
Open Code Coverage Framework: A Consistent and Flexible Framework for
Measuring Test Coverage Supporting Multiple Programming Languages

Kazunori Sakamoto, Hironori Washizaki, Yoshiaki Fukazawa
Dept. Computer Science and Engineering

Waseda University
3-4-1 Okubo, Shinjuku-ku, Tokyo 1698555, Japan

kazuu@ruri.waseda.jp, washizaki@waseda.jp, fukazawa@waseda.jp

Abstract—Test coverage is an important indicator of whether
software has been tested sufficiently. However, existing mea-
surement tools for test coverage are associated with several
problems such as their cost of development and maintenance,
inconsistency and inflexibility in measurement. We propose
a framework for consistent and flexible measurement of test
coverage, called the Open Code Coverage Framework (OCCF),
that supports multiple programming languages. OCCF extracts
commonalities from multiple programming languages focusing
on only small syntax differences in programming languages
using an abstract syntax tree. OCCF provides guidelines to
support several test coverage criteria. Moreover, OCCF let
users expand features to add user-defined test coverage and
new programming language.

As a result, we reduced the lines of code required to
implement measurement tools for test coverage by about 90%
and the time to implement a special coverage criterion by
80% or more in an experiment that compared OCCF with
conventional tools developed individually without using the
framework.

Keywords-Software testing; Test coverage; Code coverage;
Metrics; Framework;

I. INTRODUCTION

Test coverage or code coverage (just coverage in the
following) is an important measure used in software testing.
It refers to the degree to which the source code of a program
has been tested and is an indicator of whether software
has been tested sufficiently. There are multiple criteria in
coverage, such as statement and decision coverage. For
instance, statement coverage is the number of statements that
have been executed at least once from all the statements.
Developers select a suitable criterion according to what
purpose their software testing is to be used for [1].

Test coverage measurement tools (just tools in the follow-
ing) are necessary to measure the coverage of various pro-
grams accurately, and tools have become widely available.
Many tools are offered for major programming languages
(just languages in the following) such as C or Java. However,
tools for legacy or minor languages such as COBOL or
Squirrel are not readily available are considerably expensive.
Moreover, it is more difficult to measure the coverage
of newly defined languages such as Go and of existing
languages with some changes to language specifications

because each existing tool is specific to a certain language
specification. Such a situation has driven the need to develop
some framework or tool that will correspond to a variety of
languages including new languages in the future.

Another driver has been various developments that have
been undertaken with multiple languages. For instance, in
the development of typical client-server based enterprise
systems, client and server applications are developed sep-
arately in different languages. This causes few problems
in unit testing, which tests each module in isolation, but
a number of problems arise in integration testing, which
tests the integration of a set of modules. Therefore, tools are
required that can consistently support multiple languages.

We propose a framework for consistent and flexible
measurement of coverage, called the Open Code Coverage
Framework (OCCF), that supports multiple languages 1.
OCCF extracts commonalities from among multiple lan-
guages, disregards variability, and lets users focus on only
small differences in syntax between languages using an
abstract syntax tree (AST) to help the development of tools
that can measure the coverage of new languages. Moreover,
OCCF provides guidelines to support several coverage crite-
ria and lets users add new coverage criteria and languages.

Using OCCF as a novel framework for developing tools,
we reduced the development and maintenance costs of tools
and developed sample tools that could consistently and
flexibly measure the various coverage criteria of several
languages. We implemented a sample tool for C, Java and
Python by using OCCF. This tool can measure four coverage
criteria. We especially reduced the lines of code (LOCs)
required for implementing tools by about 90% and the time
to implement a new coverage criterion by 80% or more in an
experiment comparing OCCF with conventional individual
tools that were non-framework based.

OCCF is now freely available via the Internet [2].

1This paper is an extended version of our preliminary short workshop
papers presented in [3] and [4], which mainly discuss part of the concept
of OCCF. In this paper, there are significant additions including details on
OCCF implementation and an important evaluation.

2010 10th International Conference on Quality Software

1550-6002/10 $26.00 © 2010 IEEE
DOI 10.1109/QSIC.2010.42

262

II. PROBLEMS WITH CONVENTIONAL APPROACHES

The existing tools can roughly be classified into two types:
extension tools that extend programming-language proces-
sors and insertion tools that insert measurement code into
intermediate language code. Examples of the extension tools
include Statement coverage for Python (SCP)
[5] supporting Python and gcov supporting the languages
that the GNU Compiler Collection (GCC) [6] supports.
SCP uses a trace module in the Python standard library.
The gcov is a subset of GCC that includes measurement
code in object files, so gcov belongs to insertion tools.
Examples of the insertion tools include Cobertura [7]
and EMMA [8] supporting Java, and NCover [9] supporting
.NET languages. The following summarizes the problems
with existing tools.

A. P1: Cost of new development

Tools are often unavailable for many new, legacy or minor
languages due to a lack of community or non-commercial
efforts. However, tools for these languages are necessary.

It is generally difficult to implement tools because they
have many functions such as syntax and semantics analyzers.
It is especially difficult to implement the flexible tools that
are mentioned after this that can change the measurement
range and elements. The extension tools have to have the
processor modified to be sufficiently flexible because they
are strongly dependent on the processor. Insertion tools have
to connect elements in the source code and in intermediate
language programs because they analyze the measurement
elements in both source code and intermediate language
code. Therefore, a mechanism that can help these new tools
to be developed is required.

B. P2: Cost of maintenance

Language specifications change according to paradigm
changes and expanded features. Large changes cause the va-
rieties of syntax to increase and cause semantics to change.
For instance, when Java was upgraded to 5.0 from 1.4,
new syntax and semantics, such as a foreach statement and
the generic type, were added to the language specifications.
Also, when Python was upgraded to 3 from 2, a print
statement changed to just a function call. The existing
tools have to be modified for both the processor or the
intermediate language and the parser to respond to such
changes. Therefore, a mechanism that can help to maintain
new tools is required.

C. P3: Inconsistent measurement

Developers measure the coverage of multiple languages
in software development using multiple languages such as
the software that is designed based on the client-server
model. However, when different tools are used together in
integration testing, the measurement results are inconsis-
tent due to the effect of the differences in measurement

criteria. According to our investigations, free tools that
support multiple languages do not exist, except for gcov
and NCover. We will discuss these points in Section V.
Therefore, consistent tools that support multiple languages
are required.

D. P4: Inflexibility in measurement

Coverage results of 100% can indicate software has been
sufficiently tested. However, coverage results of less than
100% can also indicate software has been sufficiently tested
since this is sufficient if the part deemed to be necessary
by the developers has been tested. In addition, the time
to run software testing has increased because software-
testing techniques such as test-driven development [10] have
become quite advanced and the number of test cases has
increased. From the perspective of time efficiency, it is better
to limit the measurement range and elements.

For instance, Sakata et al. [11] proposed an idea for only
measuring functions that are needed in measurements of
coverage for components. Therefore, flexible measurements
that can limit the measurement range and elements are
required to achieve 100% as a sufficient result.

Tools that can freely change the measurement range and
elements and that can measure user-defined coverage criteria
do not exist, according to our investigation. In addition,
many existing tools can only limit the measurement range
and only change the size of measurement elements such as
statements and blocks. Therefore, flexible tools that support
multiple languages are required.

E. P5: Incomplete measurement

Coverage is measured by using the information on ex-
ecuted elements obtained when software testing is carried
out. However, when coverage is measured for an executable
binary file, measurement elements that exist in the source
code are often ignored because of the difference in semantics
between the source code and executable binary file. The
optimization function of the compiler often removes dead
code such as a private method that is not called or an
if statement in which a conditional expression is always
evaluated as false.

There is an example of source code including dead code
in List 1. Cobertura has 100% statement coverage for
this source code, but the correct measurement result is
50% statement coverage. Therefore, tools that completely
measure coverage are required.

List 1. Sample code of deadCode in Java
1 public class DeadCode {
2 public static void main(String[] args) {
3 System.out.println("main");
4 if (false) System.out.println("deadcode");
5 }
6 }

263

III. FRAMEWORK FOR MEASURING COVERAGE

SUPPORTING MULTIPLE PROGRAMMING LANGUAGES

Figure 1. Overview of OCCF

We propose OCCF to support multiple languages and will
alleviate or solve the problems previously described.

The framework has reusable software architecture and
provides generic design as do some similar applications.
The application can be implemented by adding application-
specific code as user code to the framework [12].

There is an overview of OCCF and the processing flow
in Figure 1. OCCF consists of three subsystems: the code-
insertion, code-execution and coverage-display subsystems.
Moreover, the code-insertion subsystem consists of four
components: the AST-generation, AST-refinement, AST-
operation and code-generation components.

The process for measuring coverage involves five steps.

1) Generation of AST from source code
2) Insertion of code for measurement on AST
3) Generation of source code from AST
4) Execution of generated source code and collection of

measurement information
5) Display of measurement results from coverage

OCCF inserts the measurement code into the source code,
and coverage is measured by executing the program. When
OCCF inserts the measurement code, it collects information
such as location information on the measurement elements
in the source code. The measurement code does not have
any side effects except for the processing to collect the
coverage information. Thus, OCCF inserts the measurement
code without changing the semantics of the original source
code.

The source code before insertion is in List 2. The source
code after insertion is in List 3.

List 2. Before insertion
1 int main() {
2 int a = 0;
3 printf("test");
4 if (a == 0) { puts("a == 0"); }
5 else { puts("a != 0"); }
6 }

List 3. After insertion
1 int main() {
2 int a = 0;
3 statement_coverage(0); printf("test");
4 if (decision_coverage(0, a == 0)) {
5 stmt_coverage(1); puts("a == 0");
6 }
7 else {
8 stmt_coverage(2); puts("a != 0");
9 }

10 }

The stmt_coverage and decision_coverage
subroutines measure statement coverage and decision cover-
age in the example. The decision_coverage subroutine
returns the evaluation value of the original conditional
expression. Therefore, the inserted code has no side effects,
and does not change the semantics of the source code.

OCCF provides common code for language-independent
processing and provides a design to help user code to be
written for language-dependent processing. Moreover, the
insertion in AST is simpler than that with other mechanisms
such as the extension of programming-language processors,
insertion into intermediate language code, or direct insertion
into source code because OCCF focuses on the syntax
tree structure. In this way, OCCF reduces the cost of
development and maintenance. However, OCCF only targets
procedural programming languages and impure functional
programming languages due to the insertion mechanism.

OCCF supports measurement for new languages by
adding user code for language-dependent processing. More-
over, OCCF provides guidelines for implementing coverage
criteria by providing classes that insert measurement code.
Thus, the part that users should implement is clear. When
they appropriately implement this part, they can measure
four coverage criteria: statement coverage, decision cover-
age, condition coverage, and condition/decision coverage.

As OCCF inserts the measurement code before dead
code is removed by compiler optimization, it recognizes
all measurement elements in the source code. OCCF can
completely measure the coverage.

IV. IMPLEMENTATION OF OCCF AND USAGE OF OCCF

We implemented OCCF in .NET Framework 3.5 SP1.
OCCF enabled language-specific processing to be imple-
mented by adding user code such as assembly files that
ran in .NET Framework 3.5 SP1 or older, or script files in
languages supported by Dynamic Language Runtime (DLR)
[13]. DLR is a .NET library that provides language services
for several different dynamic languages. Moreover, OCCF
uses the Managed Extensibility Framework (MEF) [14].
MEF is a .NET library that automatically creates the instance
of the class that implements a specific interface and it is
annotated with an attribute provided by MEF. Consequently,
OCCF eliminates the need for user code that explicitly loads
the assembly files and script files and helps to add user code.

264

We show the implementation of OCCF dividing hot spots
and cold spots. We also show the the implementation of a
sample tool that measures coverage in Java, C and Python
by using OCCF to explain cold spots.

A. Code-insertion subsystem

The code-insertion subsystem consists of the following
components: the AST-generation, AST-refinement, AST-
operation and code-generation components.

1) AST-generation component: Converts the obtained
source code into an AST as an XML document. This
component has to parse source code and the parser can be
implemented by using existing software, such as compiler
compilers and parser libraries.
Cold spots: OCCF provide an AstGenerator class that
is designed by applying the Template Method pattern [15].

The Template Method pattern reorganizes the processing
steps between the coarse-grained process flow and fine-
grained concrete processing steps. The former is placed in
a superclass method and the latter is placed in subclass
methods. The latter is triggered by the former by calling
superclass abstract methods that are actually implemented
in subclasses.

The AstGenerator class calls a parser with a specified
command and inputs the result through standard input/output
and outputs the AST as an XML document to help users to
use a parser of an external program.
Hot spots: Users can implement this component by
using the existing software and the inheritance of the
AstGenerator class giving the command to call the
parser.

The sample tool uses SableCC [16] for a Java parser,
ANTLR [17] for a C parser and the parser module in the
Python standard library for a Python parser. There is a
sample user code of this component for Java in List 4.

List 4. JavaAstGenerator.cs
1 [Export(typeof(IAstGenerator))]
2 public class JavaAstGenerator : AstGenerator {
3 private static readonly string[] _arguments =
4 new[] { "-jar", "../Java/Java.jar" };
5 protected override string ProcessorPath
6 { get { return "java"; } }
7 protected override string[] Arguments
8 { get { return _arguments; } }
9 }

2) AST-refinement component: Changes structure of AST
to operate it easily. For instance, this component converts
single-line if statements into multi-line if statements. Users
have to implement this component for languages that have
such grammar by using the AST-operation component.
Cold spots: OCCF provides the BlockInserter class
that creates a new block and users only pass block symbols.
Hot spots: Users have to implement this component for
languages such as C and Java because the measurement code

is not easily inserted into some statements such as a single-
line if statement. However, this component is not needed
for Python because the statement can be inserted before any
statement. Users can easily implement this component for
C and Java because all if statements can be added to a new
block without changing the semantics.

3) AST-operation component: It has roughly three func-
tions: the enumerator, the generator, and inserter. The enu-
merator finds the corresponding node on the AST of each
language to locate the position in which the measurement
code has been inserted. The generator is used to generate
subtrees corresponding to the measurement code. The in-
serters are used to insert subtrees of the measurement code
into the source code on AST.
Cold spots: There is a class diagram of UML [18]
related to the selector in Figure 2. OCCF provides
the ISelector interface to show the function neces-
sary for the selector. OCCF provides some classes to
help users to implement the ISelector interface. The
AtomicConditionalTermSelector class is designed
by applying the Template Method pattern. OCCF let users
extend it to implement the enumerator that locates the posi-
tion of all atomic logical terms in conditional expressions.
The SelectorUnion class integrates some enumeration
results. The SelectorPipe class enumerates subtrees in
other enumeration results. These two classes are designed as
Macro Commands by applying the Command pattern [15].

The Command pattern is a design pattern that encapsu-
lates a request and the parameters in an object. A command
object that is combined with certain other command objects
is called a Macro Command.

Figure 2. Class diagram of selector in OCCF

OCCF provides an IStatementGenerator interface
and an IConditionGenerator interface to show the
function necessary for the selector.

OCCF completely provides the inserter as common code
such as a StatementCoverageInserter class and
a DecisionCoverageInserter class. Users pass the
instance that implements the ISelector to the Insert

265

method of these classes to insert measurement code. OCCF
provides these classes as the guidelines for implementing
coverage criteria.
Hot spots: Users have to implement the ISelector
interface for the selector to select statements, conditional
expressions in if statements and atomic logical term in con-
ditional expressions in if statements. Users can implement
the enumerator by using provided reusable classes.

For example, the enumerator for condition coverage enu-
merates the atomic logical term elements in if conditional
expressions such as the and_test and not_test nonter-
minal symbols that has more than three brothers and is not
a descendant of the trailer in Python grammar. There is
a sample user code of the enumerator for the atomic logical
term elements of Python in List 5.

List 5. PythonConditionalTermSelector.cs
1 public class PythonConditionalTermSelector
2 : AtomicConditionalTermSelector {
3 private static string[] TargetNames =
4 { "or_test", "and_test" };
5 private static string[] ParentNames = { "trailer" };
6 protected override bool IsConditionalTerm(XElement e)
7 { return TargetNames.Contains(e.Name.LocalName); }
8 protected override bool IsAllowableParent(XElement e)
9 { return !ParentNames.Contains(e.Name.LocalName); }

10 }

Users have to implement both the callee and caller of the
measurement code for the generator. The callee in C/C++
is provided by OCCF so that users can use SWIG to
implement it. Users only have to learn to use SWIG or
manually port the C/C++ code to the code of the target
language. The caller is the code that calls the callee and
users simply implement processing that describes the caller
code as token element in AST. Users have to implement the
IStatementGenerator interface for statement coverage
and the IConditionDecorator interface for decision
and condition coverage.

Users can add the new inserters to measure other coverage
criteria and flexibly measure coverage.

4) Code-generation component: Converts the obtained
AST into source code. When the AST has memorized almost
all the tokens for corresponding text in the source code,
this component can be simply implemented by adding user
code that outputs the tokens as they are without exceptions.
This means that the AST-generation component has to add
sufficient text information in the source code into the AST to
restore the source code with the code-generation component.
Cold spots: OCCF provides a CodeGenerator class that
is designed by applying the Template Method pattern and
scans the AST and outputs the memorized tokens.
Hot spots: Users can easily implement this component by
using the CodeGenerator class provided by OCCF when
the AST has memorized almost all the tokens for corre-
sponding text in the source code. Thus, users should design
the AST-generation component to take AST memorization

into account. For example, all tokens except for the linefeed
and indent are memorized in AST for Python. Consequently,
users only have to implement processing that outputs the
linefeed and indent to the corresponding terminal nodes for
Python. There is a sample user code of this component for
Python in List 6.

List 6. PythonCodeGenerator.cs
1 [Export(typeof(ICodeGenerator))]
2 public class PythonCodeGenerator : CodeGenerator {
3 protected override bool TerminalSymbol(XElement e) {
4 switch (e.Name.LocalName) {
5 case "NEWLINE": WriteLine(); return true;
6 case "INDENT": Depth++; return true;
7 case "DEDENT": Depth--; return true;
8 default: return false;
9 }

10 }
11 }

B. Code-execution subsystem

The code-execution subsystem executes the program in
which the measurement code has been inserted. By executing
the program, this subsystem sends the coverage information
to the coverage-display subsystem. OCCF supports commu-
nication using TCP/IP, shared memory, and file output as
the sending mechanism. Although OCCF does not provide
this subsystem, users can use any runtime system for the
corresponding language. Therefore, they do not need to
implement this subsystem.

C. Coverage-display subsystem

The coverage-display subsystem presents the measure-
ment results by analyzing the information received from the
code execution subsystem.

The information contains the position and tags. The
position expresses the line and column number of the
measurement element in the original source code. The tag is
a character string that expresses the layered structure. OCCF
filters the results of coverage with the package hierarchy, the
class hierarchy and other hierarchies with the tags.

Figure 3. GUI Reporter in coverage-display subsystem

There is a sample window of the coverage-display sub-
system in Figure 3. The upper progress bar indicates the

266

Table I
SUMMARY OF COMPARISON

OCCF Cobertura EMMA SCP gcov NCover
N. coverage criteria 4 2 1 1 3 3

Adding language yes no no no yes no
Adding criteria yes no no no no no

Multiple languages yes no no no yes yes
Flexibility yes yes no no no no

Completeness yes no no yes no yes
Non-commercial yes yes yes yes yes no

coverage ratio. The central text box indicates whether the
measurement element was executed in software testing. This
sample can output the results as a csv file and an XML file.
Therefore, users can customize this subsystem to change
the display for all supported languages and can process
output files with other tools. OCCF provides this subsystem
completely as common code.

V. EVALUATION

We evaluated OCCF by comparing implemented sam-
ple that were developed by using OCCF with typical
existing tools as described in Section II. The existing
tools can roughly be classified into two: those that ex-
tend programming-language processors and those that insert
measurement code into intermediate language code. Table I
summarizes comparison between OCCF and other tools.

A. Reduced cost of new developments

We evaluated the cost of new developments by using the
LOCs of the program that inserted the measurement code, by
measuring the time to implement a new coverage criterion
and by counting the number of supported coverage criteria.
Experiment 1: We measured the LOCs of the program that
inserted the measurement code to evaluate the cost of new
developments. The results of comparison we obtained with
LOCs are given in 4. There are 1056 LOCs for Cobertura,
2031 LOCs for EMMA, and 125 for implementing the
sample for Java. Cobertura uses BCEL [19] to insert
measurement code into Java bytecode. BCEL is a library
that conveniently provides users with the option to analyze,
create, and manipulate Java bytecode. EMMA does not use
such a library. However, samples were implemented without
using a library except for our simple helper methods and the
.NET standard library. There are 131 LOCs for SCP, and
93 LOCs for the sample with OCCF for Python in Figure
4. The SCP uses only used the Python standard library. In
addition, there were 221 LOCs for the language independent
and reusable parts in the framework. It was difficult to
measure the LOCs of the extension tools; however, the cost
of development is obviously high. No insertion tools for the
source code level exist, as we found. OCCF can support new
language at less cost than that in developing new tools by
using simple insertion at the source-code level.

Figure 4. LOCs for five different tools

Table II
NUMBER OF PEOPLE WHO IMPLEMENTED WITHIN FOUR HOURS

N. people average time
New coverage for Python 2 with OCCF 4 13.5 min

Change in upgrade to Python 3 with OCCF 4 47.5 min
New coverage for Python 2 with SCP 0 -

Change in upgrade to Python 3 with SCP 0 -

Experiment 2: We experimented on the implementation
of a new coverage criterion for Python that is special
statement coverage limited to print statements. Moreover,
we experimented on maintenance that responded to a change
in upgrade from Python version 2 to Python version 3. We
evaluated the cost of developing a new coverage criterion
and the cost of maintenance to change language specifica-
tions.

We tested four examinees who were first year Master’s
degree students studying computer science. We explained
our framework for 30 min and provided the AST Generation
component for Python 3, which we implemented for them
for 25 min. Table II gives the number of people who
implemented a tool for Python 2 and responded to a change
in upgrade to Python version 3 within four hours. The
average time to implement a tool for Python 2 with OCCF
is 13.5 min, and the time to respond to a change for Python
3 with OCCF is 47.5 min.

The examinees tried to modify the SCP to measure the
print statement coverage. However, nobody completed it
within 240 min. They probably need 10 hr or more. This
is because the numerous tools that exist are not highly
modularized and it is difficult to find the part of code
that has to be modified to extend them. The OCCFs, on
the other hand, were highly-modularized and the examinees
could easily extend them, e.g., they only implemented the
ISelector interface in this experiment.

The implementation of samples with OCCF supports
statement coverage, decision coverage, condition coverage
and condition/decision coverage. However, the number of
coverage criteria which other tools support is less than
OCCF in Table I. The same functionality could be imple-
mented with fewer LOCs.

Therefore, we succeeded in alleviating the problem (P1)
with high cost of new developments.

267

B. Reduced maintenance cost

We evaluated the cost of maintenance by assessing the
changes to language specifications.

The existing extension tools have to be maintained for the
parser and processor. The existing insertion tools also have
to be maintained for the parser and intermediate language
code. Briefly the existing tools have to be maintained for
both the syntax and semantics. However, only the code
insertion subsystem has to be maintained in the tool using
OCCF. Moreover, only the AST-generation component and
the enumerator of the AST-operation component have to be
maintained in many cases. As OCCF only focuses on the
syntax, the extent of maintenance is limited.

For example, when Java is upgraded to 5.0 from 1.4,
OCCF would only be required to respond to locating the
foreach statement. Cobertura and EMMA, on the other
hand, are required to respond to generic types as well.
Moreover, the experiment on implementing a new coverage
for Python and responding to change in upgrade from Python
2 to Python 3 as previously mentioned indicated that it is
easier to modify tools using OCCF than with SCP.

Therefore, we succeeded in alleviating the problem (P2)
with high cost of maintenance.

C. Consistency in measurement

We evaluated the consistency of measurement by assess-
ing developments with multiple languages.

We measured the coverage for software that was devel-
oped in Java and Python as an example. When the software
was tested in integration testing, coverage was measured
by Cobertura and SCP. Cobertura could measure the
statement coverage and decision coverage, but SCP could
only measure the statement coverage. In this case, coverage
with a different criterion was measured, or the same state-
ment coverage was measured. There is a possibility that only
coverage that is ineffective can be obtained as an indicator of
software testing. However, OCCF could measure coverage
with the same criterion, such as decision coverage, for all
languages. Effective coverage as an indicator of software
testing could be obtained.

The gcov and NCover can also measure coverage for
many languages. However, gcov only runs under GCC, e.g.,
it does not run under Visual C++ [20]. It is difficult to add
new languages because gcov requires users to imeplement
compilers in GCC. NCover only supports languages that run
under the .NET Framework. However, OCCF can measure
coverage in any environment where inserted code is running
because it does not depend on a specified language proces-
sor. Moreover, OCCF lets users add new coverage criteria
and languages more easily than gcov and NCover because
it is not just a tool but a framework.

Therefore, we solved the problem (P3) with inconsistency
in measurement.

D. Flexibility in measurement

We evaluated the flexibility of measurement by assessing
the change in the measurement range.

The existing tools did not flexibly change the measure-
ment range or elements. EMMA and NCover could change
the measurement range according to only the hierarchy of
the package, the class, and the method. EMMA could also
change the size of measurement elements such as lines,
blocks, methods and classes. Cobertura could change
the measurement elements by using regular expressions.
However, OCCF could freely change the measurement range
and elements by adding user code that located the position
in which the measurement code was inserted. For example,
OCCF could insert code to measure statement coverage only
for statements that called a specific method. Execution of
a program in which measurement code had been inserted
thus measured special statement coverage limited only to
statements that called a specific method. This coverage could
be used in library testing.

Therefore, we solved the problem (P4) with inflexibility
in measurement.

E. Degree of completeness in measurement

We evaluated the degree of completeness in measurement
by assessing the measurement for dead code.
Cobertura inserts the measurement code into Java

bytecode. It does not measure the coverage for dead code
because compiler optimization removes dead code in the
bytecode. However, OCCF inserts measurement code into
the source code before the compiler optimization removes
dead code. OCCF can be detected as a part where dead code
has not been tested because the information when inserting
it remains. For instance, OCCF has correctly 50% statement
coverage in List 1 in Section II.

Therefore, we have solved the problem (P5) with the
degree of incompleteness in measurement.

F. Time efficiency

We evaluated the time efficiency by using the time to
execute three Java programs presented in a book [21].
Experiment 3: We measured the time to execute three
Java programs presented in a book. Measuring coverage
decreased the time efficiency for the test because it inserted
measurement code into the source code. The execution time
when using OCCF was suppressed from 2 to about 10
times the execution time by using TCP/IP communication
compared with the former source code, as shown in Figure 5.
OCCF is about 10 times faster than Cobertura. However,
it is 1000 or more times slower than the original source
code when used with file output, and it is 10 to about 30
times slower than Cobertura. TCP/IP communication is
overwhelmingly faster than simple file output.

268

Therefore, we confirmed that there were no problems with
the decrease in execution efficiency of the test when using
OCCF with TCP/IP communication.

Figure 5. Execution time in software testing

VI. RELATED WORK

We discuss the ideas of Kiri et al. [22] and Rajan et
al. [23] as other researches. We referred to their study
results. Nonetheless, our approach bares resemblance to the
following existing techniques.

Kiri et al. proposed the idea of developing a tool that
inserts measurement code into source code. Their idea was to
measure statement coverage, decision coverage and a special
coverage called RC0. RC0 is special statement coverage
for only revised statements. However, their idea was to
measure only statement coverage and decision coverage be-
cause they measured coverage by simply inserting a simple
statement. Moreover, even though their idea could be used
to measure the coverage of four languages, including Java,
C/C++, Visual Basic, and ABAP/4, it did not support any
other languages. Conversely, OCCF does not measure RC0.
However, OCCF can support new coverage such as RC0
easily by adding user code.

Rajan et al. proposed the idea of specifying the mea-
suring elements with a description style of pointcut that
is used in Aspect-oriented programming languages. They
demonstrated an example implementation of a tool that
supported C#. Measuring elements, such as method calls, if
statements, exception handlers and variable writes could be
specified. However, the description style that specified the
measurement elements was specialized for C#. Therefore,
the description style could not be used for other languages
that had different paradigms to C#. However, OCCF can
measure this coverage with a modified description style that
is language independent by easily adding user code.

VII. CONCLUSION AND FUTURE WORK

We proposed OCCF, reduced costs by reusing common
code, and obtained consistent measurements by supporting
multiple languages, flexible measurements through expand-
ing features, and complete measurements by inserting mea-
surement code into the source code.

We plan to improve OCCF to support non procedure-
oriented languages, such as impure functional programming
languages. Moreover, we intend to automatically generate
AST correspond to the measurement code to reduce devel-
opment cost further. We believe OCCF can contribute to the
development of an implementation of a refactoring tool in
language-independent models.

REFERENCES

[1] Lee Copeland, ”A Practitioner’s Guide to Software Test
Design”, Artech House, 2003.

[2] Kazunori Sakamoto, Open Code Coverage Framework,
http://sourceforge.jp/projects/codecoverage/.

[3] Kazunori Sakamoto, et al., ”Reporting the Implementation
of a Framework for Measuring Test Coverage on Design
Pattern”, Software Patterns and Quality(SPaQu 2009), 2009.

[4] Kazunori Sakamoto, et al., ”A Framework for Measuring Test
Coverage Supporting Multiple Programming Languages”,
First Software Engineering Postgraduates Workshop (SEPoW
2009; In conjunction with APSEC 2009), 2009.

[5] Gareth Rees, Statement coverage for Python,
http://garethrees.org/2001/12/04/python-coverage/.

[6] the GNU Compiler Collection, http://gcc.gnu.org/.
[7] Cobertura, http://cobertura.sourceforge.net/.
[8] EMMA, http://emma.sourceforge.net/.
[9] NCover, http://www.ncover.com/.

[10] Kent Beck, ”Test-Driven Development: By Example”, The
Addison-Wesley Signature Series, 2003.

[11] Yuji Sakata, Kazutoshi Yokoyama, Hironori Washizaki and
Yoshiaki Fukazawa, ”A precise estimation technique for test
coverage of components in object-oriented frameworks”, 13th
Asia-Pacific Software Engineering Conference (APSEC‘ 06),
IEEE CS, pp.79-86, 2006.

[12] Mohamed Fayad and Douglas C. Schmidt, ”Object-Oriented
Application Frameworks”, the Communications of the ACM,
Special Issue on Object-Oriented Application Frameworks,
Vol. 40, No. 10, October 1997.

[13] Microsoft, Dynamic Language Runtime,
http://dlr.codeplex.com/.

[14] Microsoft, Managed Extensibility Framework,
http://www.codeplex.com/MEF/.

[15] E. Gamma, R. Helm, R. Johnson and J. Vlissides, ”Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley, 1994.

[16] Etienne M. Gagnon, Ben Menking, Mariusz Nowostawski,
Komivi Kevin Agbakpem and Kis Gergely, SableCC,
http://sablecc.org/.

[17] ANTLR, http://www.antlr.org/.
[18] OMG, Unified Modeling Language (UML) specification, ver-

sion 2.2, http://www.omg.org/spec/UML/.
[19] Apache Software Foundation, The Byte Code Engineering

Library, http://jakarta.apache.org/bcel/.
[20] Microsoft, Visual C++, http://msdn.microsoft.com/visualc/.
[21] Haruhiko Okumura, Houki Satoh, Kazuo Turu, Kazuyuki

Shudo and Tutimura Nobuyuki, ”Algorithm cyclopedia by
Java”, Gijutuhyoronsya, 2003.

[22] Takashi Kiri, Tatuya Miyoshi, Satoru Kishigami, Tatuo Osato,
Tuyoshi Sonehara ”About the source code insertion type
coverage tool”, The 69th Information Processing Society of
Japan National Convention, 2003.

[23] Hridesh Rajan and Kevin Sullivan, ”Aspect Language Fea-
tures for Concern Coverage Profiling”, International Confer-
ence on Aspect-Oriented Software Development (AOSD’05),
pp181-191, 2005.

269

