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Abstract. Development environments have changed drastically in re-
cent years. The development periods are shorter than ever and the num-
ber of team has increased. These changes have led to difficulties in con-
trolling the development activities and predicting the end of develop-
ments. In order to assess recent software developments, we propose a
generalized software reliability model based on a stochastic process, and
simulate developments that include uncertainties and dynamics, such
as unpredictable requirements changes, shortening of the development
period, and decrease in the number of members. We also compare our
simulation results to those of other software reliability models. Using the
values of uncertainties and dynamics obtained from our model, we can
evaluate the developments in a quantitative manner.
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1 Introduction

The logistic curve and Gompertz curve[l] are well-known software reliability
growth curves. However, these curves cannot account for the dynamics of soft-
ware development. Developments are affected by various elements of the devel-
opment environment, such as the skills of the development team and chang-
ing requirements. Examples of the types of software reliability models include
“ Times Between Failures Models” and “ Failure Count Models. ” [2] We use
the “Failure Count Model,” which is based on counting failures and using
probability methods. This type of models is represented by the Goel-Okumoto
NHPP Model and the Musa Execution Time Model. Most models of this type
cannot account for the dynamics of development, such as drastic changes in the
members of a development team or significant reductions of the development
time. However, our approach can handle these dynamic elements and simulate
developments more accurately.

Recent studies by Tamura[3], Yamada[4] and Zhang[5] have attempted to
describe the dynamics of developments using stochastic differential equations.
These studies only use linear stochastic differential equations, but our approach
uses non-linear stochastic differential equations, leading to more elaborate equa-
tions that can model situations more realistically. Our model can quantify un-
certainties that are influenced by random factors such as the skills of teams
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and development environments. The quantification of uncertainties is important
for predicting the end of developments more accurately and for optimizing the
development teams or environments.

2 Generalized Software Reliability Model
For our software reliability model, we extend a non-linear differential equation
that describes fault content as a logistic curve to an Ito type stochastic differen-
tial equation. We start with the following equation, which is called the logistic
differential equation.

dN (t)

dt

The N(t) is the number of detected faults at ¢, a defines the growth rate and
the b is the carrying capacity[1].

We extend equation (1) to a stochastic differential equation because actual
developments do not correctly obey equation (1) due to numerous uncertainties
and dynamic changes. We consider such dynamic elements to be time-dependent
and to contain uncertainty, and express them using a. The time-dependence of
a can be used to describe situations such as skill improvements of development
members and increases of growth rate. The uncertainty of a can describe param-
eters such as the variability of development members. We analyze the growth
of software with a focus on the test phase by simulating the number of tested
cases. We assume software development to have the following properties.

N(t)(a+ bN(t)) (1)

1. The total number of bugs is constant.

2. The number of bugs that can be found is variable depending on time.

3. The number of bugs that can be found contains uncertainty, which can be
simulated with Gaussian white noise.

Considering these properties, we extend equation (1) to an Ito type stochastic
differential equation with a(t) = a(t) + odw(t) as shown below.

AN (t) = (a(t) + 0%/2 + BN (t))N(t)dt + ~(t) 2)

N (t) is the number of tested cases at t, a(t) + 02 /2 + odw(t) is the differential of
the number of tested cases per unit time, v(t) = N(t)odw(t) is the uncertainty
term, o is the dispersion, [ is the carrying capacity term which is non-linear.
This equation has two significant terms, o and dw; « affects the end point of
development, and dw affects the growth curve through uncertainties, especially
dw(t) relates N (t), this means uncertainties depend on the number of tested
cases. We compare the v(t) = N(t)odw(t) with other two types, y(t) = odw(t),
not related with N(¢), and v(¢t) = 1/N(¢t)odw(t), related with inverse of N(¢).
We vary these two terms, «(t) and the coefficient of dw(t), and simulate models
using equation (2). We summarize the types of «(t) and of the coefficient of dw(t)
and the corresponding situations in Table 1. Using our model, it is necessary to
choose the types in Table 1 and calculate the parameters by using past data.

3 Simulation and Discussion
Three of the cases in Table 1 are modeled and plotted in Fig. 1. The difference

between these three models is the parameter «(¢). Based on Model 1, we defined
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Table 1. «(t) is the number of tested cases per unit time. dw(t) is the uncertainty

term.

~(t) = N(t)odw(t)

(t) = odw(?)

V() = 1/N(t)odw(t)

a1(t) = a1 (const.)

The number of tested
cases per unit time
is constant, and the
uncertainty increase
near to the end.
This model is similar
to a logistic curve.
(Model 1)

The number of tested
cases per unit time is
constant, and the un-
certainty is constant
at any given time.

The number of tested
cases per unit time
is constant, and the
uncertainty is greater
at the start of the
project than at the
end (e.g. the team
matures over time).

The number of tested
cases per unit time
changes at ti, and

The number of tested
cases per unit time

The number of tested
cases per unit time

the uncertainty in- h t ot d
az(t) = as(t < t1) Y changes at ti, and | an8es at ti, an

creases near to the . . |the uncertainty is
as(t) = as(t > t1) the uncertainty is

end (e.g. new mem- cant at . |greater at the start

bers join the project ;;_ons ant at any given| e ihe project than

at time ¢1). (Model|""™® at the end.

2)

Both the number

of tested cases per|The number of tested| The number of tested

unit time and the|cases per unit time|cases per unit time
as(t) o ¢ uncertainty increase|increases, and thelincreases, and the

near to the end (e.g.|uncertainty is con-|uncertainty is greater

increasing manpower
with time). (Model
3)

stant at any given
time.

at the start of project
than at the end.

that as = a1, az = 2a; and t1 = te./2 in Model 2, and a3(t) = ait in
Model 3. The situation corresponding to Model 2 is that at time ¢; the number
of members of the development team doubles. The situation corresponding to
Model 3 is that the members’ skills improve over time, effectively doubling
the manpower by the time ¢,,,,. The purpose of the simulations is to confirm
that our approach can assess software reliability under dynamic changes and
uncertainties in development, and that it can adapt to the three models above
and produce appropriate results. We use a Monte Carlo method to examine these
models.

In Model 1, the number of tested cases per unit time is constant, and the
uncertainty increases near to the end. As we predicted, the simulation result for
Model 1 fits the logistic curve. This result cannot be obtained simply by using
other stochastic models that do not include a non-linear term.

In Model 2, the number of tested cases per unit time changes at t1, and
the uncertainty increases near to the end. In agreement with our predictions,
the resulting curve sharply rises at ¢; and then converges quickly. Other models
cannot describe such a time-dependent curve involving a non-linear term.
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In Model 3, both the number of tested cases per unit time and the un-
certainty increase near to the end. We expected the resulting curve to show a
steeper increase than Model 1, but that was not the case. The reason for this is
that the non-linear term pulls the curve down because of the increasing growth
rate.
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Fig. 1. The ratio of the total number of tested cases at time ¢ to the total number of
tested cases for the entire project is plotted. The x-axis represents time in arbitrary
units, where 1 corresponds to tmaez and 0.5 tot;. In Model 1, the number of tested
cases per unit time is constant. In Model 2, the number of tested cases per unit time
changes at t1. In Model 3, the number of tested cases per unit time increases.

4 Conclusion and Feature work

Using our model, we were able to simulate developments containing uncertain-
ties and dynamic elements. We obtained the time-dependent logistic curve and
growth curve, which was not possible using other models. Our model can be used
to predict the end of projects where team members drastically change during
development.

For future work, we will propose ways to quantitatively evaluate teams or
team members taking uncertainties into account, and to optimize the teams to
suit particular projects using our model. By using the past data, we can calculate
the uncertainties of our model and predict the end of the project.
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