Extended Design Patterns in New Object-Oriented Programming Languages

Kazunori Sakamoto #!, Hironori Washizaki *2, Yoshiaki Fukazawa **

National Institute of Informatics

1 L. .
exkazuul@nii.ac.jp

* Dept. Computer Science and Engineering, Waseda University

2

Abstract

Most of design patterns are implemented in major
object-oriented programming languages such as C++ and
Java. However, newer object-oriented programming lan-
guages than such languages has new language features
which can improve implementations of design patterns.

In this paper, we propose two extended design patterns
called customizable state pattern and deeply immutable
pattern. We compares implementations of our design pat-
terns in Java, C++ and eight new object-oriented program-
ming languages through our motivating example. As a re-
sult, we confirmed new languages, in particular Scala, im-
proved implementations of our design patterns.

1. Introduction

The Gang-of-Four (GoF) design patterns (DPs) make
software quality better by providing reusable design solu-
tions [2]. The authors’ sample implementations of the GoF
DPs are written in C++. Other samples also exist in differ-
ent programming languages such as Java and C#.

Most of new object-oriented programming (OOP) lan-
guages have functional features. For example, Java7 ! had
planned to employ closure features. Although Java8 will
employ closure features instead Java7, several new lan-
guages on Java Virtual Machine (JVM) such as Scala have
already employed functional features including closures.

While DPs do not depend on programming languages,
implementations of DPs depend on programming lan-
guages. The reason is that each programming language has
different language features so that ways to implement in-
stances of DPs are different with respect to each program-
ming language. For example, C++ supports multiple inher-
itance, while Java lacks it. Thus, it is difficult to design a
class to have multiple roles in Java.

The GoF DPs are currently designed mainly for C++ and
Java. However, newer OOP languages than C++ and Java

Uhttp://www.jcp.org/en/jst/detail 2id=335

washizaki@waseda.jp ° fukazawalwaseda.jp

can improve implementations of the GoF DPs. For exam-
ple, the strategy pattern is designed as an alternative way
to implement functional values. OOP languages with func-
tional features such as Scala can directly handle functional
values without the strategy pattern. As another example,
Scala supports an object class which represents a singleton
object with the singleton pattern.

Many researchers improved implementations of DPs
with other programming paradigms than the OOP [3-5, 9].
Moreover, a number of DPs are also proposed for other
paradigms than the OOP [1, 6].

In this paper, we propose two extended DPs through
our development experience of ACM JavaChallenge 2012,
which is an artificial intelligence programming (AI) contest
related to game software 2. We discuss how we can improve
implementations of our DPs in new OOP languages includ-
ing Scala in comparison with C++ and Java. As a result, we
confirmed new OOP languages can improve implementa-
tions of our DPs. We believe our result indicates new OOP
languages promote improving and extending existing DPs.

The contributions of this paper are as follows.

e Two extended DPs called customizable state and

deeply immutable DPs.

e Improvements on implementations of our DPs in new

OOP languages such as Scala.

e What language features are required to improve our de-

sign patterns.

2. Motivating example

We explain a need of extended DPs through our devel-
opment experience of JavaChallenge 2012.
2.1. Requirements of sample game software

We developed game software for JavaChallenge 2012 in
Java and Scala. The contestants develop Al programs on
our game software to compete with each other. As a result

2We will publish a paper on ICSE GAS 2013 which highlights whole
development experience of JavaChallenge 2012 including our DPs. How-
ever, this paper highlights only extended DPs in new OOP languages.

of our requirement analysis, we found the game software
have to satisfy five requirements as follows. Note that we
consider the game software as sample software for our dis-
cussion in this paper.

Functional requirement (FR1) The software have to
make progress based on a state machine. The software
shows and executes various scenes such as a title, main
and end scenes corresponding to a current state.

Functional requirement (FR2) The software have to al-
low users to switch various playing modes such as user
manipulation, Al manipulation, graphical user inter-
face (GUI) and console user interface (CUI) modes.

Non-functional requirement, security (NFR1) Game
states of the software have to be protected from user-
developed Al programs. Al programs is prohibited to
modify the game states illegally.

Non-functional requirement, concurrency (NFR2) The
software have to be concurrently work to speed up Al
programs so that it aids them to find the best action.

Non-functional requirement, maintainability (NFR3)
The source code of the software have to have no
duplicated code and no redundant code because such
code reduces maintainability such as changeability
and understandability.

We had previously developed a framework called Game
Al Arena (GAIA) which aids to develop game software
where user-developed Al programs can be added [7]. GAIA
provides a Scene interface and a SceneManager class
as a feature of a state machine designed by the state pat-
tern. The SceneManager class changes game scenes by
switching an active Scene object. The Scene interface
has an advance method which returns a next Scene ob-
ject for the switch.

2.2. Design with the state pattern in Java
|

game.java

<<interface=>>
Scene

|AII scene classes refers GlobalGameState class. 5

<<singleton>> <<mutable>= <<mutable>>
+ advance() - Scene GlobalState | Map l<—= Character
+ render() : void L T 1T

+ -~
readlinput() - Siring ~s77 /’1 = !
w7
! s , S~ <<mutable=>
B S Ol.x
TitleScene o End o ! Player

- nextScene : Scene - nextScene : Scene - nextScene : Scene

+ advance(): Scene
+ render() : void
+ readinput{) : String

T

GuiUserTitleScene

+ advance() : Scene
+ render() : void
+ readinput{) : String

+ advance() : Scene
+ render() : void
+ readinput() : String

CuiUserTitleSce CuiAlTitleScene

+ render() : void
+ readinput{) : String

+ render() : void
+ readinput{) : String

+ render() : void
+ readinput() : String

+ render() : void
+ readinput{) : String

|GameSceme and EndScene also have four child classes similar to above classes BI

Figure 1. Class diagram of the software with the
state pattern in Java

Figure 1 shows a class diagram of the software in
Java. This diagram does not contain the SceneManager
class and several unrelated classes for the simplicity. The
GlobalState, Map, Character and Player classes
are for representing a game state. Theses classes are mu-
table, and thus, their objects can be modified in playing
games.

The game consists of three scenes to satisfy FR1: a
title, a main, and an end scenes. The TitleScene,
MainScene, EndScene abstract classes represent these
scenes. The title scene initializes the game showing a title
image, the main scene deals with the game logic showing a
game screen and the end scene calculates the result of the
game showing the result.

The software has four modes to satisfy FR2: a user ma-
nipulation, an Al manipulation, a GUI and a CUI modes.
Although the user manipulation mode acquires game inputs
from a keyboard, the Al manipulation mode acquires game
inputs from Al programs. The user manipulation mode is
suitable for debugging the software and Al programs. The
GUI mode shows a graphical game screen, while the CUI
mode shows a text-based game screen. The CUI mode is
also suitable for debugging Al programs by speeding up the
game. For example, the GuiUserTitleScene class is
for the title scene with the GUI and the user manipulation
modes.

This design has three problems as follows.

e The classes representing the game state are mutable.
The mutable classes cause risks of illegally modifying
the game states so that this design violates NFRI1.

e The scene classes are strongly combined with the sin-
gleton class as a global variable of the game state. This
dependence makes the concurrent execution difficult
so that this design violates NFR2.

e Duplicated and redundant code exists between scene
classes such as the GuiUserTitleScene class and
the GuiUserMainScene class (abbreviated in the
diagram) so that this design violates NFR3.

2.3. Design with the state pattern in C++

Although we can apply multiple inheritance which is
applied only when defining classes into the scene classes
to reduce duplicated code, applying such multiple in-
heritance increases classes. Figure 2 shows a class di-
agram of the software with the state pattern in C++,
which supports the multiple inheritance. For example, du-
plicated code between the GuiUserTitleScene and
CuiUserTitleScene classes are extracted into the
UserInputScene class. The GuiScene, CuiScene
and AT InputScene classes are also newly added to ex-
tract the duplicated code.

game.multiple_inheritance

<<interface=>
Scene

All scene classes refers GlobalGameState class. H

N ingleton=> <<mutable>> <<mutable>>
+advancef) : Scene GlobalState [Map l<—>{ Character
+ render() : void - — [t 1.

+ readinput() : Strin Sea
‘z;l - - ‘ﬂ R \
it L . <<mutabls>>

TitleScene - GameScene EndScene 1. Player
- nextScene : Scene - nextScene : Scene - nextScene : Scene
+advance() : Scene +advance() : Scene + advance() : Scene
+render() : void Kz +render() : void + render() : void
+ readinput() : String ‘t@dlmputo : String + readinput() : String

iy K
GuiSc*ne UserlirputScene CuiScene AllnputScene

+ render() | void

“Trender) wid

+ readinput() : String

A

Ngadinput() : St
e
M

Yy h

GuiUserTitleScene

CuiUserTitleSce

GuiAlTitleScene

-

CuiAlTitleScene

+render() : void
+ readinput() : String

+render() : void
+ readinput() : String

+ render() : void
+ readinput() © String

+ render() : void
+ readinput() : String

‘GameS:ene and EndScene also have four child classes similar to above classes [ﬁ

such as
CuiDecorator,

the SceneDecorator,

AlInputDecorator classes,
dant classes such as the GuiUserTitleScene class in
Figure 1 to satisfy NFR3. Moreover, this design extracts
the duplicated code into the five decorator classes to satisfy

NFR3.
Figures 1 and 2.

GuiDecorator,
UserInputDecorator

and

it removes 16 redun-

Thus, this design is better than the designs of

2.5. Design with the state pattern in Scala

Figure 2. Class diagram of the sample game soft-
ware with the state pattern in C++

game.scala
<<interface>>
Scene <<immutable>> <<immutable>> <<immutable>>
B State — Map — Character

+ advance(state * State) - Scene 11 11.r
+render() : void Kz -
+ readinput() - String Te.l N 1 <<immutable>>

PATAVAI VS R%S el . Player

[N b AN Teell

[> -

TitleScene GameScene EndScene

- nextScene : Scene

- nextScene : Scene

- nextScene : Scene

+ advance(state : State) - Scene
+ render() : void
+ readinput() : String

+ advance(state © State) - Scene
+render() : void
+readinput() : String

+ advance(state © State) - Scene
+ render() : void
+ readinput() : String

\

2.4. Design with the state and decorator patterns

<<interface>>

game.decorator

‘AII scene classes refers GlobalGameState class.ﬁ

<smutable>>
Character

Scene
<<singleton=> <<mutable>> ;
+advance() . Scene GlobalState |—— Map 1
+render() : void 11 <<mutable>>
+readinpuf() - String -~ Player
&nﬁ;—_ﬂ\n Wi
A e S
I v N 1
TitleScene GameScene EndScene SceneDecorator

- nextScene : Scene

- nextScene : Scene

- nextScene - Scene

- delegateScene : Scene

+advance() . Scene
+render() : void
+readinput() - String

+advance() . Scene
+ render() : void
+readinput() : String

+advance() : Scene
+render() : void
+ readinput() : String

+advance() . Scene
+render() : void

N + readinput() : String

——

T

GuiDecorator

CuiDecorator

UserlnputDecorator

AllnputDecorator

+render() . void

+render() . void

+readinput() - String

+readinput() : String

Figure 3. Class diagram of the software with the
state and decorator patterns

1 Scene scene = new GuiDecorator (
2 new UserInputDecorator (new TitleScene()));

Figure 4. Java code constructing a similar object
to a GuiUserTitleScene object

We can also employ the decorator pattern instead of
multiple inheritance. The decorator pattern allows to
enhance objects with delegation. Figure 3 shows a class di-
agram of the software with the state and decorator patterns
in Java. The SceneDecorator class is a base class of
a decorator which has the delegateScene field to be
enhanced. For example, Figure 4 shows Java code which
constructs a similar object to a GuiUserTitleScene
object. Although this design adds the five decorator classes

Relations
between
Scene and

traits can be
abbreviated

<<trait>>
GuiFeature

<<trait>>
CuiFeature

<<trait>>
UserinputFeature

<<trait>>
AlinputFeature

+render() : void +render() : void +readinput() : String +readinput() : String

Figure 5. Class diagram of the software with the
state pattern in Scala

1 val scene = new TitleScene ()
2 with UserInputFeature with GuiFeature

Figure 6. Scala code constructing a similar object
to a GuiUserTitleScene object with mixin

Scala supports mixin instead of multiple inheritance so
that Scala can merge classes with traits [8]. Scala also
allows to construct an object with mixin which is ap-
plied when creating objects. Figure 5 shows a class dia-
gram of the software with the state pattern in Scala. Fig-
ure 6 shows Scala code which constructs an similar ob-
ject to a GuiUserTitleScene object with the mixin.
Although this design adds the four traits such as the
GuiFeature, CuiFeature, UserInputFeature,
and ATl InputFeature traits, it removes 16 classes such
as the GuiUserTitleScene class in Figure 1 to satisfy
NFR3. Moreover, this design extracts the duplicated code
into the four traits to satisfy NFR3. This design is better
than the designs of Figures 3 because this design does not
require a similar class to the SceneDecorator class.

2.6. Design about immutability

Immutability is preferable because changes of variable
values increase complexity of programs. Functional pro-
gramming represents programs with mapping of function

application while imperative programming represents pro-
grams with changes of variable values. Thus, functional
programming can easily employ immutability in programs.
The GlobalState class and the related classes such as
the Map, Character and Player classes in Figures 1,
2 and 3 are mutable. Objects of these classes can be easily
modified from other programs.

We can employ immutable objects to prevent illegal
modification completely. The State class in Figures 5 is
immutable. Moreover, the classes referred from the State
class are also immutable. When the referred classes are mu-
table, the game state can be modified partially. Thus, the
State class have to be deeply immutable to satisfy NFR1.

The GlobalState class is a singleton class which
represents the game state. All scene classes refer the
GlobalState class to make progress on games. This
design strongly combines the scene classes with the
GlobalState class. For example, Al programs some-
times require enormous time to search the best action. Al-
though executing multiple games concurrently can reduce
the time, this combination makes the concurrent execution
difficult. Moreover, the singleton object cannot represent
multiple game states. In contrast, the State class is used
only as a parameter of methods in the scene classes. These
scene classes can treat multiple game states for the concur-
rent execution to satisfy NFR2 because the scene classes do
not have State objects in fields.

3. Customizable state pattern

We extract a new DP called customizable state pattern
which extends the state patterns from Figures 3 and 5. In
this section, we show the description of the customizable
state pattern.

3.1. Context

Program behavior changes corresponding to a state
based on a state machine. A program on each state deals
with various operations such as doing logic and rendering
an UL The operations differ depending on options such as a
CUI and a GUI modes.

3.2. Problem

Options cause combinatorial explosion so that it dras-
tically increases conditional branches or classes. Options
also cause duplicated code and redundant code so that it re-
duces maintainability.

3.3. Forces

e Combinatorial explosion owing to options increases
program elements linearly with the number of options.

e Source code representing options does not contain du-
plicated code and redundant code.

3.4. Solution

Create modules representing behavior of states with re-
spect to each option. Note that the number of modules
should be equal to the number of options except for addi-
tional modules such as a base class. Combine state modules
with option modules with one of the following ways.

3.5. Implementation

Context State

/4\

Concr 1 Concr

2 StateDecorator

{A

ConcreteDecorator2

ConcreteDecorator1

Figure 7. Class diagram of customizable state pat-
tern with the mixin

Figure 7 shows a class diagram of the customiz-
able state pattern with the state pattern and multiple in-
heritance or mixin which is applied when creating ob-
jects. The StateFeature modules are merged with
ConcreteState classes corresponding to options. This
implementation requires only modules corresponding to op-
tions without additional classes.

Context State

AR

ConcreteState1

ConcreteState2

StateFeature1 StateFeature2

Figure 8. Class diagram of customizable state pat-
tern with decorator pattern

Figure 8 shows a class diagram of the customizable
state pattern with the state and decorator patterns. The
ConcreteDecorator classes are corresponding to op-
tions and enhance the ConcreteState classes. This im-
plementation requires additionally the StateDecorator
class in comparison with the design of Figure 7.

3.6. Consequences

The customizable state pattern deals with the combina-
torial explosion owing to options. Basically, the implemen-
tations of the options requires only the same number of the
modules as the options. The modules modularize the imple-
mentations of the options well so that duplicated code and
redundant code do not appear.

3.7. Related Patterns

State patter Although the state pattern does not consider
how to modularize state classes which have various op-

erations, the customizable state pattern aids to modu-
larize state classes where options are added.

Decorator pattern and bridge pattern The decorator and
bridge patterns can be utilized to modularize state
classes with various operations. Although multiple in-
heritance or mixin which is applied when creating ob-
jects is a better way to modularize them, the decora-
tor pattern is also one of ways to modularize them in
OOP languages without the multiple inheritance and
the mixin.

4. Deeply immutable pattern

We extract a new DP called deeply immutable pattern
which extends the immutable patterns from Figure 5. In this
section, we show the description of the deeply immutable
pattern.

4.1. Context

A program consists of a set of classes for representing a
program state (not related to state role for the state pattern).
The program state must not be illegally changed by added
user programs. The program allows to clone and restore
program states to search other program states. The pro-
gram can concurrently work using multiple program states
to speed calculations up.

4.2. Problem

It is not clear how to modularize the program state as im-
mutable modules in OOP languages because most of major
OOP languages are designed for imperative programming.
Moreover, the singleton pattern is frequently used as only
global variables. However, a singleton class cannot be uti-
lized to clone and restore program states and cannot treat
multiple program states.

4.3. Forces

e Program states are protected from illegal modification
by user programs.

e Program states are cloned and restored to search other
program states.

e The program treats the multiple program states.

4.4. Solution

Modularize the set of classes for representing a program
state with a tree structure making all the fields in the classes
immutable. Determine one of program state classes as a
root class and the other classes as node classes. Change
each class so that they have one-way connections to child
node classes and all node classes can be scanned from the
root class. Copy the root and node classes from a modi-
fied node class recursively when generating a new program
state.

4.5. Implementation

Client RootState

+d i ‘R ‘R R

+copy(s1 : SubState1, s2 : SubState2) : RootState

\

SubState2

SubsState1

+copy(ss1 : 1,882 2) : SubState1 + copy(ss3 : SubSubState3) : SubState2

L \

SubSubsState1 SubSubsState2 SubSubState3

+copy() : SubSubState1 +copy() : SubSubState2 +copy() : SubSubState3

Figure 9. Class diagram of deeply immutable pat-
tern

Figure 9 shows a class diagram of the deeply immutable
pattern. The Client class manipulates the program state
locally (e.g. acquiring a State object as a parameter and
passing a new modified object to other methods) because
a global immutable object cannot be utilized to represent
changeable program states.

case class State (SubStatel subl, SubState2 sub2) {
def newState () = {

val newSubl = createNewSubl ()

this.copy (subl = newSubl)

}

case class SubStatel (SubSubStatel subSubl,
SubSubState2 subSub2)
9 | case class SubState2 (SubSubState3 subSub3)
10 | case class SubSubStatel () {}

11 case class SubSubState2 () {}

12
13 | val state: State = initialize()
14 | val newState = state.newState ()

1
2
3
4
5 }
6
7
8

Figure 10. Scala code which defines the classes

Figure 10 shows Scala code which defines the classes in
Figure 9. Several OOP languages with functional features
such as Scala aids to implement immutable classes. Case
class in Scala generates several useful methods including
the copy method. The copy method copies the receiver’s
object accepting parameters for changing the specific fields.
The Scala code in Figure 10 generates a new State ob-
ject by modifying subl field with a return value of the
createNewSubl method.

4.6. Consequences

The deeply immutable pattern protects program states
from being modified illegally. This pattern also allows to
utilize immutable classes for representing changeable pro-
gram state by generating and passing modified program
states.

4.7. Related Pattern

Immutable pattern The immutable pattern treats only a
target class without referring classes so that the target
class can have relations to mutable classes. Thus, im-
mutable pattern cannot guarantee a set of classes for

representing program states are immutable.

5. Evaluation

We evaluate our extended DPs through the sample soft-
ware. Table 1 shows the numbers of required classes and
relations which indicate inheritances and references, and
existence of duplicated code in the state and customizable
state patterns, respectively. We consider six new OOP lan-
guages on the JVM and two new OOP languages on the
.NET Framework: Scala, Kotlin, Xtend, Ceylon, Fantom,
Gosu, F# and Nemerle.

Let S be the number of state classes and O be the number
of combinations of options, and P be the number of option
classes which a state depends on. Note that the numbers
of required classes and relations are expressed as formulas
with concrete numbers in the case of the sample software.

The implementations with the customizable state pattern
have only S+O+1 or S+0O classes with S+O+2 or S+0O
relations while them without the customizable state pattern
has S+S5*0 or S+S5%0+1 classes with SxO or SxOx(P+
1) relations. Scala, Kotlin, and Ceylon support mixin which
is applied when creating objects using an anonymous class
so that they remove classes and relations about decorators.
The customizable state pattern reduces approximately 50%
classes and 33% relations at least for the sample software.

Table 2 shows the numbers of required implementations
for immutable classes and of required copy methods. Let
F be the number of fields in classes for representing a pro-
gram state and C be the number of classes for representing
a program state.

Xtend and Fantom support annotations for marking im-
mutable classes. Fields in Ceylon and Nemerle are im-
mutable by default. Fantom can check whether an im-
mutable class is deeply immutable at compile-time. Scala
and F# automatically generate copy methods for updating
immutable objects. Kotlin will support immutability with
copy methods similarly to Scala. Thus, several new OOP
languages, in particular Scala and F#, can reduce imple-
mentation costs for applying the deeply immutable pattern.

Table 1. Evaluation of customizable state pattern

Implementation Class Dupli
Relation cation

State /wo multiple inheritance and S+S5x%0 (15 Exist

mixin in Java, Xtend, Nemerle, F# S x0 (12)

State /w multiple inheritance and S+ S*x0O+1(16) | None

mixin in C++, Scala, Kotlin, Gosu SxOx(P+1)

Ceylon, Fantom 36)

Customizable state with decorator S+0+1() None

in Java, C++, Xtend, Fantom, S+0+209)

Gosu, Nemerle, F#

Customizable state with mixin S+ 07 None

in Scala, Kotlin, Ceylon S+ 07

Table 2. Evaluation of deeply immutable pattern

Implementation Implementation | Copy
for immutability | method
C++, Java, Kotlin, Gosu F C
Xtend, Ceylon, Fantom, Nemerle 0 C
Scala, F# 0 0

6. Conclusions

We proposed the customizable state pattern and the
deeply immutable pattern. We found that newer OOP lan-
guages such as Scala than traditional ones such as C++ and
Java can improve implementations of our DPs.

We plan to improve existing DP such as the GoF DP in
new OOP languages with functional features. Moreover, we
will find which language features can improve DPs and how
the features can improve DP with case study.

References

[1] S. Antoy and M. Hanus. New functional logic design patterns.
In Proceedings of the 20th international conference on Func-
tional and constraint logic programming, WFLP’11, pages
19-34, Berlin, Heidelberg, 2011. Springer-Verlag.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[3] J.a.L. Gomes and M. P. Monteiro. Design pattern implemen-
tation in object teams. In Proceedings of the 2010 ACM Sym-
posium on Applied Computing, SAC ’10, pages 2119-2120,
New York, NY, USA, 2010. ACM.

[4] O. Hachani and D. Bardou. Using aspect-oriented program-
ming for design patterns implementation. In In Proc. Work-
shop Reuse in Object-Oriented Information Systems Design,
2002.

[5] J. Hannemann and G. Kiczales. Design pattern implemen-
tation in java and aspectj. SIGPLAN Not., 37(11):161-173,
Nov. 2002.

[6] R.Lammel andJ. Visser. Design patterns for functional strate-
gic programming. In Proceedings of the 2002 ACM SIGPLAN
workshop on Rule-based programming, RULE 02, pages 1—
14, New York, NY, USA, 2002. ACM.

[7] K. Sakamoto, A. Ohashi, H. Washizaki, and Y. Fukazawa. A
framework for game software which users play through artifi-
cial intelligence programming (in japanese). IEICE Transac-
tions, 95(3):412-424, mar 2012.

[8] N. Schirli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behaviour. In L. Cardelli, editor,
ECOOP 2003 - Object-Oriented Programming, volume 2743
of Lecture Notes in Computer Science, pages 248-274.
Springer Berlin Heidelberg, 2003.

[9] G.T. Sullivan. Advanced programming language features for
executable design patterns “better pattern through reflection”,
2002.

