

Drive

Twin Loop

Efficient

Development

Posture

Control

Estimation

of Body

Drive through

Bottlenecks

Robot

Figure 4: Feature diagram of SOM

Drive

DriveMethodLineSurface

NormalDrive

DottedShort

CutDrive

TwinLoop

Drive

Posture

Control

Boby

Steering

CourseSection

Figure 5: PLA of SOM

3.2 Cost
Table 2 shows the numbers of features and classes of SOM

and STA as the indication of the scales of the feature di-
agram and the PLA, and the man-hours required for the
development of combinations between the feature diagram
and the PLA for SOM and STA. As shown in Table 2, the
numbers of features and classes are almost identical among
SOM and STA. We can say that SOM and STA have feature
diagram and PLA of similar scales. And, the man-hours of
SOM were less than half that of STA.
We observed that most of the efforts in the development

of SOM were spent for organizing the feature diagram and
adjusting the resulting PLA to be appropriate according to
the feature diagram, since the set of feature candidates with
commonality and variability and the PLA candidate were
automatically extracted by our technique. From this result,
our technique is expected to reduce the cost required for de-
veloping combinations of the feature diagram and the PLA.

Table 2: Scales and man-hours
Features Classes Man-hours

SOM 109 50 11.6
STA 100 48 24.6

3.3 Validity and usefulness of analysis
To confirm the validity of SOM, we calculated the percent-

age of correct features and classes in SOM that correspond
to features and classes in STA, and also calculated the graph
distance[5] between feature diagrams in SOM and STA and
between PLAs in SOM and STA. The graph distance can
measure the distance between two graph structures like fea-
ture diagrams or PLAs.
We obtained the percentage of correct features was 73.4%

and that of correct classes is 92.0%. The graph distance
between the feature diagrams in SOM and STA was 0.88,
and that between the PLAs was 0.1. From these results, our
commonality and variability analysis approach seems to be
effective for extracting classes and features, and organizing a
structure of classes as PLA in this experiment. However the
graph distance between the feature diagrams is quite high
so that it is necessary to introduce additional techniques for
supporting feature diagram modeling.
Moreover we observed that many of traceability links of

SOM were valid and useful for supporting future product-
line development since these links include not only functional
requirements but also non-functional ones.
For example the variable structure regarding the course

setting presented by ”Course” aggregating a set of ”Sec-
tion” in Figure 5 can be traced from the features ”Easily
adjustable structure” and ”Parallel Development” in Figure
4. Usually such non-functional requirements with those re-
alization parts are hard to specify due to the nature of non-
functional requirements cross-cutting over realization struc-
tures; our technique is useful to recommend such complex
traceability link.

4. RELATED WORK
There are several linguistic and heuristic-based approaches

for constructing feature models from mainly requirements
documents[6] together with some code base[7]. These con-
ventional approaches could be utilized for supporting feature

modeling after applying our technique to a set of different
project requirements documents in the same domain.

Moreover there are several linguistic and information retrieval-
based techniques for recovering traceability links between
requirements and other software materials, such as code[8].
Although the ideas of utilizing linguistic engineering for re-
covering traceability are close, our technique is different from
the viewpoint of context and target; our technique is benefi-
cial to support developing PLAs by analyzing commonality
and variability in a set of different project results.

Nomoto et al. proposed a technique for extracting analy-
sis patterns as common parts from the combination of class
diagrams and requirements documents[9]. In contrast, Our
technique deals with variability in addition to such common-
ality in structural models and requirements documents.

5. CONCLUSION
We propose a technique for supporting commonality and

variability analysis of requirements and structural models of
legacy software assets with the aim of supporting the devel-
opment of feature diagrams and PLAs. By the experimental
evaluation, we confirmed that our technique is useful to ob-
tain feature diagrams and PLAs that are similar to those
developed manually, with reduced cost. Our future work
includes experimental validity evaluations using large-scale
complex legacy software, and further studies to support fea-
ture modeling and the development of PLAs.

Acknowledgments
We would like to thank Tomoji Kishi of Waseda University,
and Hideyuki Kanuka, Kentaro Yoshimura, and Ryota Mibe
of Hitachi, Ltd. for interesting discussions on SPL.

6. REFERENCES
[1] C. Krueger. Eliminating the adoption barrier. Software,

IEEE, 19(4):29–31, 2002.

[2] K. Yoshimura, D. Ganesan, and D. Muthig. Assessing
merge potential of existing engine control systems into
a product line. International Workshop on Software
Engineering for Automotive Systems (SEAS’06), 2006.

[3] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.

[4] http://www.etrobo.jp/

[5] H. Bunke and K. Shearer. A graph distance metric
based on the maximal common subgraph. Pattern
Recogn. Lett., 19:255–259, March 1998.

[6] N. Weston, et al. A framework for constructing
semantically composable feature models from natural
language requirements. 13th International Software
Product Line Conference (SPLC’09), 2009.

[7] S. She, et al.: Reverse Engineering Feature Models.
33rd International Conference on Software Engineering
(ICSE’11), 2011.

[8] G. Antoniol, et al. Recovering Traceability Links
between Code and Documentation. IEEE Transactions
on Software Engineering, 28(10):970–983, 2002.

[9] Y. Nomoto, et al. Automatic extracting of analysis
pattern based on similarity of structure and word. 2nd
Asian Conference on Pattern Languages of Programs
(AsianPLoP 2011), (III):106–115, 2011.

