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Abstract—Software metrics measure various attributes of a piece 

of software and are becoming essential for a variety of purposes, 

including software quality evaluation. One type of measurement 

is based on source code evaluation. Many tools have been 

developed to perform source code analysis or to measure various 

metrics, but most use different metrics definitions, leading to 

inconsistencies in measurement results. The metrics measured by 

these tools also vary by programming language. We propose a 

unified framework for measuring source code that supports 

multiple programming languages. In this paper, we present 

commonalities of measurable elements from various 

programming languages as the foundation for developing the 

framework. We then describe the approach used within the 

framework and also its preliminary development. We believe that 

our approach can solve the problems with existing measurement 

tools. 
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I.  INTRODUCTION 

Quantitative measurements have become essential in 
software development for a variety of purposes, especially the 
evaluation of software quality. Software metrics as a measure 
of properties of a piece of software are commonly used by 
software developers and are based on software processes, 
products, or resources [1]. There are various kinds of 
measurements that can be conducted based on the goal of the 
metric. 

One type of measurement is performed based on source 
code. There are already a large number of source code 
measurement tools, but most of them are only able to handle 
one programming language [2], [3], [4], [5], [6]. Some, such as 
[7] and [8], are able to handle multiple programming 
languages, but we still need to specify which programming 
language should be measured, which means these tools cannot 
handle software written in more than one programming 
language. In addition, some measurement tools cover only one 
metric category. For example, [9] and [10] only assess size by 
measuring lines of code, so if we want to measure complexity 
we have to find another measurement tool. When different 
tools are used together, there can be inconsistency in 
measurement results due to differences in measurement 
definitions and standards among the tools [11]. 

It would be worthwhile to have a unified source code 
measurement system for multiple programming languages. 
However, the implementation would not be easy since 
processing each programming language and metric would 
entail significant expense. In this paper, we present the 
preliminary efforts related to our proposed measurement 
framework. We extract the commonalities of various elements 
needed to measure source code metrics regarding the features 
of a particular programming language. The results are the 
foundation for developing a lower-cost framework, and it will 
be easier to define or modify the measurement for use with 
multiple programming languages. 

The remainder of this paper is organized as follows. Section 
2 discusses problems with existing measurement tools, and also 
metrics that can be measured from source code. Section 3 
discusses commonalities of metrics for several programming 
languages. Section 4 provides an overview of the proposed 
framework for source code measurement supporting multiple 
programming languages. Section 5 discusses a case study. 
Section 6 considers related works. Finally, Section 7 addresses 
conclusions and future work. 

II. BACKGROUND 

A. Problems with Existing Approaches 

The following summarizes the main problems with existing 
tools. 

1) Cost of New Development 
The implementation of a measurement tool supporting 

multiple programming languages would be very expensive, 
mainly due to the difficulty in implementing an analyzer to 
obtain information from the source code of every language. In 
addition, since developers increasingly use object-oriented 
programming languages, metric tools are built mainly to 
support that paradigm (in addition to the basic measurement of 
lines of code) [11]. Tools are often unavailable for other 
paradigms. However, procedural or functional languages are 
still popular, and tools compatible with these languages are 
therefore necessary.  

2) Incomprehensive Measurement 
Most existing source code measurement tools only assess 

software size and cannot evaluate software written in multiple 



languages. JSUnit [12] is an example of a program that uses 
more than one programming language. JSUnit is a client-
server-type test framework that performs tests on web browsers 
and displays the results on the client side. The client side of 
JSUnit is implemented in JavaScript and the server side is 
implemented in Java. With existing tools, the measurement of 
JSUnit metrics requires that the Java and JavaScript code be 
separated and that two measurements be performed. 

3) Inconsistent Measurement 
Different measurement tools have different metrics 

definitions that may produce different results [11]. For 
example, we evaluated several Java code files within the 
package net.jsunit.model and some JavaScript code files 
within the app directory of JSUnit. We obtained the source 
code of JSUnit from its Github project page1. Table I shows the 
measurement results using different tools. In this example, lines 
of code (LOC) in Metrics 1.3.6 is defined as non-blank lines of 
code, but Source Monitor also counts blank lines when 
measuring LOC. Furthermore, Count Lines of Code (CLOC) 
skips blank lines and comment lines when measuring code 
lines. 

TABLE I.  DIFFERENCES BETWEEN METRICS TOOLS 

File Name 

Metrics 

1.3.6 [5]  

Source  

Monitor [7] 
CLOC [10] 

Lines Lines Statement Blank Code 

AbstractResult.java 73 88 57 15 73 

BrowserResult.java 197 248 147 51 197 

BrowserSource.java 6 10 5 4 6 

TestCaseResult.java 128 160 97 32 128 

TestPageResult.java 45 61 32 16 45 

TestRunResult.java 184 223 147 39 184 

jsUnitCore.js n/a 977 283 107 504 

jsUnitParams.js n/a 117 62 24 93 

jsUnitTracer.js n/a 48 33 9 39 

B. Source Code Metrics 

This section reviews the source code measurement systems 
that are most commonly used. We focus on size and 
complexity because they are the most important measurements 
[13]. 

1) Size Measurement 
Lines of code (LOC) are the traditional measurement of 

software size. We define: the number of physical lines of target 
source code for measurement (total lines of code); the number 
of lines that contain the instructions necessary to execute a 
program (effective lines of code); the number of lines that 
contain only comments (comment lines of code); and the 
number of the lines that contain only spaces, tabs, or newline 
character(s) (blank lines of code). Measuring the number of 
“statements”, which are logical measures based on the 
specification of the programming language, could also be a 
component of size measurement. 

                                                           
1 https://github.com/pivotal/jsunit 

2) Complexity Measurement 
The following are several complexity measurements [13]. 

• Cyclomatic complexity: the complexity measurement 
proposed by McCabe, which is a measure of the 
number of control flows within a module. 

• Halstead’s software science: complexity metrics based 
on the number of operators and operands in a program. 

• Information flow metrics: these measure the 
information flow into and out of modules, and indicate 
the cohesion of the program. 

• CK metrics: a set of object-oriented design metrics by 
Chidamber and Kemerer, consisting of six metrics that 
measure class size and complexity, use of inheritance, 
coupling between classes, class cohesion, and 
collaboration between classes. 

III. ASSESSING SOURCE CODE METRICS AND 

PROGRAMMING LANGUAGES 

To define the base of our framework, we conducted 
assessments of source code metrics and programming language 
features. These assessments produce the commonalities of 
source code’s measurable elements. From these measurable 
elements, we can define a metric more easily and even 
customize a new metric by utilizing the predefined measurable 
elements. 

We analyzed the metrics described in subsection II-B to 
determine what elements of a program are used by these 
metrics. The size measurements are simply related to the 
 

TABLE II.  MEASURABLE ELEMENTS USED BY METRICS 
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method   √    √ √ 
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     √   
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       √ 

a. Number of statements. b. Halstead’s software science. 

c. The CK metrics: weighted methods per class (WMC), depth of inheritance tree (DIT),  
number of children (NOC), coupling between object (CBO), response for class (RFC),  

and lack of cohesion in methods (LCOM)  



physical lines of source code. The number of statements is 
based on the “statement” definition in the programming 
language. The cyclomatic complexity is measured based on 
control flow, and Halstead’s software science is related to 
operators and operands. Reference [14] has developed a data 
model of information from which most of the proposed object-
oriented design metrics can be computed. The data model lists 
12 entities and 17 relationships that are used by the metrics. We 
found that at the implementation level, the “class sends 
message to class/method” relationship is similar to “method 
calls method”, so we combined them. In addition, we also 
combined the “class uses attribute of class” and “class/method 
uses attribute” relationships. Table II summarizes the 
measurable elements that are used by number of statements, 
Halstead’s software science metrics, and CK Metrics. 

We expanded this preliminary measurable elements list so 
we could assess other features of programming languages. We 
also wanted to cover measurable elements provided by non-
object-oriented languages. 

We included 20 programming languages in our analysis, 
based on [15]. Table III summarizes the measurable elements 
that could be quantified in each programming language. Table 
III consists of two parts. The first part describes the paradigm 
used by each programming language, based on the definition 
for each paradigm as presented in [16]. The checkmarks (“√”) 
show the supported paradigms. 

The second part depicts the measurable elements. A 
checkmark indicates that the measurable element could be 
quantified in the corresponding programming language. Every 
programming language has statements, operators, and operands 
that we could count. Therefore, we inferred that the number of 
statements and Halstead’s software science metrics could be 
calculated for each language. For other elements, the results 
varied by programming language. 

Non-object-oriented programming languages do not utilize 
the class and inheritance concepts. Alternatively, they use other 
concepts that can be measured, such as modules, functions, and 
procedures. We can possibly use these elements to produce 
complexity measurements such as numbers of functions, 
numbers of procedures, etc. 

In comparison, languages designed mainly for object-
oriented programming such as Java, C#, C++, and Python 
incorporate measurable elements that permit us to assess 
object-oriented metrics. Nevertheless, historically imperative 
languages that have been extended with some object-oriented 
features such as Perl and Ada yield different results, especially 
in association with the class concept. JavaScript is also a 
distinctive case. 

Measurable elements are readily distinguished based on 
language syntax. In Perl and Ada, we can declare a class using 
the package keyword. However, the same keyword is also 
used to declare namespace, subprogram, or data types. 
Therefore, we cannot determine that all package keywords 
indicate the presence of classes. In spite of this, Perl has the 
special keyword @ISA and Ada uses tagged to indicate 
inheritance, both of which allow us to count the measurable 
elements related to inheritance. We could possibly designate 

packages associated with the inheritance keyword as “classes” 
instead of “packages”, but we would perhaps incorrectly 
measure the number of classes since classes without inheritance 
would not be counted. In other words, we could partially count 
the “class” number. We note such cases with dots (“●”) in 
Table III. 

JavaScript is actually a prototype-based scripting language. 
Although it supports the object-oriented paradigm, the 
identification of classes or inheritance is complicated by the 
fact that we utilize function to declare a class. Therefore, in 
JavaScript we interpreted function syntax as representing a 
“function” although semantically it could possibly represent a 
“class”. 

The above results show that object-oriented design metrics 
could not be applied to every object-oriented programming 
language due to the availability of the measurable elements. 
Based on Table II, we required the “class” entity in order to 
measure CK Metrics. We are able to measure WMC, DIT, 
NOC, CBO, and RFC for Java, C#, C++, Objective-C, PHP, 
(Visual) Basic, Python, Delphi, and Ruby, but we cannot 
measure them for JavaScript since we are unable to precisely 
identify its classes. 

IV. OVERVIEW OF PROPOSED FRAMEWORK 

We propose a framework to measure source code that 
supports multiple languages and will diminish the problems 
previously described in subsection II-A. The following are the 
main features of the measurement framework: 

• The framework should provide an easy way to measure 
a metric. 

• The framework should be able to evaluate the metrics 
of software written in more than one programming 
language. 

• The framework should use the same metric definition 
standard. 

 
Figure 1.  Overview of proposed framework. 

Figure 1 shows the overview of our proposed framework. 
In order to reduce the cost of developing the framework, we 
used UNICOEN, a unified framework for code engineering, 
supporting multiple programming languages currently being 
developed by [17]. UNICOEN supplies a common  
 



TABLE III.  MEASURABLE ELEMENTS IN EACH PROGRAMMING LANGUAGE 

Programming Languages 

J
a
v
a
 

C
 

C
#
 

C
+
+
 

O
b
je
c
tiv
e
- 

C
 

P
H
P
 

(V
isu

a
l) 

B
a
sic 

P
y
th
o
n
 

P
e
rl 

J
a
v
a
S
c
rip

t  

D
e
lp
h
i 

R
u
b
y
 

L
isp

 

P
a
sca

l 

T
ra
n
sa
c
t-

S
Q
L
 

P
L
/S
Q
L
 

A
d
a
 

L
o
g
o
 

R
 

L
u
a
 

Paradigm 

imperative √ √ √ √  √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

object-oriented √  √ √ √ √ √ √ √ √ √ √     √  √  

functional          √   √     √ √ √ 

logic               √ √     

Measurable elements: entities 

statement √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

operator √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

operand √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
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representation of source code for different programming 
languages called the unified code model (UCM), and objects 
generated from the source code according to the UCM are 
called unified code objects (UCOs). At present, UNICOEN 
supports seven programming languages: C, Java, C#, VB, 
JavaScript, Python, and Ruby.  

The basic purpose of the framework was to define the 
measurable elements we obtained in Section III. These 
elements were obtained by mapping UCOs generated by 
UNICOEN to our definitions. UNICOEN generates UCOs 
from the input source code. After the mapping process, we 
could easily count each element and then utilize it to evaluate 
the corresponding metrics. 

The mapping process is described as follows. The partial 
structure of the UCM is depicted in Figure 1. Each node in 
the UCM will constitute one UCO block, and relationships 

among the blocks will form a tree structure. A UCO block 
contains primary information such as UnifiedNamespace, 
UnifiedClass, UnifiedVariable, UnifiedFunction, etc., whose 
names refer to the types of entities they are. There is also 
additional information such as modifier, type, extend-
constrain, identifier, etc., which describe the details of each 
entity.  

Based on this information, for example, we can map a 
UnifiedNamespace to the “package” entity for Java code or 
to the “namespace” entity for C# code. A UnifiedFunction is 
then mapped to “method” for Java code. For C code, 
UnifiedFunction could be mapped to “function” if the block 
contains UnifiedReturn information or “procedure” if it 
contains no UnifiedReturn. Currently the UCOs can cover all 
of the measurable elements for the seven programming 
languages mentioned previously. 



V. CASE STUDY 

In this section, we illustrate the evaluation of metrics 
using our approach. For the case study, we analyzed the 
same files listed in Table I. We describe the measurement of 
total and blank lines of code, number of statements, and 
number of children. 

A. Measuring Total and Blank Lines of Code 

These measurements are directly related to the physical 
lines of source code, so did not require any mapping from 
UCOs. The framework read each file line-by-line and 
counted the number of times a line was read. This resulted in 
total lines of code (TLOC). Blank lines of code (BLOC) was 
defined as the number of lines that contained only spaces, 
tabs, or newline character(s). It was calculated by reading 
each line and tallying if the line has only these character 
types. The results of our measurements are summarized in 
Table IV. To obtain the number of lines excluding blank 
lines, we can easily subtract BLOC from TLOC. 

B. Measuring Number of Statements 

While the lines of code are generically called “the 
physical lines of code”, the number of statements (NOS) is 
called “the logical lines of code”.  NOS is measured based on 
UCOs. Each block in each UCO is basically mapped to a 
statement. Therefore, the NOS value is exactly the same as 
the total number of blocks in the UCOs. 

 

 
Figure 2.  Mapping of BrowserSource.java to UCO and then to  

measurable elements (statements). 

TABLE IV.  TLOC, BLOC, AND NOS MEASUREMENT RESULTS 

File Name TLOC BLOC NOS 

AbstractResult.java 89 16 56 

BrowserResult.java 249 52 145 

BrowserSource.java 11 5 5 

TestCaseResult.java 160 32 95 

TestPageResult.java 62 17 32 

TestRunResult.java 224 40 142 

jsUnitCore.js 978 108 361 

jsUnitParams.js 118 25 62 

jsUnitTracer.js 48 9 29 

Figure 2 describes how the code in BrowserSource.java 
is represented using UCOs. Each block is considered as one 
statement, so the NOS for BrowserSource.java is 5. The 
mapping mechanism for JavaScript code is the same as for 
Java code. The NOS results are summarized in Table IV. 

C. Measuring Number of Children 

The number of children (NOC) is defined as the number 
of immediate subclasses subordinated to a class in the class 
hierarchy. To measure the NOC we distinguished the 
relationships “class is a child of class” and “class is parent to 
class”. Determining these relationships based on UCOs is not 
as simple as mapping UCOs to entities such as packages, 
classes, etc. A class that inherits another class will contain 
extend-constrain information in its UnifiedClass block. To 
find the inheritance relationship, we traced whether the 
“extend-constrain” name of a class was identical to that of 
any class name within the project. Using our sample code, 
this approach is demonstrated in Figure 3.  

 
Figure 3.  Tracing the children of the AbstractResult class.  

In this case, we obtained the following relationships. The 
TestPageResult, TestRunResult, TestCaseResult, and 
BrowserResult classes were children of the AbstractResult 
class. The AbstractResult class was the parent of the 
TestPageResult, TestRunResult, TestCaseResult, and 
BrowserResult classes. We could infer, then, that the NOC 
for the AbstractResult class was 4. 

Using this approach makes it easier to map the UCOs to 
measurable elements and to determine relationships. 
Although currently UNICOEN supports only seven 
languages, it is easy to add new languages or update existing 
languages, so we could easily add measurements for other 
languages, thus reducing the cost of development. In 
addition, this approach allows us to fully measure various 
metrics for programs written in more than one programming 
language using only one framework. Regarding the problem 
with measurement inconsistencies demonstrated in Table I, 
we cannot say whether our results are more appropriate since 
there are no international standards prescribing the optimal 
way to measure a metric. However, our approach used the 
same metric definition for each programming language 
supported by our framework. Hence, we could obtain 
consistent results among all the languages, for instance 
between Java and JavaScript code as shown in Table IV. 

package net.jsunit.model;  

import java.util.List;  

public interface BrowserSource {  

    Browser getBrowserById(int id);  

    List<Browser> getAllBrowsers(); 

} 



VI. RELATED WORKS 

This section discusses the related research approaches of 
Baroni et al. [18], Higo et al. [19], and Maneva et al. [20]. 
The goals of these research groups were similar to our own 
in terms of measuring software metrics. 

Baroni et al. developed MOOSE as a language-
independent platform that outputs object-oriented design 
metrics. MOOSE analyzes OCL and UML metamodel 
representations. Their approach is limited because the 
amount of information obtained from their representation is 
less than that which can be directly extracted from source 
code. The UCOs generated by UNICOEN contain more 
information than the representations used by MOOSE. For 
instance, with UCOs we can trace the “method calls method” 
and “class/method uses attribute” relationships, but MOOSE 
is unable to recognize them. 

Higo et al. built MASU as a plug-in for measuring 
metrics of source code written in multiple programming 
languages. Their work focused primarily on developing a 
source code analyzer for each programming language. This 
analyzer built AST from the input source code of object-
oriented programming languages. Currently MASU handles 
Java and C# source code. Our approach simplifies the 
measurement by assessing only the measurable elements. In 
addition, MASU was designed to work only with object-
oriented languages, whereas our framework can handle non-
object-oriented language such as C. 

Maneva et al. proposed using a framework to evaluate 
source code. The key ideas are that a base set of metrics must 
be defined and the computation of the measures are 
distributed into distinct modules. They implement 
preprocessor functions to filter the source code artifacts from 
elements that render the computation of metric values 
inaccurate in some contexts. Their research does not mention 
a means of processing multiple languages, which is the main 
contribution of our approach. 

VII. CONCLUSION AND FUTURE WORK 

This paper described our proposed unified source code 
measurement framework for multiple programming 
languages. We reported three main problems with existing 
source code metric tools: cost of new development, 
incomprehensive measurement, and inconsistent 
measurement. Based on size and complexity measurements, 
we assessed source code metrics and various programming 
languages and obtained the commonalities of measurable 
source code elements. The assessment results showed that 
we were able to measure size and some complexity metrics 
for every programming language. However, in some cases 
we could not measure object-oriented design metrics even 
though a language such as JavaScript supports the object-
oriented paradigm, while in other cases, such as Perl and 
Ada, we could only partially conduct measurements. The 
next step in our approach is to identify measurable elements 
by mapping the representations produced by UNICOEN. As  
 
 
 

a case study, we explained the way our framework measures 
the total and blank lines of code, number of statements, and 
number of children. 

We limit our work to several size and complexity metrics, 
so some other metrics were not considered. In addition, our 
framework is still early in development. Further work is 
needed to evaluate whether it can properly solve the 
problems we mentioned previously. But we believe that our 
approach can contribute to reducing the cost of developing a 
source code measurement tool, even for software written in 
more than one programming language. In addition, most 
current tools only perform static analysis of one version of 
software, and we will also therefore consider identifying 
distinctions between two versions of source code. 
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