
Towards a Unified Source Code Measurement
Framework Supporting Multiple Programming

Languages

Reisha Humaira, Kazunori Sakamoto, Akira Ohashi, Hironori Washizaki, Yoshiaki Fukazawa
Dept. Computer Science and Engineering

Waseda University
Tokyo, Japan

(reisha@fuji, kazuu@ruri, akira-radiant@akane).waseda.jp / (washizaki, fukazawa)@waseda.jp

Abstract—Software metrics measure various attributes of a piece

of software and are becoming essential for a variety of purposes,

including software quality evaluation. One type of measurement

is based on source code evaluation. Many tools have been

developed to perform source code analysis or to measure various

metrics, but most use different metrics definitions, leading to

inconsistencies in measurement results. The metrics measured by

these tools also vary by programming language. We propose a

unified framework for measuring source code that supports

multiple programming languages. In this paper, we present

commonalities of measurable elements from various

programming languages as the foundation for developing the

framework. We then describe the approach used within the

framework and also its preliminary development. We believe that

our approach can solve the problems with existing measurement

tools.

Keywords-source code measurement; metrics; framework;

multiple languages

I. INTRODUCTION

Quantitative measurements have become essential in
software development for a variety of purposes, especially the
evaluation of software quality. Software metrics as a measure
of properties of a piece of software are commonly used by
software developers and are based on software processes,
products, or resources [1]. There are various kinds of
measurements that can be conducted based on the goal of the
metric.

One type of measurement is performed based on source
code. There are already a large number of source code
measurement tools, but most of them are only able to handle
one programming language [2], [3], [4], [5], [6]. Some, such as
[7] and [8], are able to handle multiple programming
languages, but we still need to specify which programming
language should be measured, which means these tools cannot
handle software written in more than one programming
language. In addition, some measurement tools cover only one
metric category. For example, [9] and [10] only assess size by
measuring lines of code, so if we want to measure complexity
we have to find another measurement tool. When different
tools are used together, there can be inconsistency in
measurement results due to differences in measurement
definitions and standards among the tools [11].

It would be worthwhile to have a unified source code
measurement system for multiple programming languages.
However, the implementation would not be easy since
processing each programming language and metric would
entail significant expense. In this paper, we present the
preliminary efforts related to our proposed measurement
framework. We extract the commonalities of various elements
needed to measure source code metrics regarding the features
of a particular programming language. The results are the
foundation for developing a lower-cost framework, and it will
be easier to define or modify the measurement for use with
multiple programming languages.

The remainder of this paper is organized as follows. Section
2 discusses problems with existing measurement tools, and also
metrics that can be measured from source code. Section 3
discusses commonalities of metrics for several programming
languages. Section 4 provides an overview of the proposed
framework for source code measurement supporting multiple
programming languages. Section 5 discusses a case study.
Section 6 considers related works. Finally, Section 7 addresses
conclusions and future work.

II. BACKGROUND

A. Problems with Existing Approaches

The following summarizes the main problems with existing
tools.

1) Cost of New Development
The implementation of a measurement tool supporting

multiple programming languages would be very expensive,
mainly due to the difficulty in implementing an analyzer to
obtain information from the source code of every language. In
addition, since developers increasingly use object-oriented
programming languages, metric tools are built mainly to
support that paradigm (in addition to the basic measurement of
lines of code) [11]. Tools are often unavailable for other
paradigms. However, procedural or functional languages are
still popular, and tools compatible with these languages are
therefore necessary.

2) Incomprehensive Measurement
Most existing source code measurement tools only assess

software size and cannot evaluate software written in multiple

languages. JSUnit [12] is an example of a program that uses
more than one programming language. JSUnit is a client-
server-type test framework that performs tests on web browsers
and displays the results on the client side. The client side of
JSUnit is implemented in JavaScript and the server side is
implemented in Java. With existing tools, the measurement of
JSUnit metrics requires that the Java and JavaScript code be
separated and that two measurements be performed.

3) Inconsistent Measurement
Different measurement tools have different metrics

definitions that may produce different results [11]. For
example, we evaluated several Java code files within the
package net.jsunit.model and some JavaScript code files
within the app directory of JSUnit. We obtained the source
code of JSUnit from its Github project page1. Table I shows the
measurement results using different tools. In this example, lines
of code (LOC) in Metrics 1.3.6 is defined as non-blank lines of
code, but Source Monitor also counts blank lines when
measuring LOC. Furthermore, Count Lines of Code (CLOC)
skips blank lines and comment lines when measuring code
lines.

TABLE I. DIFFERENCES BETWEEN METRICS TOOLS

File Name

Metrics

1.3.6 [5]

Source

Monitor [7]
CLOC [10]

Lines Lines Statement Blank Code

AbstractResult.java 73 88 57 15 73

BrowserResult.java 197 248 147 51 197

BrowserSource.java 6 10 5 4 6

TestCaseResult.java 128 160 97 32 128

TestPageResult.java 45 61 32 16 45

TestRunResult.java 184 223 147 39 184

jsUnitCore.js n/a 977 283 107 504

jsUnitParams.js n/a 117 62 24 93

jsUnitTracer.js n/a 48 33 9 39

B. Source Code Metrics

This section reviews the source code measurement systems
that are most commonly used. We focus on size and
complexity because they are the most important measurements
[13].

1) Size Measurement
Lines of code (LOC) are the traditional measurement of

software size. We define: the number of physical lines of target
source code for measurement (total lines of code); the number
of lines that contain the instructions necessary to execute a
program (effective lines of code); the number of lines that
contain only comments (comment lines of code); and the
number of the lines that contain only spaces, tabs, or newline
character(s) (blank lines of code). Measuring the number of
“statements”, which are logical measures based on the
specification of the programming language, could also be a
component of size measurement.

1 https://github.com/pivotal/jsunit

2) Complexity Measurement
The following are several complexity measurements [13].

• Cyclomatic complexity: the complexity measurement
proposed by McCabe, which is a measure of the
number of control flows within a module.

• Halstead’s software science: complexity metrics based
on the number of operators and operands in a program.

• Information flow metrics: these measure the
information flow into and out of modules, and indicate
the cohesion of the program.

• CK metrics: a set of object-oriented design metrics by
Chidamber and Kemerer, consisting of six metrics that
measure class size and complexity, use of inheritance,
coupling between classes, class cohesion, and
collaboration between classes.

III. ASSESSING SOURCE CODE METRICS AND

PROGRAMMING LANGUAGES

To define the base of our framework, we conducted
assessments of source code metrics and programming language
features. These assessments produce the commonalities of
source code’s measurable elements. From these measurable
elements, we can define a metric more easily and even
customize a new metric by utilizing the predefined measurable
elements.

We analyzed the metrics described in subsection II-B to
determine what elements of a program are used by these
metrics. The size measurements are simply related to the

TABLE II. MEASURABLE ELEMENTS USED BY METRICS

Measurable Elements

S
T
M
T
a

H
a
lste

a
d
b

CK Metricsc

W
M
C

D
IT

N
O
C

C
B
O

R
F
C

L
C
O
M

statement √

operator √

operands √

Entities

class √ √ √ √ √

method √ √ √

attribute √

Relationships

method calls method √ √

class inherits from class √

class is a child of class √

class uses instance of
other class

 √

class is parent to class √

class/method uses
attribute

 √

a. Number of statements. b. Halstead’s software science.

c. The CK metrics: weighted methods per class (WMC), depth of inheritance tree (DIT),
number of children (NOC), coupling between object (CBO), response for class (RFC),

and lack of cohesion in methods (LCOM)

physical lines of source code. The number of statements is
based on the “statement” definition in the programming
language. The cyclomatic complexity is measured based on
control flow, and Halstead’s software science is related to
operators and operands. Reference [14] has developed a data
model of information from which most of the proposed object-
oriented design metrics can be computed. The data model lists
12 entities and 17 relationships that are used by the metrics. We
found that at the implementation level, the “class sends
message to class/method” relationship is similar to “method
calls method”, so we combined them. In addition, we also
combined the “class uses attribute of class” and “class/method
uses attribute” relationships. Table II summarizes the
measurable elements that are used by number of statements,
Halstead’s software science metrics, and CK Metrics.

We expanded this preliminary measurable elements list so
we could assess other features of programming languages. We
also wanted to cover measurable elements provided by non-
object-oriented languages.

We included 20 programming languages in our analysis,
based on [15]. Table III summarizes the measurable elements
that could be quantified in each programming language. Table
III consists of two parts. The first part describes the paradigm
used by each programming language, based on the definition
for each paradigm as presented in [16]. The checkmarks (“√”)
show the supported paradigms.

The second part depicts the measurable elements. A
checkmark indicates that the measurable element could be
quantified in the corresponding programming language. Every
programming language has statements, operators, and operands
that we could count. Therefore, we inferred that the number of
statements and Halstead’s software science metrics could be
calculated for each language. For other elements, the results
varied by programming language.

Non-object-oriented programming languages do not utilize
the class and inheritance concepts. Alternatively, they use other
concepts that can be measured, such as modules, functions, and
procedures. We can possibly use these elements to produce
complexity measurements such as numbers of functions,
numbers of procedures, etc.

In comparison, languages designed mainly for object-
oriented programming such as Java, C#, C++, and Python
incorporate measurable elements that permit us to assess
object-oriented metrics. Nevertheless, historically imperative
languages that have been extended with some object-oriented
features such as Perl and Ada yield different results, especially
in association with the class concept. JavaScript is also a
distinctive case.

Measurable elements are readily distinguished based on
language syntax. In Perl and Ada, we can declare a class using
the package keyword. However, the same keyword is also
used to declare namespace, subprogram, or data types.
Therefore, we cannot determine that all package keywords
indicate the presence of classes. In spite of this, Perl has the
special keyword @ISA and Ada uses tagged to indicate
inheritance, both of which allow us to count the measurable
elements related to inheritance. We could possibly designate

packages associated with the inheritance keyword as “classes”
instead of “packages”, but we would perhaps incorrectly
measure the number of classes since classes without inheritance
would not be counted. In other words, we could partially count
the “class” number. We note such cases with dots (“●”) in
Table III.

JavaScript is actually a prototype-based scripting language.
Although it supports the object-oriented paradigm, the
identification of classes or inheritance is complicated by the
fact that we utilize function to declare a class. Therefore, in
JavaScript we interpreted function syntax as representing a
“function” although semantically it could possibly represent a
“class”.

The above results show that object-oriented design metrics
could not be applied to every object-oriented programming
language due to the availability of the measurable elements.
Based on Table II, we required the “class” entity in order to
measure CK Metrics. We are able to measure WMC, DIT,
NOC, CBO, and RFC for Java, C#, C++, Objective-C, PHP,
(Visual) Basic, Python, Delphi, and Ruby, but we cannot
measure them for JavaScript since we are unable to precisely
identify its classes.

IV. OVERVIEW OF PROPOSED FRAMEWORK

We propose a framework to measure source code that
supports multiple languages and will diminish the problems
previously described in subsection II-A. The following are the
main features of the measurement framework:

• The framework should provide an easy way to measure
a metric.

• The framework should be able to evaluate the metrics
of software written in more than one programming
language.

• The framework should use the same metric definition
standard.

Figure 1. Overview of proposed framework.

Figure 1 shows the overview of our proposed framework.
In order to reduce the cost of developing the framework, we
used UNICOEN, a unified framework for code engineering,
supporting multiple programming languages currently being
developed by [17]. UNICOEN supplies a common

TABLE III. MEASURABLE ELEMENTS IN EACH PROGRAMMING LANGUAGE

Programming Languages

J
a
v
a

C

C
#

C
+
+

O
b
je
c
tiv
e
-

C

P
H
P

(V
isu

a
l)

B
a
sic

P
y
th
o
n

P
e
rl

J
a
v
a
S
c
rip

t

D
e
lp
h
i

R
u
b
y

L
isp

P
a
sca

l

T
ra
n
sa
c
t-

S
Q
L

P
L
/S
Q
L

A
d
a

L
o
g
o

R

L
u
a

Paradigm

imperative √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

object-oriented √ √ √ √ √ √ √ √ √ √ √ √ √

functional √ √ √ √ √

logic √ √

Measurable elements: entities

statement √

operator √

operand √

namespace √ √ √ √ √ √

package √ √ √ √

class √ √ √ √ √ √ √ ● √ √ ● √

module √ √ √

method √ √ √ √ √ √ √ √ √ √

procedure √ √ √ √ √

function √ √ √ √ √ √ √ √ √

structure/record √ √ √ √ √ √ √ √

union √ √ √ √

attribute/variable √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

method arguments √ √ √ √ √ √ √ √ √ √

procedure arguments √ √ √ √ √ √

function arguments √ √ √ √ √ √ √ √ √ √

return value √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

global variable √ √ √

abstract class √ √ √ √ √ √ √

interface √ √ √ √

Measurable elements: relationships

method calls method √ √ √ √ √ √ √ √ √ √

class inherits from class √ √ √ √ √ √ √ √ √ √ √ √

class is a child of class √ √ √ √ √ √ √ √ √ √ √ √
class uses instance of other
class

√ √ √ √ √ √ √ √ √ √ √ √

class is parent to class √ √ √ √ √ √ √ √ √ √ √ √

class/method uses attribute √ √ √ √ √ √ √ √ √ √ √ √
procedure/function calls
procedure/function

 √ √ √ √ √ √ √ √ √

representation of source code for different programming
languages called the unified code model (UCM), and objects
generated from the source code according to the UCM are
called unified code objects (UCOs). At present, UNICOEN
supports seven programming languages: C, Java, C#, VB,
JavaScript, Python, and Ruby.

The basic purpose of the framework was to define the
measurable elements we obtained in Section III. These
elements were obtained by mapping UCOs generated by
UNICOEN to our definitions. UNICOEN generates UCOs
from the input source code. After the mapping process, we
could easily count each element and then utilize it to evaluate
the corresponding metrics.

The mapping process is described as follows. The partial
structure of the UCM is depicted in Figure 1. Each node in
the UCM will constitute one UCO block, and relationships

among the blocks will form a tree structure. A UCO block
contains primary information such as UnifiedNamespace,
UnifiedClass, UnifiedVariable, UnifiedFunction, etc., whose
names refer to the types of entities they are. There is also
additional information such as modifier, type, extend-
constrain, identifier, etc., which describe the details of each
entity.

Based on this information, for example, we can map a
UnifiedNamespace to the “package” entity for Java code or
to the “namespace” entity for C# code. A UnifiedFunction is
then mapped to “method” for Java code. For C code,
UnifiedFunction could be mapped to “function” if the block
contains UnifiedReturn information or “procedure” if it
contains no UnifiedReturn. Currently the UCOs can cover all
of the measurable elements for the seven programming
languages mentioned previously.

V. CASE STUDY

In this section, we illustrate the evaluation of metrics
using our approach. For the case study, we analyzed the
same files listed in Table I. We describe the measurement of
total and blank lines of code, number of statements, and
number of children.

A. Measuring Total and Blank Lines of Code

These measurements are directly related to the physical
lines of source code, so did not require any mapping from
UCOs. The framework read each file line-by-line and
counted the number of times a line was read. This resulted in
total lines of code (TLOC). Blank lines of code (BLOC) was
defined as the number of lines that contained only spaces,
tabs, or newline character(s). It was calculated by reading
each line and tallying if the line has only these character
types. The results of our measurements are summarized in
Table IV. To obtain the number of lines excluding blank
lines, we can easily subtract BLOC from TLOC.

B. Measuring Number of Statements

While the lines of code are generically called “the
physical lines of code”, the number of statements (NOS) is
called “the logical lines of code”. NOS is measured based on
UCOs. Each block in each UCO is basically mapped to a
statement. Therefore, the NOS value is exactly the same as
the total number of blocks in the UCOs.

Figure 2. Mapping of BrowserSource.java to UCO and then to

measurable elements (statements).

TABLE IV. TLOC, BLOC, AND NOS MEASUREMENT RESULTS

File Name TLOC BLOC NOS

AbstractResult.java 89 16 56

BrowserResult.java 249 52 145

BrowserSource.java 11 5 5

TestCaseResult.java 160 32 95

TestPageResult.java 62 17 32

TestRunResult.java 224 40 142

jsUnitCore.js 978 108 361

jsUnitParams.js 118 25 62

jsUnitTracer.js 48 9 29

Figure 2 describes how the code in BrowserSource.java
is represented using UCOs. Each block is considered as one
statement, so the NOS for BrowserSource.java is 5. The
mapping mechanism for JavaScript code is the same as for
Java code. The NOS results are summarized in Table IV.

C. Measuring Number of Children

The number of children (NOC) is defined as the number
of immediate subclasses subordinated to a class in the class
hierarchy. To measure the NOC we distinguished the
relationships “class is a child of class” and “class is parent to
class”. Determining these relationships based on UCOs is not
as simple as mapping UCOs to entities such as packages,
classes, etc. A class that inherits another class will contain
extend-constrain information in its UnifiedClass block. To
find the inheritance relationship, we traced whether the
“extend-constrain” name of a class was identical to that of
any class name within the project. Using our sample code,
this approach is demonstrated in Figure 3.

Figure 3. Tracing the children of the AbstractResult class.

In this case, we obtained the following relationships. The
TestPageResult, TestRunResult, TestCaseResult, and
BrowserResult classes were children of the AbstractResult
class. The AbstractResult class was the parent of the
TestPageResult, TestRunResult, TestCaseResult, and
BrowserResult classes. We could infer, then, that the NOC
for the AbstractResult class was 4.

Using this approach makes it easier to map the UCOs to
measurable elements and to determine relationships.
Although currently UNICOEN supports only seven
languages, it is easy to add new languages or update existing
languages, so we could easily add measurements for other
languages, thus reducing the cost of development. In
addition, this approach allows us to fully measure various
metrics for programs written in more than one programming
language using only one framework. Regarding the problem
with measurement inconsistencies demonstrated in Table I,
we cannot say whether our results are more appropriate since
there are no international standards prescribing the optimal
way to measure a metric. However, our approach used the
same metric definition for each programming language
supported by our framework. Hence, we could obtain
consistent results among all the languages, for instance
between Java and JavaScript code as shown in Table IV.

package net.jsunit.model;

import java.util.List;

public interface BrowserSource {

 Browser getBrowserById(int id);

 List<Browser> getAllBrowsers();

}

VI. RELATED WORKS

This section discusses the related research approaches of
Baroni et al. [18], Higo et al. [19], and Maneva et al. [20].
The goals of these research groups were similar to our own
in terms of measuring software metrics.

Baroni et al. developed MOOSE as a language-
independent platform that outputs object-oriented design
metrics. MOOSE analyzes OCL and UML metamodel
representations. Their approach is limited because the
amount of information obtained from their representation is
less than that which can be directly extracted from source
code. The UCOs generated by UNICOEN contain more
information than the representations used by MOOSE. For
instance, with UCOs we can trace the “method calls method”
and “class/method uses attribute” relationships, but MOOSE
is unable to recognize them.

Higo et al. built MASU as a plug-in for measuring
metrics of source code written in multiple programming
languages. Their work focused primarily on developing a
source code analyzer for each programming language. This
analyzer built AST from the input source code of object-
oriented programming languages. Currently MASU handles
Java and C# source code. Our approach simplifies the
measurement by assessing only the measurable elements. In
addition, MASU was designed to work only with object-
oriented languages, whereas our framework can handle non-
object-oriented language such as C.

Maneva et al. proposed using a framework to evaluate
source code. The key ideas are that a base set of metrics must
be defined and the computation of the measures are
distributed into distinct modules. They implement
preprocessor functions to filter the source code artifacts from
elements that render the computation of metric values
inaccurate in some contexts. Their research does not mention
a means of processing multiple languages, which is the main
contribution of our approach.

VII. CONCLUSION AND FUTURE WORK

This paper described our proposed unified source code
measurement framework for multiple programming
languages. We reported three main problems with existing
source code metric tools: cost of new development,
incomprehensive measurement, and inconsistent
measurement. Based on size and complexity measurements,
we assessed source code metrics and various programming
languages and obtained the commonalities of measurable
source code elements. The assessment results showed that
we were able to measure size and some complexity metrics
for every programming language. However, in some cases
we could not measure object-oriented design metrics even
though a language such as JavaScript supports the object-
oriented paradigm, while in other cases, such as Perl and
Ada, we could only partially conduct measurements. The
next step in our approach is to identify measurable elements
by mapping the representations produced by UNICOEN. As

a case study, we explained the way our framework measures
the total and blank lines of code, number of statements, and
number of children.

We limit our work to several size and complexity metrics,
so some other metrics were not considered. In addition, our
framework is still early in development. Further work is
needed to evaluate whether it can properly solve the
problems we mentioned previously. But we believe that our
approach can contribute to reducing the cost of developing a
source code measurement tool, even for software written in
more than one programming language. In addition, most
current tools only perform static analysis of one version of
software, and we will also therefore consider identifying
distinctions between two versions of source code.

REFERENCES
[1] N. Fenton, “Software measurement: a necessary scientific basis,”

IEEE Transactions on Software Engineering, vol. 20, pp199–206,
March 1994.

[2] Virtual Machinery, “JHawk,” http://www.virtualmachinery.com.

[3] Semantic Designs, Inc., “Java Source Code Metrics,”
http://www.semanticdesigns.com.

[4] Clarkware Consulting, inc., “JDepend,”
http://www.clarkware.com/software/JDepend.html.

[5] F. Sauer, “Eclipse Metrics plugin 1.3.6,”
http://metrics.sourceforge.net.

[6] Chr. Clemens Lee, “JavaNCSS - A Source Measurement Suite for
Java,” http://javancss.codehaus.org.

[7] Campwood Software, “SourceMonitor,”
http://www.campwoodsw.com.

[8] M Squared Technologies, “Resource Standard Metrics,”
http://msquaredtechnologies.com.

[9] D. A. Wheeler, “SLOCCount,” http://www.dwheeler.com/sloccount.

[10] Northrop Grumman Corporation, “CLOC - Count Lines of Code,”
http://cloc.sourceforge.net.

[11] R. Lincke, J. Lundberg, and W. Lowe, “Comparing software metrics
tools,” Proc. of International Symposium on Software Testing and
Analysis, pp. 131–142, July 2008.

[12] E. Gamma and K. Beck, “JSUnit,” http://www.jsunit.net.

[13] L. M. Laird and M. C. Brennan, Software measurement and
estimation: a practical approach, IEEE Computer Society, 2006.

[14] J.R. Abounader and D. A. Lamb, A data model for object-oriented
design metrics. Kingston, ON: Queen’s University, 1997.

[15] TIOBE Software, “TIOBE Programming Community Index for
January 2012,” http://www.tiobe.com.

[16] A. B. Tucker and R. E. Noonan, Programming Languages Principles
and Paradigms, 2nd ed, McGraw-Hill, 2007.

[17] K. Sakamoto, A. Ohashi, D. Ota, and H. Iwasawa, “UNICOEN,”
http://www.unicoen.net.

[18] A. L. Baroni and F. B. Abreu, “An OCL-based formalization of the
MOOSE metric suite,” Proc. of 7th ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering,
July 2003.

[19] Y. Higo, A. Saitoh, G. Yamada, T. Miyake, S. Kusumoto, and K.
Inoue, “A pluggable tool for measuring software metrics from source
code,” Proc. of the Joint Conference of the 21th IWSM/MENSURA,
November 2011.

[20] N. Maneva, N. Grozev, and D. Lilov, “A framework for source code
metrics,” Proc. of 11th International Conference on Computer
Systems and Technologies, June 2010.

