
Abstract security patterns

 Eduardo B. Fernandez, Hironori Washizaki, Nobukazu Yoshioka
 Florida Atlantic University Waseda University National Institute of Informatics

Boca Raton, FL, USA Tokyo, Japan Tokyo, Japan

ed@cse.fau.edu washizaki@waseda.jp nobukazu@nii.ac.jp

Abstract
We introduce the concept of “abstract” security

patterns that deal with abstract security mechanisms,

rather than concrete implementations. We also show

an organization of abstract security patterns and

concrete ones into hierarchies.

1. Introduction

We can think of building a software system as solving a

problem. In the analysis stage of the development, we

are trying to make the problem precise; we are not

concerned with software aspects such as

implementation and platform. From a security point of

view, we only want to indicate which specific security

mechanisms are needed, not their implementation.

Therefore we need at this stage a set of patterns that

defines abstract security mechanisms. These patterns

should specify only the fundamental characteristics of

the mechanism or service, not specific software aspects.

Most works on security patterns [Sch06, Ste05]

emphasize concrete patterns that solve security

problems at given architectural levels or units, e.g.,

secure VAS in operating systems [Fer03a]. In fact, we

have not seen any work where this abstraction level is

explicitly considered.

We present here the concept of abstract security

patterns based on the considerations above and we

show some examples. The common context of all

abstract security patterns is the problem space. We

relate them to each other using pattern diagrams based

on the problem space. We also relate them to

architectural (software oriented) security patterns.

Some of these patterns correspond to basic security

mechanisms, e.g., Access control (such as

Authorization), Security Logger, and Authenticator.

Others specify more detailed aspects, e.g., Access

Control/Authorization models include the Access

Matrix, Role-Based Access Control (RBAC),

Multilevel Security, and Attribute-Based Access

Control (ABAC) models.

They should not be confused with patterns that describe

basic security principles, e.g., Single-Point-of-Access

[Yod97]. Abstract security patterns correspond to

mechanisms or services, not principles.

2. Abstract patterns

Figure 1 is a pattern diagram [Sch06] consisting of

eight security patterns and relations among them to

show how abstract patterns are related to other patterns.

Pattern Credential represents some aspect of a

conceptual model, and the basic security services are

described by patterns Authenticator [Fer02],

Authorization [Fer01, Sch06] and Security Logger.

[Ste05].

Authenticator

Credential

Security

Logger

authenticates

access

logs

access

Authorization

controls

access

Access

Matrix
RBAC

Multilevel

Security
ABAC

Figure 1. Basic security services

While the abstract security patterns exist for these

services, we need to revisit them to emphasize their

fundamental properties. Credential provides secure

means of recording authentication and authorization

information for use in domains where we are not

known. Moreover in Figure 1, the following security

patterns deal with more concrete solutions for the same

purpose of Authorization (i.e., controlling accesses):

� Access Matrix. Assign rights to individual

subjects, e.g., users.

� Role-Based Access Control (RBAC) [Sch06].

How do we assign rights to people based on their

functions or tasks? Assign people to roles and

give rights to these roles so they can perform their

tasks.

� Multilevel Security [Fer01, Sch06]

� Attribute-Based Access Control (ABAC)

[Pri04]. Allow access to resources based on the

attributes of the subjects and the properties of the

objects.

In the figure, we represented these specialization

relations as generalization-specialization relationships

in the form of UML-like class diagram. We will

introduce such relations in detail in the next section.

3. Use of abstract patterns

Possible uses for these patterns include:

� Guide the search for new patterns. An abstract

pattern defines a range of patterns and one can see

if corresponding patterns exist at the lower levels.

Moreover such relations might form a pattern

language.

� Serve as abstract prototypes for similar concrete

patterns. Starting from an abstract pattern it is

easy to see what happens at a specific

architectural level.

� Serve as ways to connect and relate different sets

of patterns. For example, a Communication

Channel can use Intrusion Detection.

We can make generalization hierarchies with patterns

[Was08] and define patterns that are more and more

concrete. For example, starting from a

Communication Channel pattern, a Secure Channel

denotes a channel where some security measure has

been applied.

These patterns are the roots of pattern hierarchies

where each lower level is a pattern specialized for

some specific context. That is, the context is one of the

main determinants of the difference of a pattern with

another. The context defines the environment where the

pattern applies. In general, the context of a lower-level

pattern includes the context of its ancestors: Ci ⊃ Cj,

where i < j in the hierarchy, where “Cx” denotes the

context of a pattern “x” . For example, the context of

an abstract Credential applies to any distributed

domain while the context of an X.509 certificate

applies only to distributed systems that follow this

standard.

The reverse is true about forces and consequences, the

forces in a concrete pattern include what is in the

abstract pattern plus new forces (and their

consequences) due to the more specific environment.

Their threats are specific versions of the abstract

pattern threats.

We can draw pattern hierarchies showing several levels

in one diagram as in Figure 2. Alternatively, we can

draw separate graphs for each level. The first type is

useful when we want to correlate patterns at different

abstraction levels or we want to understand or explain a

complete system. The second type is better when we

are working at a specific level, e.g., designing an

operating system [Fer03a, Fer03b].

Credential

X.509

Distributed

Authenticator

Password Biometric Card-based

SAML Token

Centralized

Authenticator

Authenticator

Figure 2. The authentication hierarchy

4. Conclusion

We have introduced the concept of abstract security

pattern and shown that it has several advantages,

including providing insight into the nature of security

patterns. Future work includes generalizing these ideas

to other types of patterns.

References
[Fer01]E B. Fernandez and R.Y. Pan, “A pattern language for

security models”, Procs. of PLoP 2001,

http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/ac

cepted-papers.html

[Fer02]E.B.Fernandez, "Patterns for operating systems access

control", Procs. of PLoP 2002,

http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

[Fer03a]E.B.Fernandez and J.C.Sinibaldi, "More patterns for

operating systems access control", Procs. EuroPLoP 2003,

http://hillside.net/europlop

[Fer03b]E. B. Fernandez and R. Warrier, "Remote Authenticator

/Authorizer", Procs. of PLoP 2003.

[Mor06b] P. Morrison and E.B.Fernandez, "The Credential

pattern", Procs. of the Pattern Languages of Programming

Conference (PLoP 2006).

[Pri04] T. Priebe, E.B.Fernandez, J.I.Mehlau, and G.

Pernul, "A pattern system for access

control", in Research Directions in Data and Applications

Security XVIII, C. Farkas and P. Samarati (Eds.), Procs of the

18th. Annual IFIP WG 11.3 Working Conference on Data and

Applications Security, Sitges, Spain, July 25-28, 2004.

[Sch06] M. Schumacher, E. B.Fernandez, D. Hybertson, F.

Buschmann, and P. Sommerlad, Security Patterns: Integrating

security and systems engineering", Wiley 2006.

 [Ste05] C. Steel, R. Nagappan, and R. Lai, Core

Security Patterns: Best Strategies for J2EE,

Web Services, and Identity Management, Prentice Hall, Upper

Saddle River, New Jersey, 2005.

[Was08] H. Washizaki, E. B. Fernandez,Maruyama, A. Kubo,

and N. Yoshioka, “Precise classification of software patterns”,

submitted for publication.

[Yod97] J. Yoder and J. Barcalow, "Architectural patterns for

enabling application security". Procs. PLOP’97,

http://jerry.cs.uiuc.edu/~plop/plop97 Also Chapter 15 in

Pattern Languages of Program Design, vol. 4 (N. Harrison, B.

Foote, and H. Rohnert, Eds.), Addison-Wesley, 2000.

