
Mutation Analysis for JavaScript Web Application Testing

Kazuki Nishiura and Yuta Maezawa
The University of Tokyo

Tokyo, Japan
{k-nishiura, maezawa}@nii.ac.jp

Hironori Washizaki
Waseda University

Tokyo, Japan
washizaki@waseda.jp

Shinichi Honiden
The University of Tokyo, National Institute of Informatics

Tokyo, Japan
honiden@nii.ac.jp

Abstract—When developers test modern web applications
that use JavaScript, challenging issues lie in their event-driven,
asynchronous, and dynamic features. Many researchers have
assessed the adequacy of test cases with code coverage criteria;
however, in this paper, we show that the code coverage-based
approach possibly misses some faults in the applications. We
propose a mutation analysis approach for estimating the fault-
finding capability of test cases. We assume that developers can
find overlooked fault instances and improve the test cases with
the estimated capability. To create a set of faulty programs, i.e.,
mutants, we classify the JavaScript features in web applications
and then define a comprehensive set of mutation operators. We
conducted a case study on a real-world application and found
that our approach supported the improvement of test cases to
expose hand-seeded faults by an extra ten percent.

Keywords-JavaScript; Mutation Analysis and Testing; Web
Applications; Test Criteria

I. INTRODUCTION

Developers implement client-side JavaScript programs
(henceforth, JS programs) to make their web applications
interactive. JavaScript provides APIs for handling user
events, requesting asynchronous messages, and dynamically
manipulating Document Object Models (DOM)1 to rewrite
the contents on a web page. Ocariza et al. reported that 97
of the 100 most visited web sites utilized JavaScript [1].

Since event-driven, asynchronous, and dynamic features
can increase the complexity of web applications using JS
programs (henceforth, JSWAs), researchers have sought to
address challenging issues of testing JSWAs [2], [3]. In those
researches, they have leveraged code coverage criteria to
assess the adequacy of test cases. However, these approaches
might not show an absence of faults, even if they explore all
statements and branches without exception. This is because
JS programs have dynamic characteristics; e.g., assigning
any values to a non-existent property does not throw any
exceptions (See Section II-C).

Mutation analysis is a fault-based technique that provides
strong test criteria. The technique injects artificial faults
into the software under test. Fault injection is done by
applying mutation operators that represent fault types that
developers would like to discover. By running test cases on

1http://www.w3.org/DOM

faulty versions of software, developers can estimate the fault-
finding capability of test cases.

Researchers have indicated the usefulness of mutation
analysis for JSWAs [4]. Recently, some researchers have
started applying mutation analysis techniques on JSWAs [5]–
[7]. However, they focus on the specific characteristics of ap-
plications (e.g., preventing cross-site scripting vulnerability)
or heuristically choose mutation operators. Their approach
may give a high score to test cases that consider some types
of faults but do not consider others.

In this research, we try to define a comprehensive set
of mutation operators that cover JavaScript’s features by
conducting a feature analysis of JavaScript used in web ap-
plications. We define ten mutation operators and implement
a tool for performing mutation analysis on JSWAs. Using
the operators, our tool generates mutants from an original
JS program. By executing test cases on mutants, developers
can learn the fault-finding capability of the test cases and see
unexposed fault instances, i.e., unkilled mutants. Developers
can then add or modify the test cases so that more faults can
be exposed. We evaluated our tool by surveying real faults
from a public bug repository and carrying out a case study
on a real-world application.

Our contributions are as follows:

1) Proposal of a comprehensive set of mutation operators
focusing on the features of JavaScript in web
applications.

2) The AjaxMutator, an implementation of our approach.
3) A short survey on real faults and a case study on a

real-world application whose results show that our tool
can help developers improve their test cases.

II. BACKGROUND

A. Mutation analysis

Mutation analysis is a fault-based technique to assess
the adequacy of test cases [8], [9]. First, the technique
makes a small change to a program under test in order to
create faulty programs called mutants. The changes depend
on fault-seeding rules called mutation operators. Then, the
technique tests both the original program and each mutant
with the given test cases. If one of the mutants gives a
different test result from the original, the mutant is said

�������	�
����	���	�
��
�

(a) An item list page

��������	�
��������	�

(b) An item detail view

Figure 1: E-commerce web application

to be killed. Killed mutants indicate that the test cases can
find such faults. Hence, the technique measures the ratio of
the number of killed mutants to the number of all created
mutants as a mutation score. By referring to the mutation
score, developers can estimate the adequacy of their test
cases.

Although mutation analysis can provide strong criteria
for estimating test adequacy [10], its result depends on the
definitions of the mutation operators. In this research, we
define a comprehensive set of mutation operators that covers
all the mandatory features of JSWAs.

B. JavaScript web applications

Modern web applications combine various technologies
as described in [11] to realize their interactive web pages.
Because JavaScript binds all of these technologies, we argue
that JavaScript is a central technology.

To make their applications interactive, developers imple-
ment JS programs as follows: When users operate an ap-
plication, JS programs i) continuously process user requests
with event handlers, ii) asynchronously receive the neces-
sary data, and iii) dynamically update web page contents.
Analyzing JS programs is a challenging issue because of
its event-driven, asynchronous, and dynamic features. Here,
we focus on these JavaScript features when defining the
mutation operators.

C. Motivating example

We explain the inadequacy of the coverage criteria
for testing JSWAs using a typical e-commerce applica-
tion2 as our motivating example (Fig. 1). Additionally, we
show some of the JS program of the application using
jQuery3 in Figure 2. Here, $(′′#foo′′) and $(′′.bar′′) are
function calls that select DOM elements whose ID and
class attributes correspond to “foo” and “bar”, respectively.
Function#bind(thisArg[, arg1[, arg2[, ...]]]) is a built-in
method of a Function object that sets its this keyword and
arguments as provided values.

This application first shows an item list page (Fig. 1a). The
page does not initially contain item details about these items

2http://www.honiden.nii.ac.jp/∼k-nishiura/e-commerce-example
3http://jquery.com

$(document).ready(function() {
$(".item").each(function() {

var itemId = $(this).attr("data-item-id");
var loadingMsg = $("");
loadingMsg.addClass("message" + itemId);
loadingMsg.text("Loading detail...");
$(this).append(loadingMsg);
requestItemDetail(itemId);

});
});

function requestItemDetail(itemId) {
$.getJSON('item.php?id=' + itemId,

function(data) {
var button = $("#itemButton" + data.id);
button.text("View detail...");
button.click(

showDetail.bind(null, data.body, data.price,
data.discount1, data.discount2));

$(“.message” + data.id).get(0).textContent='';
button.show();

});
}

function showDetail(bodyHtml, price, discount1, discount2){
//

detailBody.html(bodyHtml);
//

setTimeout(showDiscount.bind(details, discount1), 1000);
setTimeout(showDiscount.bind(details, discount2), 2000);

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

…textConent = ‘’;

������

…$("#itemButton1"…

…data.text…

…2000);
…1000);

������

�����	

�����

Figure 2: JavaScript program and possible faults

public void testShowingDetail() {

WebDriver driver = new FirefoxDriver();

driver.get(TARGET_URL);

WebDriverWait wait = new WebDriverWait(driver, WAIT_LIMIT_SEC);

wait.until(visibilityOfElementLocated(By.id(”itemButton10”)));

WebElement showDetailButton

= driver.findElement(By.id(”itemButton10”));

assertEquals(”View detail...”, showDetailButton.getText());

showDetailButton.click();

wait.until(visibilityOfElementLocated(By. className(”modal”)));

driver.findElement(By.className(”buy−now”)).click();

}

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3: Test case for JavaScript program in Figure 2 (extracted)

to reduce the amount of data that has to be communicated for
fast rendering. After the whole page has been loaded, the JS
program asynchronously sends requests for the detail of each
item to a server (lines 8, 12-23) while displaying a loading
message (lines 4-7). When it receives a response containing
the discount information about the item, the JS program
removes the text message (line 20). Instead, it registers an
event handler for displaying the information to a view detail
button (lines 17-19) and then displays the button (line 21).
When the user clicks the button, the program rewrites the
DOM to show a detailed view of the item (Fig. 1b) without
any page transitions (line 27). In this view, the application
displays the information using timer events for a visual effect
(lines 29 and 30).

Figure 3 shows the test code implemented with
Selenium WebDriver4 for testing the program de-
scribed above. WebDriver enables test designers to emulate
user operations such as mouse clicks by implementing them

4http://seleniumhq.org

Table I. Faults that cannot be exposed with code coverage criteria

Fault Related feature Unexpected behavior in our motivating example Lines in Fig. 2

1 User event target Registers a “click” event without an exception even if there is no “button”. 15 and 17
2 Async. comm. response Displays an undefined value by referring to a non-existent “data.text” property. 18 and 27
3 DOM attr. manipulation Continuously displays “Loading detail” because of a misspelled “textConent” property. 4-6 and 20
4 Timer event interval Displays an incorrect price even though both timer events are handled because the intervals are incorrect. 29 and 30

in test code. Given our test code in Figure 3, the frame-
work proceeds as follows: WebDriver first launches Firefox
and opens a target web application (lines 2 and 3). The
framework waits until the application displays a view detail
button (line 5). Upon finding the button, the framework
clicks the detail button (line 9) and finally clicks a buy
button (line 11). Note that when testing web applications,
developers need to consider the timing of the user operations.
Therefore, the methods of wait object (lines 5 and 10) can
be used as assertions that raise an exception when a given
condition is not satisfied within a certain period of time.

The test code provides 100% statement and branch cover-
age for the JS program shown in Figure 2. However, it is not
able to find the faults shown in Figure 2. We argue that this
inadequate capability derives from the dynamic features of
JavaScript. Table I explains these faults. Regarding faults
1 and 4, for example, although the JS program explicitly
determines the user event targets and timer event intervals, it
does not check for their existence or correctness at runtime.
As for faults 2 and 3, it does not throw any exceptions even
if the running application does not have any corresponding
properties or DOM elements. Hence, exploring an entire
program without exceptions does not always indicate an
absence of faults. In the next section, we propose a mutation
analysis considering JavaScript features.

III. MUTATION ANALYSIS

Figure 4 shows an overview of our mutation approach:

1) Developers implement test cases to test whether a
JSWA runs as expected.

2) Our tool generates mutants of JS programs with our
proposing mutation operators.

3) Our tool executes the test cases on the mutants to
check if the test cases detect the mutants. Developers
can know the adequacy of the test cases (i.e., mutation
score) and which mutants remain unkilled with given
test cases.

4) Developers add test cases to kill the unkilled mutants.
Then, our tool recalculates the mutation score by
running additional test cases on unkilled mutants. This
process is repeated until the mutation score reaches a
certain threshold [12].

In this way, our approach can help developers make test
cases with better fault-finding capability.

To expose faults in JS programs, we need to define muta-
tion operators by focusing on JavaScript features. Therefore,

������
������

��	
����������

����������

�������	
������������������

�
���� ����

�
��
�

���	
����

������

�������	�	
���	�

��������	�

��������

������

Figure 4: Workflow to improve test suites by mutation analysis

we first conducted a feature analysis on JavaScript. Then, we
defined the mutation operators based on the results of the
analysis.

A. JavaScript features in web applications

[13] describes three characteristics that distinguish
JSWAs from traditional web applications; event driven
model, asynchronous communication, and DOM manipula-
tion. We conducted a feature analysis on each feature and
developed feature diagrams [14] as shown in Figure 5.

Event driven model: In comparison with traditional web
applications, JSWAs leverage JS programs for processing
user operations and elapsing time without page transitions.
For instance, when a user clicks the ”item detail” button
(user event), our motivating example displays the discount
information after a second (timer event).

When implementing user events in JS programs, develop-
ers determine the target, event type, and callback
function. The target corresponds to the built-in Window
object or to DOM elements such as buttons. JS programs
register a callback function to the event type of the target.
As for timer events, JS programs register a callback
function to an interval of elapsed time. Developers
can also optionally determine repeat, i.e., whether the
program repeatedly handles the timer event.

Asynchronous communication: Asynchronous commu-
nication enables web applications to continuously accept
user operations while waiting for server responses. For
instance, our motivating example lets the users browse an
item list while it loads the details of each item.

The two main constituents of asynchronous communi-
cation are requests and responses. A request must
contain a destination URL and a request method (e.g.,
GET, POST, etc.). Request parameters such as item IDs
are optionally included. A server processes the request and
sends a response to the application. A response contains the

��������	
�������

�������� ���������������

�
������������	
�������

�������

��	���

�����������

�������������	
�������

���������������

�
��� � !"#��������� $���� �������%����

��
��� ���&�������

#������� "������ '��������� "��

��(�����

���������

'����)�������������
�����

���������������

��*� #��)��� $���� �������%����

+����� $����

,�������

��	���+��������
#�
�������

!"#�#�
�������

�������
�,��
����

�	�-���

������� !����������������

'.�
������
%����

'.�
������
'��
	������

�������
�)���)����
���
�������������
����

Figure 5: Feature models of JavaScript in web applications

Table II. Proposing mutation operators based on features of JavaScript in web applications and example mutations.

JavaScript feature Operator name Original code Mutated code

User event Event target replacement buyButton.click(requestBuy) cancelButton.click(requestBuy)
registration Event type replacement button.click(showDetail) button.mouseover(showDetail)

Event callback replacement cancelButton.click(closeModal) cancelButton.click(requestBuy)
Timer event Timer interval replacement setTimeout(callback, 1000) setTimeout(callback, 2000)
registration Timer callback replacement setTimeout(showDiscount1, 1000) setTimeout(showDiscount2, 1000)
Asynchronous Request target replacement $.get(’item.php’, showItem) $.get(’item list.php’, showItem)
communications Request onsuccess callback replacement $.get(’item.php’, showItem) $.get(’item.php’, buyItem)
DOM Nearby DOM element $(”#items”).append(newItem) $(”#items”).parent().append(newItem)
manipulation Attribute assignment target replacement element.id = ”cancelButton” element.textContent = ”cancelButton”

Attribute assignment value replacement element.id = ”cancelButton” element.id = ”buyButton”

status code for signaling success, failure, etc. and a body
text. Callback functions are invoked according to the status
code if the developers choose to implement them.

Note that JavaScript also provides a means for syn-
chronous communications, but we do not regard it as a
feature of JSWAs. Synchronous communication blocks UI
threads, and best practice is not to use them.5

DOM manipulation: JavaScript provides DOM APIs
for manipulating web page elements on the client-side.
Such partial updates can make applications more responsive
than refreshing whole web pages with page transitions. For
instance, our motivating example leverages DOM manipu-
lations to display the item detail view.

DOM manipulations consist of target DOM elements
and methods of manipulating these elements. JS programs
select this target element by its position relative to another
element, tag name, or ID/class value. As for the method, the
programs create, insert, delete the element, or alternatively,
assign a value to an attribute of the element.

B. Proposed mutation operators

Here, we describe our ten mutation operators for JS
programs (See Table II) and explain how we developed them.

User and timer event registrations: Since developers
intentionally implement the optional features of user and
timer events, we assume that they typically embed faults
in mandatory features, for example, faults 1 and 4 in our
example. Hence, we decided to focus on the mandatory fea-
tures where our approach makes little changes (henceforth,
mutation candidates). When mutating a mutation candidate,

5http://blogs.msdn.com/b/wer/archive/2011/08/03/
why-you-should-use-xmlhttprequest-asynchronously.aspx

our approach replaces it with another candidate. For exam-
ple, consider the event target in Table II. Our approach
replaces the event target “buyButton” with “cancelButton”.
Similarly, it also mutates the event types of user events, the
timer intervals of timer events, and the callback functions of
both.

Asynchronous communications: Although asynchronous
communication has two mandatory features, their responses
are outside the scope of our study. This study focuses on
client-side logic, but the responses depend on the server-
side logic. As for the requests, we select only destination
URLs as mutation candidates because the differences in the
request method should be properly processed by the server-
side logic. Additionally, we claim that leveraging responses
plays an important role in JSWAs such as when preparing
the item details in our motivating example. Therefore, our
approach deals with the on-success callback functions as
mutation candidates, although this feature is optional.

DOM manipulation: We define a mutation operator
called the nearby DOM element. This definition is
based on our heuristic that developers tend to incorrectly
select a DOM element that is near a proper one. Therefore,
our approach replaces the target DOM element with its
parent or child element.

As for DOM manipulations, our limited implementation
does not yet cover creating, inserting, and deleting DOM
elements, although such an implementation is planned as
future work. Note that our tool can create mutants that
insert/delete DOM elements at improper positions and our
tool ran as expected to improve test cases in our case
study (Section IV-B). As for assigning attributes, we define
two mutation operators, one for replacing the attributes

Table III. Real faults in WordPress

Ticket # JavaScript feature Brief explanation

1895 User event Program does not properly register
8812 event handlers to user events.
2184 DOM Program creates improper DOM elements
9740 manipulation Program selects improper DOM elements

themselves and one for the assigned values.
We implemented our approach in a prototype tool called

AjaxMutator. This tool is publicly available.6

IV. EVALUATION DESIGN

To assess the usefulness of our approach, we conducted
a short survey about real faults and a case study using our
tool. Our research questions are as follows:

RQ1 Can JavaScript features really cause faults?
RQ2 Can developers improve test cases with our tool to

find faults that remain unexposed by following the
code coverage criteria?

RQ3 Can developers improve the test cases with our tool
in a reasonable amount of time?

We first describe design of the survey and case study, and
then discuss their results in the next section.

A. Survey: Faults in WordPress

We leveraged the public bug repository of WordPress7

to survey real faults. In accordance with [15], we searched
this repository using the keywords “JavaScript”, “js”, and
“console” and then selected only closed bugs from the
search results. Next, we manually extracted faults that a
JS program clearly caused from the selected bugs. Finally,
we extracted the faults related to the JavaScript features
discussed in this paper.

B. Case Study: Evaluation of Test Cases for Quizzy

We conducted a case study on a quiz application called
Quizzy.8 This application has 5561 lines of code, including
310 lines of a JS program. We prepared two initial test
cases using WebDriver. One represented a normal use case
in which users answer quizzes and see their total score.
Another is for testing invalid use cases in which users click
an answer button before selecting any answer candidates. We
conducted the mutation analysis with our tool and added test
cases to kill unkilled mutants.

After that, we evaluated how well our tool can assess
the fault-detecting capability of the test cases with hand-
seeded faults. We asked an undergraduate student with two
years industrial experience developing JSWAs to seed typical
faults into the application. While he seeded faults, we did
not explain our work to him.

6https://github.com/knishiura-lab/AjaxMutator
7http://core.trac.wordpress.org
8http://quizzy.sourceforge.net

Table IV. Detail of our initial and improved test suites

Test suite #TC #A #W Cov(%) MS FF(%)

Initial 2 6 16 95 45.9 89.5
Improved +5 +21 +21 100 67.0 100.0

The manual setup of the application, the test cases im-
plemented, and the details of the seeded faults are publicly
available.9

V. RESULTS AND DISCUSSION

Reality of JavaScript faults (RQ1): In our survey, we
found 26 closed bugs that JS programs clearly caused.
Among these bugs, we extracted four faults related to our
focus in Table III. Note that the other faults were logic faults
such as those related to parsing strings, and we expect that
the existing approaches can deal with them. However, the
faults related to JavaScript features are less studied, and they
are more difficult to find, as we discussed in Section II-C.
Hence, we claim that JavaScript features can cause real faults
that should be exposed.

Improving test cases (RQ2): In our case study, the
participant seeded 20 faults in the Quizzy application. Note
that we dealt with 19 faults in total, because one seeded fault
did not change the behaviour of the applications. These 19
faults consisted of one user event fault, one asynchronous
communication fault, two DOM manipulation faults, and
other faults such as typos.

Table IV shows the details of the initial and improved test
suites. To compare the sizes of the test suites, we list the
number of test cases (#TC), assertion statements (#A), and
wait statements (#W). To evaluate the adequacy of the test
cases, we measured statement coverage using jsCoverage10

(Cov), mutation score (MS), and the ratio of found faults to
the 19 seeded faults (FF).

Although the initial test suite covered all of the statements
where faults were seeded, it exposed only 17 faults among
the 19 faults (about 10% of the seeded faults were unfound).
In addition, their mutation score was low. For instance, in
this application, users can choose an option in two ways: by
clicking a radio button or clicking a label. Initial test cased
only care for clicking a radio button, so they did not kill
the mutants that only affected labels. Additional test cases
were implemented to kill such unkilled mutants. By adding
five test cases, we could improve mutation score by about
20 and it was able to expose all hand-seeded faults. These
results suggest that developers can find unexposed faults by
increasing the mutation score with our mutation analysis.

As for the mutation analysis, our tool generated 109
mutants, and we divided them into four groups (Fig. 6).
The blue bar in the figure stands for mutants killed by our

9https://github.com/knishiura-lab/
10http://siliconforks.com/jscoverage

Figure 6: Details of mutants generated by our tool.

initial test cases. The red bar indicates the mutants which the
initial test cases could not kill but the improved test cases
could. The green and purple bars represent unkilled mutants
with both test cases and equivalent mutants.

Note that eliminating equivalent mutants is a challenging
issue in the field of mutation analysis [9]. As for the unkilled
mutants with either test case, we found another challenging
issue for mutation analysis caused by the robustness of
modern web browsers; browsers could automatically infer
and set proper values at runtime independently of the JS
programs. Despite these issues, we believe that our tool can
generate enough mutants for developers to improve test cases
in order to find unexposed faults.

Reasonable time (RQ3): It took us an hour to prepare test
cases and another three hours to improve them. We argue
that a few hours is a reasonably short among all cost required
to assure the quality of JSWAs that may contain unexposed
faults. Additionally, we can explore applying automated
test case generation techniques [2], [3], [16] to our tool
in order to reduce the manual cost. As for the execution
cost, it took the tool 20 minutes to conduct the mutation
analysis on the initial test cases. After that, we added test
cases to increment mutation score, and recalculated mutation
score, which took another 20 minutes. Although this was a
reasonably short time, because mutants are independent, we
can further reduce this time by modifying the tool to test
several mutants in parallel.

Internal validity threats: In a case study we use a real-
world application that authors of [17] have also leveraged
in their experiments. Moreover, the faults were seeded by
a student who did not know about our study. However, we
cannot assure these faults represent real faults on JSWAs.
Additionally, we prepared the initial test cases by consider-
ing possible use cases of the application and improved them
by referring unkilled mutants, however, our knowledge of the
proposed method could have potentially affected the result
of our case study. To avoid these threats, we plan to conduct
additional case studies on a real-world development.

External validity threats: Although our set of muta-
tion operators covers the mandatory JavaScript features, we
consider to define operators for the optional features in
our future work. Moreover, we selected the WordPress bug
repository for our survey, and although there are only a

few public repositories containing JavaScript bugs, we can
define other mutation operators by modeling more real faults
from other repositories. We used a single application in
our case study, and it would be interesting to investigate
how the mutation operators developed here work for other
applications. Note that the Quizzy application has all of the
JavaScript features discussed in this paper.

VI. RELATED WORK

Mutation analysis for web applications or JavaScript
programs: Mutation analysis has been widely studied since
it was first introduced in the 1970s [8], [9]. Praphamon-
tripong and Offutt argued that existing mutation analysis
techniques do not consider the characteristics of web ap-
plications. They proposed mutation operators for HTML
and Java Server Pages [6]. Shahriar and Zulkernine defined
mutation operators for PHP and JavaScript to evaluate the
adequacy of tests for avoiding cross site scripting vulner-
ability [5]. Alshraideh conducted mutation analysis on JS
programs by applying basic mutation operators such as
rewriting arithmetic operands to automate unit testing [18].
Our study developed mutation operators by focusing on
characteristics of JavaScript in web applications. It has a
different focus from and is complementary to the previous
research.

Recently, Mirshokraie et al. have proposed some mutation
operators based on the common mistakes that inexperienced
engineers make [7]. They also proposed some mutation
operators related to DOM and XMLHttpRequest11 as sum-
marized in Table V. However, they do not consider mutation
operators about event-driven nature of JSWAs, while we
argue event-driven is one of the main features of JSWAs.

Classification of real world faults: Marchetto et al. [19]
and Guo et al. [20] surveyed typical faults in web applica-
tions. Because these surveys targeted any faults related to
web applications, we argue that faults related to JavaScript
are not sufficiently studied.

Ocariza et al. studied run-time JavaScript exceptions by
automatically exploring popular web applications in the
Alexa ranking [1]. They showed that the current quality
assurance for JSWAs was so insufficient that even widely
used applications threw run-time exceptions. Since their
study utilized run-time exceptions as perceived by users, we
claim that the actual faults behind such exceptions are not
always clear.

Ferrari et al. took a bottom-up approach that defined
mutation operators based on real faults [21]. However, there
are only few public bug repositories for JSWAs [15]. In
addition, public bug reports are typically written by users.
Thus, it is difficult to discern the actual fault causing the
reported application behavior. Therefore, we chose a top-
down approach that analyzes the features of JavaScript

11JavaScript object that provides a means for HTTP communications

Category Mutation target Our proposal Mirshokraie’s [7]

User event 3 targets (target, type, callback) � NA
Timer event 2 kinds (interval, callback) � NA
Asynchronous Request destination URL � �
communications Asynchronous or synchronous NA (Out of scope) �

Callback for a response �(replace on-success callback) �(change conditions on which callback is invoked)
DOM DOM element selection �(replace with nearby DOM element) �(rewrite attribute of selection method)

DOM attribute assignment � �
Element insertion NA (Future work) �

Other 9 kinds (common mistakes NA �
JavaScript-related for inexperienced programmers)

�: Implemented, NA: Not Available

Table V. Comparison of mutation operators by our proposal and those by Mirshokraie et al. [7]

in web applications and then defined mutation operators
corresponding to these features.

VII. CONCLUSION AND FUTURE WORK

In this paper, we classified the features of JavaScript in
web applications and defined mutation operators for them.
By using our tool, developers can estimate the fault-finding
capability of their test cases. We conducted a brief survey on
real faults and a case study using a real-world application.
The results of our evaluations indicated that our tool could
expose faults including ones missed by coverage criteria.
We conclude that our approach can help developers improve
their test cases and find more faults.

Our future work will be in three main directions. First,
we plan to refine the mutation operators for JavaScript web
applications by surveying more real faults and conducting
additional case studies. Second, we will use our approach to
evaluate other methods that support tests such as automated
testing. Third, we plan to investigate a new automated testing
algorithm that can kill mutants efficiently.

REFERENCES

[1] F. S. Ocariza Jr., K. Pattabiraman, and B. Zorn, “Javascript errors in
the wild: An empirical study,” in Proc. Int’l Sym. on Softw. Reliability
Eng. (ISSRE), 2011, pp. 100 –109.

[2] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip, “A framework
for automated testing of javascript web applications,” in Proc. Int’l
Conf. on Softw. Eng. (ICSE). ACM, 2011, pp. 571–580.

[3] A. Mesbah and A. van Deursen, “Invariant-based automatic testing
of ajax user interfaces,” in Proc. Int’l Conf. on Softw. Eng. (ICSE).
IEEE Computer Society, 2009, pp. 210–220.

[4] A. Marchetto, P. Tonella, and F. Ricca, “Testing techniques applied to
ajax web applications,” in Proc. WS on Web Quality, Verication and
Validation, 2007.

[5] H. Shahriar and M. Zulkernine, “Mutec: Mutation-based testing of
cross site scripting,” in Proc. ICSE WS on Softw. Eng. for Secure
Systems (IWSESS). IEEE Computer Society, 2009, pp. 47–53.

[6] U. Praphamontripong and J. Offutt, “Applying mutation testing to web
applications,” in Proc. Int’l Conf. on Softw. Testing, Verification, and
Validation WSs. IEEE Computer Society, 2010, pp. 132–141.

[7] A. Mirshokraie, Shabnam. Mesbah and K. Pattabiraman, “Efficient
javascript mutation testing,” in Proc. Int’l Conf. on Softw. Testing,

Verification and Validation (ICST). IEEE Computer Society, 2013,
p. to appear.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11,
no. 4, pp. 34 –41, april 1978.

[9] Y. Jia and M. Harman, “An analysis and survey of the development
of mutation testing,” IEEE Trans. on Softw. Eng., vol. 37, no. 5, pp.
649–678, Sep. 2011.

[10] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang, “An experimental
evaluation of data flow and mutation testing,” Softw. Pract. Exper.,
vol. 26, no. 2, pp. 165–176, Feb. 1996.

[11] Garrett, Jesse James. (2005, Feb.) Ajax: A new approach to
web applications. [Online]. Available: www.adaptivepath.com/ideas/
ajax-new-approach-web-applications

[12] A. J. Offutt and R. H. Untch, “Mutation testing for the new century,”
W. E. Wong, Ed. Norwell, MA, USA: Kluwer Academic Publishers,
2001, ch. Mutation 2000: uniting the orthogonal, pp. 34–44. [Online].
Available: http://dl.acm.org/citation.cfm?id=571305.571314

[13] D. A. Justin Gehtland, Ben Galbraith, Pragmatic Ajax: A Web 2.0
Primer. O’REILLY, 2006, ch. Ajax Explained, pp. 61–77.

[14] D. Batory, “Feature models, grammars, and propositional formulas,”
in Proc. Int’l Conf. on Softw. Product Lines. Springer-Verlag, 2005,
pp. 7–20.

[15] F. S. Ocariza Jr., K. Pattabiraman, and A. Mesbah, “Autoflox: An
automatic fault localizer for client-side javascript,” in Proc. Int’l Conf.
on Softw. Testing, Verification and Validation (ICST). IEEE Computer
Society, 2012, pp. 31–40.

[16] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test data
generation,” IEEE Trans. on Softw. Eng., vol. 17, no. 9, pp. 900–910,
Sep. 1991.

[17] Y. Zheng, T. Bao, X. Zhang, and W. Lafayette, “Statically locating
web application bugs caused by asynchronous calls,” in Proc. World
Wide Web (WWW), 2011, pp. 805–814.

[18] M. Alshraideh, “Complete automation of unit testing for javascript
programs,” Computer Science, vol. 4, no. 12, pp. 1012–1019, 2008.

[19] A. Marchetto, F. Ricca, and P. Tonella, “Empirical validation of a
web fault taxonomy and its usage for fault seeding,” in Proc. Int’l
WS on Web Site Evolution (WSE). IEEE Computer Society, 2007,
pp. 31–38.

[20] Y. Guo and S. Sampath, “Web application fault classification - an
exploratory study,” in Proc. Int’l Sym. on Empirical Softw. Eng. and
Measurement (ESEM). ACM, 2008, pp. 303–305.

[21] F. C. Ferrari, J. Maldonado, and A. Rashid, “Mutation testing for
aspect-oriented programs,” Proc. Int’l Conf. on Softw. Testing, Verifi-
cation, and Validation (ICST), pp. 52–61, 2008.

