
Recovering Traceability Links between Requirements and

Source Code in the Same Series of Software Products
Ryosuke Tsuchiya

Dept. Computer Science

Waseda University

Tokyo, Japan

ryousuke_t@asagi.waseda.jp

Tadahisa Kato

Yokohama Research Laboratory

Hitachi, Ltd

Kanagawa, Japan

tadahisa.kato.en

@hitachi.com

Hironori Washizaki
Dept. Computer Science

Waseda University

Tokyo, Japan

washizaki@waseda.jp

Masumi Kawakami
Yokohama Research Laboratory

Hitachi, Ltd

Kanagawa, Japan

masumi.kawakami.ch

@hitachi.com

Yoshiaki Fukazawa
Dept. Computer Science

Waseda University

Tokyo, Japan

fukazawa@waseda.jp

Kentaro Yoshimura
Hitachi Research Laboratory

Hitachi, Ltd

Ibaraki, Japan

kentaro.yoshimura.jr

@hitachi.com

ABSTRACT

If traceability links between requirements and source code are not

clarified when conducting maintenance and enhancements for the

same series of software products, engineers cannot immediately

find the correction location in the source code for requirement

changes. However, manually recovering links in a large group of

products requires significant costs and some links may be

overlooked. Here, we propose a semi-automatic method to recover

traceability links between requirements and source code in the same

series of large software products. In order to support differences in

representation between requirements and source code, we recover

links by using the configuration management log as an

intermediary. We refine the links by classifying requirements and

code elements in terms of whether they are common or specific to

the products. As a result of applying our method to real products

that have 60KLOC, we have recovered valid traceability links

within a reasonable amount of time. Automatic parts have taken 13

minutes 36 seconds, and non-automatic parts have taken about 3

hours, with a recall of 76.2% and a precision of 94.1%. Moreover,

we recovered some links that were unknown to engineers. By

recovering traceability links, software reusability will be improved,

and software product line introduction will be facilitated.

Categories and Subject Descriptors

D.2.7 [Distribution, Maintenance, and Enhancement]:

Extensibility

General Terms

Management

Keywords

Traceability Recovery, Configuration Management Log,

 Commonality and Variability Analysis

1. INTRODUCTION
Traceability in software development is the ability to trace the

relationship between artifacts. This relationship is called

traceability link. Traceability links are formed between the

following pairs: documents of requirements specification and

source code that implements the requirements, design documents

and test cases, requirements and design, etc. In this paper, we focus

on links between requirements and code elements (e.g., function,

class, file). For example, in CUnit [13] (the target of our

evaluation experiments in this paper), the requirement “Running

tests in Automated mode” links with the file Automated.c that

implements the requirement.

If traceability links between requirements and source code are

ambiguous, development efficiency is significantly reduced because

engineers cannot immediately modify the source code when there

are change requests of requirements.

In some cases, traceability decreases through software maintenance

and incremental development. Documents are not managed

properly because of the short interval of the software release. For

example, if documents are not updated when deleting existing

features or adding new features, a mismatch arises between

documents and source code. This may cause a decrease in software

maintainability.

As described above, traceability is important in development.

Therefore, it is ideal that clear traceability links are formed between

requirements and source code. However, traceability links in actual

products are typically not managed because engineers tend to not

recognize the benefits of traceability links and worry about

management costs [1].

It is not practical from the viewpoint of cost that engineers

manually recover all traceability links of large products. Moreover,

there are traceability links that are difficult to find manually, we

call these “non-explicit traceability links.” For example, if we

cannot see the similarity of the notation between requirements and

source code, or there is no description of the relationship in

documents, manual recovery of traceability links is not easy.

We propose a framework to recover traceability links between

requirements and source code in the same series of large software

products. In order to support differences in representation between

requirements and code elements (e.g., notation, language), we

recover links by applying natural language processing and

document retrieval to the configuration management log. However,

the granularity of links recovered from the configuration

management log is large, so we refine the links by conducting the

commonality and variability analysis.

Our proposed method is semi-automatic: with regard to recovered

links unknown to engineers, engineers must manually judge

whether they are non-explicit traceability links or false positives. If

the accuracy of the recovery method is poor, or support information

is missing, the decisions take significant costs. Our framework

enables engineers to judge the validity of links with practical costs.

The following are the Research Questions addressed in this study.

RQ1 How accurately can we recover candidate traceability links

semi-automatically?

RQ2 How many non-explicit traceability links can we manually

refine from candidate links?

RQ3 Can we recover traceability links within a reasonable amount

of time?

In order to evaluate the validity our framework, we applied the

framework to two products: open source software CUnit and a

network control system developed by a company. CUnit has more

than 7KLOC, and the network control system has more than

60KLOC. In CUnit, we recovered traceability links with a recall of

76.0% and a precision of 70.4%. In the network control system, we

recovered traceability links with a recall of 76.2% and a precision

of 94.1%. Therefore, we found that our framework is effective in

the recovery of traceability links regardless of the size of products

and the development organization.

The following are our contributions.

 We have proposed a method to semi automatically recover

traceability links using the configuration management log.

 We have proposed a method to refine traceability links by

conducting the commonality and variability analysis.

 We have developed a tool that can recover links in large

software products within a reasonable amount of time.

 We have proposed a framework including the process to

recover traceability links using the tool mentioned above.

 We have applied the framework to actual products that have

more than 60KLOC, and have confirmed its validity.

Our framework classifies requirements and source code as common

to some products or as specific to a product, and recovers links

between these elements. Therefore, our framework may support

extraction of core assets with high reusability. As a result, software

product line introduction will be facilitated.

The remainder of the paper is organized as follows. First, we

provide some background information (Section 2). Then, we

describe our framework to recover traceability links (Section 3). In

Section 4, we present our evaluation of the framework by

conducting experiments on two targets. In Section 5, we discuss

related works. Finally, we provide a conclusion and future works

(Section 6).

2. BACKGROUND

2.1 Configuration Management Log
If the identifier of code elements (e.g., file name, function name)

and requirements are represented using the same notation and

language, automatic recovery of traceability links is easy. However,

Figure 1. Revision modifying a single file

Figure 2. Revision modifying multiple files

Figure 3. Commonality and variability analysis

it is often the case that the notation and language are different

between requirements and source code. For instance, while the

purpose is described in the requirements, the identifier that

signifies the means can be given to the code elements. In another

case, the identifier can be the short form of requirements. In the

above cases, it is difficult to recover traceability links by

comparing the requirements and the identifier of code elements.

In order to support differences in expression, an intermediary is

required. Here, we focus on the configuration management log that

contains information related to requirements and source code. It is

composed of revisions that include messages and file paths. The

two targets of our evaluation experiments use the version

management system Apache Subversion (SVN) [14]. Figures 1 and

2 show excerpts from a log of CUnit as specific examples of the

revision of SVN. They show that each revision has a message and

file paths. By examining these logs, we have confirmed that words

related to requirements appear in the messages of the log. For

example, in Figure 1, the word "XML" appears in the message.

This word is strongly correlated with the requirement “Running

tests in Automated mode” because this functional requirement is

the only one that outputs results in XML format. If these words are

recorded along with file paths, we can recover links between

requirements and source code without depending on the notation.

The configuration management log is recorded whenever the source

code is modified, so it may record information on traceability links

that cannot be grasped from documents. Therefore, it is possible to

recover non-explicit traceability links using the log.

Some revisions simultaneously modify files of multiple domains in

the configuration management log. Here, domain is a directory that

has files implementing the same feature. For example, in the

revision shown in Figure 2, files of the Basic and Framework

domains are modified at the same time. When this kind of revisions

is used to recover traceability links, unrelated requirements and

files may be linked. However, because requirements related to files

of multiple domains exist, these revisions cannot be ignored.

Therefore, we classify revisions into different types based on the

number of domains they affect.

2.2 Commonality and Variability Analysis
Ttraceability links between requirements and functions cannot be

recovered using file paths in the configuration management log.

Therefore, we use the Commonality and Variability Analysis

(CVA) on the same series of software products so that we can

recover traceability links between requirements and functions.

The CVA is used to analyze to which products elements (e.g.,

requirements, code elements) belong. The CVA classifies elements

as common to some products or as specific to a product. Figure 3

shows a concrete example: the requirements “Running tests in

Automated mode” and “Running tests in Basic mode” are common

to three products, whereas the requirement “Activation of suites

and tests” belongs to the product Z only.

Kumaki et al. have proposed a method that analyzes the

commonality and variability of the requirements of legacy software

products [2]. The method measures the similarity of sentences

using the vector space model, and analyzes whether the

requirements are common to multiple products.

In the vector space model proposed by Salton et al. [3], a sentence

is represented by one vector that depends on the valid words in the

sentence. The contents of the sentences are determined by the

direction of the vector.

There is a previous study that measures software similarity and

analyzes the commonality and variability of code elements using

code clone detection [4]. A code clone is a code fragment that is

identical or similar to another in a source code. Software similarity

can be measured by detecting code clones that exist in different

products.

If a requirement is linked to a file, the result of the CVA of the

requirement may coincide with that of the file. If there is a

mismatch, however, the information can be used to recover

traceability links between requirements and functions. Moreover, it

makes the detection of mismatches between documents and source

codes possible.

2.3 Motivating Example
In many products, the notation and the abstraction level are

different between the requirements and the identifier of code

elements. In CUnit, the requirement “Lookup of individual suites

and tests” links with the functions CU_get_suite() and

CU_get_test() that belong to the file TestDB.c. There are some

overlapping words between the requirements and the identifiers,

but it is not easy to associate them by comparing them. In the

network control system used as a target of our evaluation

experiments, while the identifier of code elements is written in

English, the requirements are written in Japanese.

In most products, non-explicit traceability links exist. In CUnit, the

user manual describes most traceability links between requirements

and code elements. However, information on the relevant

requirements of some files (e.g., MyMem.c) is not mentioned. The

information may be unnecessary if CUnit is used as a testing

framework, but it is useful for derived development based on CUnit.

In the network control system, there are a lot of traceability links

that engineers have not grasped because the number of

requirements and files is quite large.

Traceability links between requirements and functions cannot be

recovered by using only the file paths in the configuration

management log. As explained above, in CUnit, the requirement

“Lookup of individual suites and tests” links with the functions

CU_get_suite() and CU_get_test() that belong to the file TestDB.c.

If we use only file paths, we recover a link between the requirement

and the file, but not the functions. However, we may recover links

with the functions using the CVA because the requirement and the

functions are specific to version 2.12 whereas the file is common to

multiple versions.

3. TRACEABILITY LINKS RECOVERY

FRAMEWORK
We propose a framework to recover traceability links between

requirements and source code in the same series of large software

products. Our framework to recover links does not depend on the

similarity of the representation between requirements and code

elements. We find source code that implements requirements from

the configuration management log using keywords set for each

requirement. Moreover, we automatically refine links using CVA

results, and also review and refine links manually.

3.1 Overview
Figure 4 shows the overview of our framework. Targets of our

framework are series of large software products developed by one

organization. As inputs, the assets of requirements and source code

are required for each product. Assets of requirements are

documents about requirements of products written in natural

language. For automatic analysis, a document that lists all

requirements one line at a time and a summary of each requirement

are required. In addition, a configuration management log that

supports all targeted products is needed.

Traceability links between requirements and source code can be

recovered by finding revisions that contain words related to

requirements in the configuration management log. For refining

these traceability links, the CVA is conducted prior to recovering

traceability links. Our design of the framework is divided into the

following seven steps.

Step (1). CVA of Requirements
The CVA of requirements is conducted by entering the assets

of requirements for each product. The vector space model is

used as the element technology.

Step (2). CVA of Code Elements
The CVA of code elements is conducted by entering the

source code for each product. The results of the analysis are

outputted at the granularity of both components (e.g., class,

file) and functions. Code clone detection is used as the

element technology.

Step (3). Keyword Setting
Keywords are set for each requirement to find the revisions

that contain words related to the requirement. Then, TF-IDF

(Term Frequency and Inverse Document Frequency) supports

the keyword setting.

Step (4). Classification of Revisions
Revisions are classified based on the number of domains they

affect.

Step (5). Recovery of Traceability Links between Requirements

and Components
Traceability links between requirements and components are

recovered by finding the relevant revisions using keywords

set in Step (3). The results are outputted as a traceability

matrix.

Step (6). Auto Refine of Traceability Links
Traceability links between requirements and functions are

recovered using the results of the CVA, and mismatches

between documents and source code are detected.

Step (7). Manual Refine of Traceability Links
Engineers review the messages of revisions to check for the

existence of false positives. If there are a large number of

false positives, keywords that cause them are identified and

the process goes back to Step (3), where new suitable

keywords are set.

The following sections describe each step in detail.

3.2 CVA of Requirements
In this step, the CVA of requirements is conducted. Assets of

requirements are required as input. We use a method proposed by

Kumaki et al. By measuring the similarity of sentences between the

requirements in each product, each requirement is classified as

being common to some products or as being specific to one product.

If the similarity exceeds a threshold set by the users, requirements

are judged to be identical. The result of classification is represented

as a subset of a set of all products targeted. For instance, in Figure

3, a set of all products targeted is {X, Y, Z}. The requirement

“Running tests in Automated mode” belongs to {X, Y, Z}. On the

other hand, the requirement “Lookup of individual suites and tests”

belongs to {Y}.

3.3 CVA of Code Elements
In this step, the CVA of code elements is conducted. Source code is

needed as input. The analysis is conducted at the granularity of

both components and functions. In the same way as requirements,

code elements are classified as either common or specific.

As with the previous study (mentioned in section 2.2), we use code

clone detection to analyze commonality and variability of code

elements. The following describes how to measure the similarity of

code elements. is the number of code elements that share code

clones. represents the total number of tokens for each code

element. represents the number of tokens of code clones for each

code element. Then, (the similarity of the code elements) is

defined by the following formula:

If exceeds a threshold set by the users, these code elements are

judged to be identical. This similarity measurement is conducted

for all code elements that share code clones, and each code element

is classified by which products it belongs to. The result of

classification is represented in the same way as requirements.

Figure 4. Overview of our framework

3.4 Keyword Setting
We utilize words related to requirements appear in the messages of

the configuration management log. In this step, keywords that

characterize each requirement are set so that they can be used to

identify the components related to the requirements in a later.

First, as candidates of keywords, words that have a large TF-IDF

value are extracted from the documents that describe the summary

of requirements. TF-IDF is a method for word weighting using

term frequency and inverse document frequency. In addition,

proper nouns, including abbreviations, are extracted as candidates.

Then, engineers set the keywords by adding, deleting, modifying, or

combining the candidate words. If domain knowledge is not enough,

users set the keywords with the following in mind.

 Words included in the requirement itself are preferred.

 General words used extensively are a cause of false positives.

 Keywords should not duplicate in multiple requirements.

3.5 Classification of Revisions
If we use revisions that simultaneously modify components of

multiple domains to recover traceability links, unrelated

requirements and components may be linked. In order to extract

useful information while avoiding false positives, we classify

revisions into the following three types based on the number of

domains they affect.

Type A. Revisions modifying components of a single domain.
Traceability links recovered from this type are the most

reliable. The revision in Figure 1 is classified as this type.

Type B. Revisions modifying components of multiple domains

below the threshold number.

Because poorly related features are simultaneously modified

in some cases, traceability links recovered from this type of

revision should be distinguished from traceability links

recovered from Type A revisions. If the threshold is greater

than two, the revision in Figure 2 is classified as this type.

Type C. Revisions modifying components of multiple domains

greater than or equal to the threshold number.

This type of revision causes false positives, so it is removed

from targets of search in the latter steps.

The threshold number is set by users. As a guidline, if there are a

lot of Type A revisions, users expect Type B revisions the reliability

rather than their number, so they should set a low threshold number.

Conversely, if there are few Type A revisions, users require a lot of

Type B revisions, so they should set a high threshold number.

At the end of this step, a refined log with the revisions classified

and Type C revisions removed is outputted. This refined log is used

in the following steps.

3.6 Recovery of Traceability Links between

Requirements and Components

3.6.1 Traceability Links Recovery Method
In this method, revisions that have message containing the

keywords set in Step (3) are identified to determine the

implementation points. The number of keyword appearance must

be above the threshold number, which is tuned to the number of

words in the revision message. Then, the requirements connected

with the keywords are linked with the modified components written

as file paths in the revision. For example, CUnit has the

requirement “Running tests in Automated mode”. Therefore, the

word “XML” is a keyword of this requirement. The method

searches for revisions that have a message containing the word

“XML” in the configuration management log, such as the revision

in Figure 1. In this revision, the component Automated.c is

modified. As a result, a traceability link between the requirement

“Running tests in Automated mode” and the component

Automated.c is recovered. The same operation is conducted for all

requirements to identify and link the related components.

3.6.2 Types of Traceability Links
For each traceability link recovered, the requirement and

component should belong to the same group of products as

classified by the CVA. If not, this information can be used to refine

traceability links. We classify traceability links into five types

using the results of the CVA. We first define the following terms.

 is the number of targeted products. represents the set of

requirements for each product. Then, (the set of requirements in

all targeted products) is defined by the following formula:

Figure 5. Types of traceability links

Likewise, represents the set of components for each product.

Then, (the set of components in all targeted products) is defined

by the following:

Next, (the relationship between and obtained from the

configuration management log) is defined by the following:

Finally, represents the power set of the targeted products. Then,

 (the relationship between requirements and the set of products

that have the requirements) and (the relationship between

components and the set of products that have the components) are

defined by the following:

 is the set of products that have the requirement .

is the set of products that have the component linked to the

requirement . Then, as a result of the comparison between

and , traceability links are classified into the following

five types. Figure 5 shows examples of when products X, Y and Z

are targeted. The usage of these types is described in section 3.7.

Type1.

 e.g.,

Type2.

 e.g.,

Type3.

e.g.,

Type4.

e.g.,

Type5.

e.g.,

3.6.3 Output Format
The result of the recovery of traceability links is outputted in

matrix form as shown in Figure 6. It shows the presence of the

relationship (namely the traceability link) between each

requirement and each component. Each traceability link has the

following two pieces of information.

 Type of traceability link

 Type of revision from which the link is recovered

For instance, in Figure 6, the traceability link between the

requirement “Running tests in automated mode” and the

component Automated.c is expressed as “1A”. This means that the

link is recovered as Type 1 from the revision of Type A. The

revision number is also written for each link, but is omitted in

Figure 6.

3.7 Auto Refine of Traceability Links
In this step, we refine traceability links using the classification in

Step (5) (section 3.6.2).

1) Recovery of traceability links between requirements and

functions

When a traceability link between a requirement and a

component is of Type 3, the requirement may link with

functions of the component. If the component has functions

whose results of the CVA are the same as those of the

requirement, these functions may link with the requirement.

Figure 7 shows an example in three products of CUnit {2.01,

2.10, 2.12}. The traceability link between the requirement

“Lookup of individual suites and tests,” which belongs to the

product {2.12}, and the component TestDB.c which belongs

to the products {2.01, 2.10, 2.12} is recovered by Step (5).

These CVA results are different, but the component

TestDB.c has functions that belong only to the product

{2.12}. Some of these functions may link with the

requirement “Lookup of individual suites and tests”.

If traceability links of Type 3 are recovered, functions of the

component whose results of the CVA are the same as those

of the requirement are demonstrated to the users.

2) Suggestion of the presence of sub requirements

When a traceability link between the requirement and the

component is of Type 2, the granularity of the requirement

may be large. Sub requirements whose results of the CVA are

the same as those of the component may exist. However, we

only suggest the presence of these because we do not stratify

requirements.

3) Detection of mismatches between documents and source code

Traceability links of Types 2 and 3 sometimes suggest

mismatches between documents and source code.

For example, in products {X, Y, Z}, if a requirement that

belongs to products {X, Y, Z} links with a component that

belongs to products {Y, Z}, the product X is contradictory. It

could be that in the document of the product X, an

unimplemented feature is written, or a feature that has been

removed from the source code remains undeleted. The

detection of these mismatches is important for the

management of traceability.

4) Elimination of false positives
Traceability links of Types 4 and 5 may be false positives

because the products to which the requirement and the

component belong are different. Therefore, these links are

removed from the results.

3.8 Manual Refine of Traceability Links
To check the validity of the traceability links recovered, engineers

review the links as follows.

A
ctiv

atio
n

 o
f su

ites an
d

 tests

A
d

d
in

g
 su

ites to
 th

e th
e reg

istry

A
d

d
in

g
 tests to

 su
ites

B
eh

av
io

r u
p

o
n

 fram
ew

o
rk

 erro
rs

C
lean

u
p

 th
e test reg

istry

E
rro

r h
an

d
lin

g

G
ettin

g
 test resu

lts

In
itializatio

n
 th

e test reg
istry

L
o

o
k

u
p

 o
f in

d
iv

id
u

al su
ites an

d
 tests

M
o

d
ify

in
g

 g
en

eral ru
n

tim
e b

eh
av

io
r

M
o

d
ify

in
g

 o
th

er attrib
u

tes o
f su

ites an
d

 tests

R
u

n
n

in
g

 tests in
 au

to
m

ated
 m

o
d

e

R
u

n
n

in
g

 tests in
 b

asic m
o

d
e

R
u

n
n

in
g

 tests in
 in

teractiv
e co

n
so

le m
o

d
e

R
u

n
n

in
g

 tests in
 in

teractiv
e cu

rses m
o

d
e

/Automated/Automated.c 3B 1B 1B 3B 3B 1A

/Basic/Basic.c 3B 1B 1B 3B 3B 1B 1A 1B 1B

/Console/Console.c [2.1-2] 1B 2B 1B

/Console/Console.c 5B 2B 5B

/Curses/Curses.c 3B 1B 3B

/Framework/CUError.c

/Framework/MyMem.c 3B 1A 1A 1A 1A 1A 3B 1B

/Framework/TestDB.c 3A 1A 1A 1A 1A 1A 3B 3A

/Framework/TestRun.c 3A 1A 1A 1A 1A 1A 1A 3B 3A 3A 1A 1A 1A 1A

/Framework/Util.c 3B 1B 3B

Figure 6. Traceability matrix

First, engineers look at the traceability matrix to see if there are any

requirements that link with a huge range of components. If they

find such a requirement, a keyword for the requirement may be a

word that is widely used in the configuration management log. In

this case, the engineers must go back to Step (3) to review the

keyword setting.

Next, for traceability links whose relationship is hard to understand

at a glance, engineers check their validity by reviewing the revision

messages from which they were recovered. If their validity is

confirmed, the recovery of these non-explicit traceability links is

considered a success.

4. EVALUATION
We carried out experiments targeting two groups of products,

which are different in terms of their size and development team.

We used our tool implemented in Java and the code clone detection

tool CCFinderX [15]. The following sections describe the

experiments for each target.

4.1 CUnit

4.1.1 Experimental Overview
CUnit is a testing framework of C. It is open source software. We

experimented with three versions of CUnit. Table 1 shows SLOC,

the number of requirements and the release date of each version.

The requirements are extracted from the user manual. We used the

log of SVN as the configuration management log. The number of

components is 9. The number of revisions in this log is 156. In

addition, we evaluated the validity of our results using the

traceability links mentioned in the user manual.

First, we recovered traceability links between 15 requirements and

9 components by conducting Steps (1) ~ (5). To study the impact

of the keyword setting on the accuracy of traceability links, we

conducted the following two patterns for Step (3):

Pattern 1. The five words with the highest TF-IDF values are set as

the keywords of each requirement.

Pattern 2. Some words out of the twenty words with the highest TF-

IDF values are chosen as the keywords of each requirement.

Pattern 1 is fully automatic, whereas Pattern 2 is semi automatic

like our framework. We chose two to seven words as the keywords

of each requirement in Pattern 2.

The threshold number of keyword appearance was set to 1 because

few words are contained in revision messages.

Next, we confirmed the traceability links between requirements and

functions by conducting Step (6).

Finally, we looked for the traceability links that are not mentioned

in the user manual by conducting Step (7). We conducted the

review on behalf of engineers.

4.1.2 Experimental Result
Table 3 shows the result of the recovery of traceability links

between requirements and components. The first column, Pat

(Pattern), contains the pattern of the keyword setting as described

in section 4.1.1. The second column, Rev (Revision), contains the

types of revisions used. The third column, Rel (Relevant), contains

the number of traceability links mentioned in the user manual. The

fourth column, Ret (Retrieved), contains the number of traceability

links retrieved by Step (5). The fifth column, Rel Ret

(Relevant Retrieved), gives the number of traceability links that

Figure 7. Recovery of traceability links

between requirements and functions

Table 1. CUnit

Version SLOC Requirements Release Date

2.01 5931 11 September, 2004

2.10 6225 11 March, 2006

2.12 7760 15 October, 2010

Table 2. The network control system

Version SLOC Requirements

3.01 54579 41

3.02 55281 48

3.03 62448 49

are mentioned in the user manual and retrieved by Step (5). Rec

(Recall), Pre (Precision), and F-m (F-measure) are defined by the

following formulas:

Figure 6 shows the traceability matrix obtained by the experiment

using Pattern 2. The cells representing links mentioned in the user

manual are shaded in gray. Console.c of version 2.12 is classified

as being different from that of the other versions because their

similarity is lower than the threshold set in Step (2).

The recovery result using the keyword setting of Pattern 2 and

revisions of Type A produced the highest value of F-measure.

Therefore, we conducted Steps (6) and (7) using this result.

3 of the 27 traceability links retrieved by Step (5) were of Type 3.

These were links between requirements that belong to the product

{2.12} and components that belong to the products {2.01, 2.10,

2.12}. We extracted functions that belong to the product {2.12}

from these components using our tool, and found that some of

these functions were mentioned in the user manual as being related

to the corresponding requirements.

13 of the 27 traceability links retrieved by Step (5) were not

mentioned in the user manual. By reviewing revision messages for

these links, we determined that at least 5 of the links were valid.

These links were concerned with the component MyMem.c, which

Table 3. Recall and Precision on CUnit

Pat Rev Rel Ret Rel∩Ret Rec Prec F-m

1 A, B 20 55 14 70.0% 25.5% 0.373

A 20 16 5 25.0% 31.3% 0.278

2 A, B 20 48 15 75.0% 31.3% 0.441

A 20 27 14 70.0% 51.9% 0.596

Table 4. Recall and Precision on the network control system

Thres Rel Ret Rel ∩ Ret Rec Prec F-m

1 16 40 13 81.3% 32.5% 0.464

5 16 17 11 68.8% 64.7% 0.667

10 16 7 6 37.5% 85.7% 0.522

manages the memory. Therefore, MyMem.c links with requirements

regarding adding, deleting, and initializing tests and suites.

However, the relationship between MyMem.c and those

requirements were not mentioned in the user manual. When we

included these 5 links to Relevant, Recall became 76.0%,

Precision 70.4%, and F-measure 0.731.

Regarding the time taken to recover traceability links in CUnit,

most of our framework is automated, and the running time of our

tool was 1 minute 40 seconds. The semi-automated parts of our

framework are Step (3) and (7). These steps took 30 minutes each.

4.2 Network Control System

4.2.1 Experimental Overview
We experimented with three versions of the network control system

developed by a company. We targeted five modules that cover the

basic features of the system. A module is a group of components.

Table 2 shows SLOC and the number of requirements for each

version. The SLOC in Table 2 represents the size of the five

modules. The size of the entire system is 1.4 ~ 1.7 MLOC. The

requirements were extracted from the design documents of features.

We used the log of SVN as the configuration management log. The

number of revisions in this log is 5727.

Engineers previously prepared traceability links between

requirements and modules, so their granularities were larger than

those of links recovered by our method. After recovering

traceability links between requirements and components, we linked

these requirements with the module that contains the corresponding

components. This eliminated the difference in granularity.

First, we recovered traceability links between 49 requirements and

5 modules by conducting Steps (1) ~ (5). We set three different

threshold numbers of keyword appearance in Step (5) to study the

relationship between keyword appearance and accuracy of

traceability links. The thresholds were 1, 5 and 10.

Next, in Step (6), we confirmed the traceability links between

requirements and functions.

Finally, in Step (7), we looked for traceability links that were

unknown to engineers. The review was conducted by engineers.

4.2.2 Experimental Result
Table 4 shows the result of the recovery of traceability links

between requirements and components. The first column, Thres

(Threshold), contains the threshold numbers of keyword

appearance. The second column, Rel (Relevant), contains the

number of traceability links prepared by engineers. The third

column, Ret (Retrieved), contains the number of traceability links

retrieved by Step (5). The fourth column, Rel Ret

(Relevant Retrieved), gives the number of traceability links that

are both prepared by engineers and retrieved by Step (5). These

results were obtained by using revisions of Types A and B. They

were almost the same as the results using only revisions of Type A

because there were only a few traceability links recovered from

revisions of Type B.

The value of F-measure was highest when the threshold number of

keyword appearance was 5. Therefore, we used the result from this

threshold number for Steps (6) and (7).

3 of the 17 traceability links retrieved by Step (5) were of Type 3.

These were links between requirements that belong to the products

{3.02, 3.03} and components that belong to the products {3.01,

3.02, 3.03}. We extracted functions that belong to the products

{3.02, 3.03} from these components using our tool, and found that

the identifiers of some of these functions used the short form of the

requirements.

6 of the 17 traceability links retrieved by Step (5) were not

mentioned by engineers. By reviewing revision messages for these

links, we determined that at least 5 of the links were valid. When

we included these 5 links to Relevant, Recall became 76.2%,

Precision 94.1%, and F-measure 0.842.

Regarding the time taken to recover traceability links in the

network control system, the running time of our tool was 13

minutes 36 seconds. Step (3) took approximately 2 hours. Step (7)

took approximately 1 hour.

4.3 Discussion

4.3.1 Research Questions
RQ1 How accurately can we recover candidate traceability

links semi-automatically?

For CUnit, Recall was 70.0%, and Precision was 51.9%. For the

network control system, Recall was 68.8%, and Precision was

64.7%. These were the results with the highest value of F-measure.

With regard to false negatives, we failed to recover approximately

30% of known links. We have not been able to recover traceability

links involving components that have not been modified in the

period of the configuration management. For example, if a

component that is reused from past assets is not modified, only the

record of adding it remains. This will make it difficult for our

framework to recover traceability links involving this component.

However, traceability links of reusable past assets tend to be

known to engineers, so the engineers may recover these links easily.

With regard to Precision, it was high enough to judge the validity

of links that were unknown to engineers.

RQ2 How many non-explicit traceability links can we

manually refine from candidate links?

In CUnit, 5 of 13 traceability links that were not mentioned in the

user manual were refined as non-explicit traceability links.

Consequently, Recall became 76.0%, and Precision became 70.4%.

In the network control system, 5 of 6 traceability links that were

not grasped by engineers were refined as non-explicit traceability

links. Consequently, Recall became 76.2%, and Precision became

94.1%. These results show that non-explicit traceability links can

be successfully recovered.

With regard to false positives, when the name of an asset treated by

multiple requirements is set as the keyword of these requirements,

if a revision message contains the keyword, the components tied to

the revision will be linked with all of these requirements. If the

same keyword needs to be used for multiple requirements, the

possibility of the number of false positives increasing should be

considered.

RQ3 Can we recover traceability links within a reasonable

amount of time?

In CUnit, automatic parts took 1 minute 40 seconds, and non

automatic parts took about 1 hour. In the network control system,

automatic parts took 13 minutes 36 seconds, and non automatic

parts took about 3 hours. These results show that traceability links

can be recovered within a reasonable amount of time. Moreover,

when we applied our framework to 35 modules (200 KLOC) of the

network control system, the running time of our tool was 58

minutes 12 seconds.

4.3.2 Auto Refine of Traceability Links
In both targets, we could recover links between requirements and

functions. This shows that using the CVA is effective in the

recovery of links between requirements and functions.

In contrast, with regard to the detection of mismatches between

documents and source code, we could not find practical examples.

This may indicate that documents and source code are

comparatively properly managed in the targeted products. However,

it is also possible that our technique is not effective in the detection

of mismatches, so we should show practical examples by

conducting additional experiments for another target in the future.

4.3.3 Keyword Setting
We have tested two patterns of the keyword setting in CUnit.

Recall and Precision in Table 3 show that the accuracy of

traceability links is higher in Pattern 2 than in Pattern 1. TF-IDF

has the ability to filter general words, but it is not perfect. Manual

adjustment is required because the impact of false positives is large.

4.3.4 Classification of Revisions
From Table 3, we can see that by including revisions of Type B,

Recall increases while Precision decreases. When we use revisions

of Type B, we should keep in mind that false positives may

increase, but we may be able to recover additional useful links.

4.3.5 Threshold Number of Keyword Appearance
In the network control system, we set three different threshold

numbers of keyword appearance. From Table 4, we can see that as

the threshold increases, Recall decreases while Precision increases.

In this target, the case in which the threshold is 5 produces the

highest value of F-measure. However, in CUnit, the threshold is

limited to 1 because a threshold of over 2 causes a significant

decrease in Recall. Therefore, the suitable threshold depends on the

target, and users should adjust it accordingly.

4.4 Limitations

4.4.1 Quality of Log Messages
Our frame work is highly dependent on the quality of log messages.

If engineers do not record detailed information about modifications

in log messages, our framework cannot work well. For example, if

a revision only contains “Fix” in the log message, our framework

cannot use such a revision to recover links. As in Figure 1, at least

one meaningful phrase is required for each revision.

4.4.2 Limitation of the CVA
In some cases, elements common to multiple products are classified

as different elements. For example, if the contents of source code

are significantly modified by refactoring while its feature is not

changed, code elements that have the same feature are classified as

different elements because their similarity is lower than the

threshold. In CUnit, Console.c is consistent with the above

example. However, if users set a low threshold to avoid the above

problem, different elements that have small amounts of code clone

may be classified as identical. Therefore, we should consider that

the results of the CVA have some errors, and develop

countermeasures. For example, we should compare the identifier of

code elements in addition to code clone detection.

4.4.3 Threats to Validity
In CUnit, we manually set the keywords for each requirement. We

empirically got the trends of unsuitable or effective keywords. This

may have affected the accuracy and costs of our evaluation, and is a

threat to internal validity. In the future, we would like to confirm

the influence of having multiple people set the keywords on

accuracy and costs.

The two targets we used are different in terms of software domain,

size, and the development organization. These factors should not

significantly affect the validity of our framework. However, these

targets are both implemented in the C language. It is a threat to

external validity that our evaluation has been limited to a single

programming language. Although our framework does not depend

on the programming language of targeted products, we should

confirm that language does not affect the results by applying our

framework to targets implemented in another language.

In both targets, we chose three versions. We have not confirmed the

impact of the number of products on the accuracy of the recovery,

which is a threat to external validity. Therefore, we should confirm

this by applying our framework to more versions.

In our evaluation, Relevant consisted of links known in advance

and correct links recovered by our framework. However, there

should be some links that were not known and could not be

recovered. Therefore, if we include these links to Relevant, Recall

may become lower. We should conduct experiments using a

benchmark in order to evaluate our framework more accurately.

5. RELATED WORK
Antoniol et al. have proposed a method to recover traceability links

between code and documentation using information retrieval

technologies, such as the probabilistic model and the vector space

model [5]. They compare the identifier in source codes and the

words in documents to recover links. In contrast, we recover links

using the configuration management log. Our framework can

recover links even if the identifier in source codes and the words in

documents are different.

Dagenais et al. have proposed a method to recover traceability links

between an API and learning resources by using code-like terms in

documents and analyzing their contexts [6]. Our framework does

not require code-like terms in documents because it uses the

configuration management log to recover links.

There are additional studies that have compared the representation

between requirements and source code to recover traceability links

[7][8]. Our framework is intended to cover the weakness of their

methods rather than to be upward-compatible with them. Our

method does not depend on the representation, but it may be

inferior to their methods for targets in which there is little

difference in the representation between requirements and code. So

the completeness and correctness of the traceability link recovery

may be improved by combining our framework with previously

proposed methods.

Kaiya et al. have proposed a method to find change impacts on

source codes caused by requirements changes [9]. They use

documents written in Japanese, and identify requirements from

Japanese sentences and implementation points from English

sentences. In our method, we use the configuration management log.

In the log, requirements and implementation points are

distinguished as messages and file paths, so our framework does

not depend on the language of targets.

Settimi et al. have proposed a goal-centric approach to managing

the impact of change upon the non-functional requirements (NFRs)

of a software system [10]. They retrieve links between classes

affected by a functional change and NFRs using a probabilistic

network model. In contrast, our framework primarily targets

functional requirement. However, if keywords can be set for each

NFR, our framework may recover links between NFRs and source

code. In the future, we should evaluate our framework using a

target that contains NFRs.

Dekhtyar et al. have proposed a method of requirements tracing

that uses TF-IDF vector retrieval and latent semantic indexing [11].

The requirements tracing contains tracing between high-level and

low-level requirements. We have not made a hierarchy of

requirements, so their method may be used to improve Step (6) of

our framework (section 3.7).

Ghabi et al. have proposed an approach for validating

requirements-to-code traces through calling relationships within the

code [12]. In the future, we will utilize calling relationships in order

to improve the accuracy of traceability recovery.

6. CONCLUSION AND FUTURE WORK
We have proposed a framework that includes the process to recover

traceability links between requirements and source code. We have

recovered links using the configuration management log, and have

refined the links by applying CVA and having engineers review

them. We have also developed a tool that automates parts of our

framework. Moreover, we have applied the framework to actual

products that have more than 60KLOC, and have confirmed its

validity. Our framework enables cost reduction of the recovery of

traceability links, and the recovery of non-explicit traceability links.

Recovering traceability links may increase the reusability of the

software, thereby facilitating the subsequent derived development

and introduction of product line.

For future work, we will consider the hierarchical structure of

requirements and code elements, and aim to improve our methods

for keyword setting and refining links. Furthermore, we are aiming

for our framework to be able to support software product line

introduction.

7. ACKNOWLEDGMENTS
We thank Kentaro Kumaki for providing a prototype tool that

analyzes the commonality and variability of requirements.

8. REFERENCES
[1] G. Spanoudakis and A. Zisman. Software Traceability: A

Roadmap, Handbbok of Software Engineering and

Knowledge Engineering. World Scientific Publishing,

pp.395-428, 2005.

[2] K. Kumaki, R. Tsuchiya, H. Washizaki and Y. Fukazawa.

Supporting Commonality and Variability Analysis of

Requirements and Structural Models, MAPLE 2012,

SPLC’12, vol.2, pp.115-118, 2012.

[3] G. Salton and M. J. McGill. Introduction to Modern

Information Retrieval, McGraw-Hill, New York, 1983.

[4] K. Yoshimura, D. Ganesan and D. Muthig. Defining a

strategy to introduce a software product line using existing

embedded systems, EMSOFT '06 Proceedings of the 6th

ACM & IEEE International conference on Embedded

software, pp.63-72, 2006.

[5] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia and E.

Merlo. Recovering Traceability Links between Code and

Documentation, IEEE Transactions on Software Engineering,

vol.28, no.10, pp.970-983, 2002.

[6] B. Dagenais and M. P. Robillard. Recovering Traceability

Links between an API and Its Learning Resources, the 34th

International Conference on Software Engineering (ICSE’12),

pp.47-57, 2012.

[7] X. Chen, Extraction and Visualization of Traceability

Relationships between Documents and Source Code, the

IEEE/ACM International Conference on Automated Software

Engineering, pp.505–510, 2010.

[8] A. De Lucia, R. Oliveto, and G. Tortora, ADAMS Re-Trace:

Traceability Link Recovery via Latent Semantic Indexing, the

30th International Conference on Software Engineering

(ICSE’08), pp. 839–842, 2008.

[9] H. Kaiya, A. Osada, K. Hara and K. Kaijiri. Design,

Implementation and Evaluation of a System for Finfding

Change Impacts on Source Codes Caused by Requirements

Changes, IEICE Trans D, vol.J93-D, no.10, pp.1822-1835,

2010.

[10] R. Settimi, O. BenKhadra, E. Berezhanskaya and S. Christina,

Goal-Centric Traceability for Managing Non-Functional

Requirements, the 27th International Conference on Software

Engineering (ICSE’05), pp.362-371, 2005.

[11] A. Dekhtyar and S. K. Sundaram, Advancing Candidate Link

Generation for Requirements Tracing: The Study of Methods,

IEEE Transactions on Software Engineering, vol.32, no.1,

pp.4-19, 2006.

[12] A. Ghabi and A. Egyed, Code Patterns for Automatically

Validating Requirements-to-Code Traces, the 27th

IEEE/ACM International Conference on Automated Software

Engineering, pp.200-209, 2012.

[13] CUnit, http://sourceforge.net/projects/cunit/

[14] Apache Subversion, http://subversion.apache.org/

[15] CCFinderX, http://www.ccfinder.net/

