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ABSTRACT 

If traceability links between requirements and source code are not 

clarified when conducting maintenance and enhancements for the 

same series of software products, engineers cannot immediately 

find the correction location in the source code for requirement 

changes. However, manually recovering links in a large group of 

products requires significant costs and some links may be 

overlooked. Here, we propose a semi-automatic method to recover 

traceability links between requirements and source code in the same 

series of large software products. In order to support differences in 

representation between requirements and source code, we recover 

links by using the configuration management log as an 

intermediary. We refine the links by classifying requirements and 

code elements in terms of whether they are common or specific to 

the products. As a result of applying our method to real products 

that have 60KLOC, we have recovered valid traceability links 

within a reasonable amount of time. Automatic parts have taken 13 

minutes 36 seconds, and non-automatic parts have taken about 3 

hours, with a recall of 76.2% and a precision of 94.1%. Moreover, 

we recovered some links that were unknown to engineers. By 

recovering traceability links, software reusability will be improved, 

and software product line introduction will be facilitated. 

Categories and Subject Descriptors 

D.2.7 [Distribution, Maintenance, and Enhancement]: 

Extensibility 

General Terms 

Management 

Keywords 

Traceability Recovery, Configuration Management Log, 

 Commonality and Variability Analysis 

1. INTRODUCTION 
Traceability in software development is the ability to trace the 

relationship between artifacts. This relationship is called 

traceability link. Traceability links are formed between the 

following pairs: documents of requirements specification and 

source code that implements the requirements, design documents 

and test cases, requirements and design, etc. In this paper, we focus 

on links between requirements and code elements (e.g., function, 

class, file).  For example, in CUnit [13] (the target of our 

evaluation experiments in this paper), the requirement “Running 

tests in Automated mode” links with the file Automated.c that 

implements the requirement. 

If traceability links between requirements and source code are 

ambiguous, development efficiency is significantly reduced because 

engineers cannot immediately modify the source code when there 

are change requests of requirements. 

In some cases, traceability decreases through software maintenance 

and incremental development. Documents are not managed 

properly because of the short interval of the software release. For 

example, if documents are not updated when deleting existing 

features or adding new features, a mismatch arises between 

documents and source code. This may cause a decrease in software 

maintainability. 

As described above, traceability is important in development. 

Therefore, it is ideal that clear traceability links are formed between 

requirements and source code. However, traceability links in actual 

products are typically not managed because engineers tend to not 

recognize the benefits of traceability links and worry about 

management costs [1]. 

It is not practical from the viewpoint of cost that engineers 

manually recover all traceability links of large products. Moreover, 

there are traceability links that are difficult to find manually, we 

call these “non-explicit traceability links.” For example, if we 

cannot see the similarity of the notation between requirements and 

source code, or there is no description of the relationship in 

documents, manual recovery of traceability links is not easy. 

We propose a framework to recover traceability links between 

requirements and source code in the same series of large software 

products. In order to support differences in representation between 

 



requirements and code elements (e.g., notation, language), we 

recover links by applying natural language processing and 

document retrieval to the configuration management log. However, 

the granularity of links recovered from the configuration 

management log is large, so we refine the links by conducting the 

commonality and variability analysis. 

Our proposed method is semi-automatic: with regard to recovered 

links unknown to engineers, engineers must manually judge 

whether they are non-explicit traceability links or false positives. If 

the accuracy of the recovery method is poor, or support information 

is missing, the decisions take significant costs. Our framework 

enables engineers to judge the validity of links with practical costs. 

The following are the Research Questions addressed in this study. 

RQ1  How accurately can we recover candidate traceability links 

semi-automatically? 

RQ2  How many non-explicit traceability links can we manually 

refine from candidate links? 

RQ3  Can we recover traceability links within a reasonable amount 

of time? 

In order to evaluate the validity our framework, we applied the 

framework to two products: open source software CUnit and a 

network control system developed by a company. CUnit has more 

than 7KLOC, and the network control system has more than 

60KLOC. In CUnit, we recovered traceability links with a recall of 

76.0% and a precision of 70.4%. In the network control system, we 

recovered traceability links with a recall of 76.2% and a precision 

of 94.1%. Therefore, we found that our framework is effective in 

the recovery of traceability links regardless of the size of products 

and the development organization. 

The following are our contributions. 

 We have proposed a method to semi automatically recover 

traceability links using the configuration management log. 

 We have proposed a method to refine traceability links by 

conducting the commonality and variability analysis. 

 We have developed a tool that can recover links in large 

software products within a reasonable amount of time. 

 We have proposed a framework including the process to 

recover traceability links using the tool mentioned above. 

 We have applied the framework to actual products that have 

more than 60KLOC, and have confirmed its validity. 

Our framework classifies requirements and source code as common 

to some products or as specific to a product, and recovers links 

between these elements. Therefore, our framework may support 

extraction of core assets with high reusability. As a result, software 

product line introduction will be facilitated. 

The remainder of the paper is organized as follows. First, we 

provide some background information (Section 2). Then, we 

describe our framework to recover traceability links (Section 3). In 

Section 4, we present our evaluation of the framework by 

conducting experiments on two targets. In Section 5, we discuss 

related works. Finally, we provide a conclusion and future works 

(Section 6). 

2. BACKGROUND 

2.1 Configuration Management Log 
If the identifier of code elements (e.g., file name, function name) 

and requirements are represented using the same notation and 

language, automatic recovery of traceability links is easy. However, 

 

Figure 1. Revision modifying a single file 

 

Figure 2. Revision modifying multiple files 

 

Figure 3. Commonality and variability analysis 

it is often the case that the notation and language are different 

between requirements and source code. For instance, while the 

purpose is described in the requirements, the identifier that 

signifies the means can be given to the code elements. In another 

case, the identifier can be the short form of requirements. In the 

above cases, it is difficult to recover traceability links by 

comparing the requirements and the identifier of code elements. 

In order to support differences in expression, an intermediary is 

required. Here, we focus on the configuration management log that 

contains information related to requirements and source code. It is 

composed of revisions that include messages and file paths. The 

two targets of our evaluation experiments use the version 

management system Apache Subversion (SVN) [14]. Figures 1 and 

2 show excerpts from a log of CUnit as specific examples of the 

revision of SVN. They show that each revision has a message and 

file paths. By examining these logs, we have confirmed that words 

related to requirements appear in the messages of the log. For 

example, in Figure 1, the word "XML" appears in the message. 

This word is strongly correlated with the requirement “Running 

tests in Automated mode” because this functional requirement is 

the only one that outputs results in XML format. If these words are 

recorded along with file paths, we can recover links between 

requirements and source code without depending on the notation. 



The configuration management log is recorded whenever the source 

code is modified, so it may record information on traceability links 

that cannot be grasped from documents. Therefore, it is possible to 

recover non-explicit traceability links using the log. 

Some revisions simultaneously modify files of multiple domains in 

the configuration management log. Here, domain is a directory that 

has files implementing the same feature. For example, in the 

revision shown in Figure 2, files of the Basic and Framework 

domains are modified at the same time. When this kind of revisions 

is used to recover traceability links, unrelated requirements and 

files may be linked. However, because requirements related to files 

of multiple domains exist, these revisions cannot be ignored. 

Therefore, we classify revisions into different types based on the 

number of domains they affect. 

2.2 Commonality and Variability Analysis 
Ttraceability links between requirements and functions cannot be 

recovered using file paths in the configuration management log. 

Therefore, we use the Commonality and Variability Analysis 

(CVA) on the same series of software products so that we can 

recover traceability links between requirements and functions. 

The CVA is used to analyze to which products elements (e.g., 

requirements, code elements) belong. The CVA classifies elements 

as common to some products or as specific to a product. Figure 3 

shows a concrete example: the requirements “Running tests in 

Automated mode” and “Running tests in Basic mode” are common 

to three products, whereas the requirement “Activation of suites 

and tests” belongs to the product Z only. 

Kumaki et al. have proposed a method that analyzes the 

commonality and variability of the requirements of legacy software 

products [2]. The method measures the similarity of sentences 

using the vector space model, and analyzes whether the 

requirements are common to multiple products. 

In the vector space model proposed by Salton et al. [3], a sentence 

is represented by one vector that depends on the valid words in the 

sentence. The contents of the sentences are determined by the 

direction of the vector. 

There is a previous study that measures software similarity and 

analyzes the commonality and variability of code elements using 

code clone detection [4]. A code clone is a code fragment that is 

identical or similar to another in a source code. Software similarity 

can be measured by detecting code clones that exist in different 

products. 

If a requirement is linked to a file, the result of the CVA of the 

requirement may coincide with that of the file. If there is a 

mismatch, however, the information can be used to recover 

traceability links between requirements and functions. Moreover, it 

makes the detection of mismatches between documents and source 

codes possible.  

2.3 Motivating Example 
In many products, the notation and the abstraction level are 

different between the requirements and the identifier of code 

elements. In CUnit, the requirement “Lookup of individual suites 

and tests” links with the functions CU_get_suite() and 

CU_get_test() that belong to the file TestDB.c. There are some 

overlapping words between the requirements and the identifiers, 

but it is not easy to associate them by comparing them. In the 

network control system used as a target of our evaluation 

experiments, while the identifier of code elements is written in 

English, the requirements are written in Japanese. 

In most products, non-explicit traceability links exist. In CUnit, the 

user manual describes most traceability links between requirements 

and code elements. However, information on the relevant 

requirements of some files (e.g., MyMem.c) is not mentioned. The 

information may be unnecessary if CUnit is used as a testing 

framework, but it is useful for derived development based on CUnit. 

In the network control system, there are a lot of traceability links 

that engineers have not grasped because the number of 

requirements and files is quite large. 

Traceability links between requirements and functions cannot be 

recovered by using only the file paths in the configuration 

management log. As explained above, in CUnit, the requirement 

“Lookup of individual suites and tests” links with the functions 

CU_get_suite() and CU_get_test() that belong to the file TestDB.c. 

If we use only file paths, we recover a link between the requirement 

and the file, but not the functions. However, we may recover links 

with the functions using the CVA because the requirement and the 

functions are specific to version 2.12 whereas the file is common to 

multiple versions. 

3. TRACEABILITY LINKS RECOVERY 

FRAMEWORK 
We propose a framework to recover traceability links between 

requirements and source code in the same series of large software 

products. Our framework to recover links does not depend on the 

similarity of the representation between requirements and code 

elements. We find source code that implements requirements from 

the configuration management log using keywords set for each 

requirement. Moreover, we automatically refine links using CVA 

results, and also review and refine links manually. 

3.1 Overview 
Figure 4 shows the overview of our framework. Targets of our 

framework are series of large software products developed by one 

organization. As inputs, the assets of requirements and source code 

are required for each product. Assets of requirements are 

documents about requirements of products written in natural 

language. For automatic analysis, a document that lists all 

requirements one line at a time and a summary of each requirement 

are required. In addition, a configuration management log that 

supports all targeted products is needed. 

Traceability links between requirements and source code can be 

recovered by finding revisions that contain words related to 

requirements in the configuration management log. For refining 

these traceability links, the CVA is conducted prior to recovering 

traceability links. Our design of the framework is divided into the 

following seven steps. 

Step (1). CVA of Requirements 
The CVA of requirements is conducted by entering the assets 

of requirements for each product. The vector space model is 

used as the element technology. 

Step (2). CVA of Code Elements 
The CVA of code elements is conducted by entering the 

source code for each product. The results of the analysis are 

outputted at the granularity of both components (e.g., class, 

file) and functions. Code clone detection is used as the 

element technology. 



Step (3). Keyword Setting 
Keywords are set for each requirement to find the revisions 

that contain words related to the requirement. Then, TF-IDF 

(Term Frequency and Inverse Document Frequency) supports 

the keyword setting. 

Step (4). Classification of Revisions 
Revisions are classified based on the number of domains they 

affect. 

Step (5). Recovery of Traceability Links between Requirements 

and Components 
Traceability links between requirements and components are 

recovered by finding the relevant revisions using keywords 

set in Step (3). The results are outputted as a traceability 

matrix. 

Step (6). Auto Refine of Traceability Links 
Traceability links between requirements and functions are 

recovered using the results of the CVA, and mismatches 

between documents and source code are detected.  

Step (7). Manual Refine of Traceability Links 
Engineers review the messages of revisions to check for the 

existence of false positives. If there are a large number of 

false positives, keywords that cause them are identified and 

the process goes back to Step (3), where new suitable 

keywords are set. 

The following sections describe each step in detail.  

3.2 CVA of Requirements 
In this step, the CVA of requirements is conducted. Assets of 

requirements are required as input. We use a method proposed by 

Kumaki et al. By measuring the similarity of sentences between the 

requirements in each product, each requirement is classified as 

being common to some products or as being specific to one product. 

If the similarity exceeds a threshold set by the users, requirements 

are judged to be identical. The result of classification is represented 

as a subset of a set of all products targeted. For instance, in Figure 

3, a set of all products targeted is {X, Y, Z}. The requirement 

“Running tests in Automated mode” belongs to {X, Y, Z}. On the 

other hand, the requirement “Lookup of individual suites and tests” 

belongs to {Y}. 

3.3 CVA of Code Elements 
In this step, the CVA of code elements is conducted. Source code is 

needed as input. The analysis is conducted at the granularity of 

both components and functions. In the same way as requirements, 

code elements are classified as either common or specific.  

As with the previous study (mentioned in section 2.2), we use code 

clone detection to analyze commonality and variability of code 

elements. The following describes how to measure the similarity of 

code elements.  is the number of code elements that share code 

clones.  represents the total number of tokens for each code 

element.  represents the number of tokens of code clones for each 

code element. Then,  (the similarity of the code elements) is 

defined by the following formula: 

 

If  exceeds a threshold set by the users, these code elements are 

judged to be identical. This similarity measurement is conducted 

for all code elements that share code clones, and each code element 

is classified by which products it belongs to. The result of 

classification is represented in the same way as requirements. 

 

Figure 4. Overview of our framework 

3.4 Keyword Setting 
We utilize words related to requirements appear in the messages of 

the configuration management log. In this step, keywords that 

characterize each requirement are set so that they can be used to 

identify the components related to the requirements in a later. 

First, as candidates of keywords, words that have a large TF-IDF 

value are extracted from the documents that describe the summary 

of requirements. TF-IDF is a method for word weighting using 

term frequency and inverse document frequency. In addition, 

proper nouns, including abbreviations, are extracted as candidates. 

Then, engineers set the keywords by adding, deleting, modifying, or 

combining the candidate words. If domain knowledge is not enough, 

users set the keywords with the following in mind. 

 Words included in the requirement itself are preferred. 

 General words used extensively are a cause of false positives. 

 Keywords should not duplicate in multiple requirements. 



3.5 Classification of Revisions 
If we use revisions that simultaneously modify components of 

multiple domains to recover traceability links, unrelated 

requirements and components may be linked. In order to extract 

useful information while avoiding false positives, we classify 

revisions into the following three types based on the number of 

domains they affect. 

Type A. Revisions modifying components of a single domain. 
Traceability links recovered from this type are the most 

reliable. The revision in Figure 1 is classified as this type. 

Type B. Revisions modifying components of multiple domains 

below the threshold number. 

Because poorly related features are simultaneously modified 

in some cases, traceability links recovered from this type of 

revision should be distinguished from traceability links 

recovered from Type A revisions. If the threshold is greater 

than two, the revision in Figure 2 is classified as this type. 

Type C. Revisions modifying components of multiple domains 

greater than or equal to the threshold number. 

This type of revision causes false positives, so it is removed 

from targets of search in the latter steps. 

The threshold number is set by users. As a guidline, if there are a 

lot of Type A revisions, users expect Type B revisions the reliability 

rather than their number, so they should set a low threshold number. 

Conversely, if there are few Type A revisions, users require a lot of 

Type B revisions, so they should set a high threshold number. 

At the end of this step, a refined log with the revisions classified 

and Type C revisions removed is outputted. This refined log is used 

in the following steps. 

3.6 Recovery of Traceability Links between 

Requirements and Components 

3.6.1 Traceability Links Recovery Method 
In this method, revisions that have message containing the 

keywords set in Step (3) are identified to determine the 

implementation points. The number of keyword appearance must 

be above the threshold number, which is tuned to the number of 

words in the revision message. Then, the requirements connected 

with the keywords are linked with the modified components written 

as file paths in the revision.  For example, CUnit has the 

requirement “Running tests in Automated mode”. Therefore, the 

word “XML” is a keyword of this requirement. The method 

searches for revisions that have a message containing the word 

“XML” in the configuration management log, such as the revision 

in Figure 1. In this revision, the component Automated.c is 

modified. As a result, a traceability link between the requirement 

“Running tests in Automated mode” and the component 

Automated.c is recovered. The same operation is conducted for all 

requirements to identify and link the related components. 

3.6.2 Types of Traceability Links 
For each traceability link recovered, the requirement and 

component should belong to the same group of products as 

classified by the CVA. If not, this information can be used to refine 

traceability links. We classify traceability links into five types 

using the results of the CVA. We first define the following terms. 

 is the number of targeted products.  represents the set of 

requirements for each product. Then,  (the set of requirements in 

all targeted products) is defined by the following formula: 

 

Figure 5. Types of traceability links 

 

Likewise,  represents the set of components for each product. 

Then,  (the set of components in all targeted products) is defined 

by the following: 

 

Next,  (the relationship between  and  obtained from the 

configuration management log) is defined by the following: 

 

 

Finally,  represents the power set of the targeted products. Then, 

 (the relationship between requirements and the set of products 

that have the requirements) and  (the relationship between 

components and the set of products that have the components) are 

defined by the following: 

 

 

 is the set of products that have the requirement .  

is the set of products that have the component  linked to the 

requirement . Then, as a result of the comparison between  

and , traceability links are classified into the following 

five types. Figure 5 shows examples of when products X, Y and Z 

are targeted. The usage of these types is described in section 3.7. 
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3.6.3 Output Format 
The result of the recovery of traceability links is outputted in 

matrix form as shown in Figure 6. It shows the presence of the 

relationship (namely the traceability link) between each 

requirement and each component. Each traceability link has the 

following two pieces of information. 

 Type of traceability link 

 Type of revision from which the link is recovered 

For instance, in Figure 6, the traceability link between the 

requirement “Running tests in automated mode” and the 

component Automated.c is expressed as “1A”. This means that the 

link is recovered as Type 1 from the revision of Type A. The 

revision number is also written for each link, but is omitted in 

Figure 6. 

3.7 Auto Refine of Traceability Links 
In this step, we refine traceability links using the classification in 

Step (5) (section 3.6.2). 

1) Recovery of traceability links between requirements and 

functions 

When a traceability link between a requirement and a 

component is of Type 3, the requirement may link with 

functions of the component. If the component has functions 

whose results of the CVA are the same as those of the 

requirement, these functions may link with the requirement. 

Figure 7 shows an example in three products of CUnit {2.01, 

2.10, 2.12}. The traceability link between the requirement 

“Lookup of individual suites and tests,” which belongs to the 

product {2.12}, and the component TestDB.c which belongs 

to the products {2.01, 2.10, 2.12} is recovered by Step (5). 

These CVA results are different, but the component 

TestDB.c has functions that belong only to the product 

{2.12}. Some of these functions may link with the 

requirement “Lookup of individual suites and tests”. 

If traceability links of Type 3 are recovered, functions of the 

component whose results of the CVA are the same as those 

of the requirement are demonstrated to the users. 

2) Suggestion of the presence of sub requirements 

When a traceability link between the requirement and the 

component is of Type 2, the granularity of the requirement 

may be large. Sub requirements whose results of the CVA are 

the same as those of the component may exist. However, we 

only suggest the presence of these because we do not stratify 

requirements. 

3) Detection of mismatches between documents and source code 

Traceability links of Types 2 and 3 sometimes suggest 

mismatches between documents and source code. 

For example, in products {X, Y, Z}, if a requirement that 

belongs to products {X, Y, Z} links with a component that 

belongs to products {Y, Z}, the product X is contradictory. It 

could be that in the document of the product X, an 

unimplemented feature is written, or a feature that has been 

removed from the source code remains undeleted. The 

detection of these mismatches is important for the 

management of traceability. 

4) Elimination of false positives 
Traceability links of Types 4 and 5 may be false positives 

because the products to which the requirement and the 

component belong are different. Therefore, these links are 

removed from the results. 

3.8 Manual Refine of Traceability Links 
To check the validity of the traceability links recovered, engineers 

review the links as follows. 
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/Automated/Automated.c 3B 1B 1B 3B 3B 1A

/Basic/Basic.c 3B 1B 1B 3B 3B 1B 1A 1B 1B

/Console/Console.c [2.1-2] 1B 2B 1B

/Console/Console.c 5B 2B 5B

/Curses/Curses.c 3B 1B 3B

/Framework/CUError.c 

/Framework/MyMem.c 3B 1A 1A 1A 1A 1A 3B 1B

/Framework/TestDB.c 3A 1A 1A 1A 1A 1A 3B 3A

/Framework/TestRun.c 3A 1A 1A 1A 1A 1A 1A 3B 3A 3A 1A 1A 1A 1A

/Framework/Util.c 3B 1B 3B

Figure 6. Traceability matrix 



First, engineers look at the traceability matrix to see if there are any 

requirements that link with a huge range of components. If they 

find such a requirement, a keyword for the requirement may be a 

word that is widely used in the configuration management log. In 

this case, the engineers must go back to Step (3) to review the 

keyword setting. 

Next, for traceability links whose relationship is hard to understand 

at a glance, engineers check their validity by reviewing the revision 

messages from which they were recovered. If their validity is 

confirmed, the recovery of these non-explicit traceability links is 

considered a success. 

4. EVALUATION 
We carried out experiments targeting two groups of products, 

which are different in terms of their size and development team. 

We used our tool implemented in Java and the code clone detection 

tool CCFinderX [15]. The following sections describe the 

experiments for each target. 

4.1 CUnit 

4.1.1 Experimental Overview 
CUnit is a testing framework of C. It is open source software. We 

experimented with three versions of CUnit. Table 1 shows SLOC, 

the number of requirements and the release date of each version. 

The requirements are extracted from the user manual. We used the 

log of SVN as the configuration management log. The number of 

components is 9. The number of revisions in this log is 156. In 

addition, we evaluated the validity of our results using the 

traceability links mentioned in the user manual. 

First, we recovered traceability links between 15 requirements and 

9 components by conducting Steps (1) ~ (5). To study the impact 

of the keyword setting on the accuracy of traceability links, we 

conducted the following two patterns for Step (3): 

Pattern 1. The five words with the highest TF-IDF values are set as 

the keywords of each requirement. 

Pattern 2. Some words out of the twenty words with the highest TF-

IDF values are chosen as the keywords of each requirement. 

Pattern 1 is fully automatic, whereas Pattern 2 is semi automatic 

like our framework. We chose two to seven words as the keywords 

of each requirement in Pattern 2. 

The threshold number of keyword appearance was set to 1 because 

few words are contained in revision messages. 

Next, we confirmed the traceability links between requirements and 

functions by conducting Step (6). 

Finally, we looked for the traceability links that are not mentioned 

in the user manual by conducting Step (7). We conducted the 

review on behalf of engineers. 

4.1.2 Experimental Result 
Table 3 shows the result of the recovery of traceability links 

between requirements and components. The first column, Pat 

(Pattern), contains the pattern of the keyword setting as described 

in section 4.1.1. The second column, Rev (Revision), contains the 

types of revisions used. The third column, Rel (Relevant), contains 

the number of traceability links mentioned in the user manual. The 

fourth column, Ret (Retrieved), contains the number of traceability 

links retrieved by Step (5). The fifth column, Rel Ret 

(Relevant Retrieved), gives the number of traceability links that 

 

Figure 7. Recovery of traceability links  

between requirements and functions 

 

Table 1. CUnit 

Version SLOC Requirements Release Date 

2.01 5931 11 September, 2004 

2.10 6225 11 March, 2006 

2.12 7760 15 October, 2010 

 

Table 2. The network control system 

Version SLOC Requirements 

3.01 54579 41 

3.02 55281 48 

3.03 62448 49 

 

are mentioned in the user manual and retrieved by Step (5). Rec 

(Recall), Pre (Precision), and F-m (F-measure) are defined by the 

following formulas: 

 

 

 

Figure 6 shows the traceability matrix obtained by the experiment 

using Pattern 2. The cells representing links mentioned in the user 

manual are shaded in gray. Console.c of version 2.12 is classified 

as being different from that of the other versions because their 

similarity is lower than the threshold set in Step (2). 

The recovery result using the keyword setting of Pattern 2 and 

revisions of Type A produced the highest value of F-measure. 

Therefore, we conducted Steps (6) and (7) using this result. 

3 of the 27 traceability links retrieved by Step (5) were of Type 3. 

These were links between requirements that belong to the product 

{2.12} and components that belong to the products {2.01, 2.10, 

2.12}. We extracted functions that belong to the product {2.12} 

from these components using our tool, and found that some of 

these functions were mentioned in the user manual as being related 

to the corresponding requirements. 

13 of the 27 traceability links retrieved by Step (5) were not 

mentioned in the user manual. By reviewing revision messages for 

these links, we determined that at least 5 of the links were valid. 

These links were concerned with the component MyMem.c, which



Table 3. Recall and Precision on CUnit 

Pat Rev Rel Ret Rel∩Ret Rec Prec F-m 

1 A, B 20 55 14 70.0% 25.5% 0.373 

A 20 16 5 25.0% 31.3% 0.278 

2 A, B 20 48 15 75.0% 31.3% 0.441 

A 20 27 14 70.0% 51.9% 0.596 

Table 4. Recall and Precision on the network control system 

Thres Rel Ret Rel ∩ Ret Rec Prec F-m 

1 16 40 13 81.3% 32.5% 0.464 

5 16 17 11 68.8% 64.7% 0.667 

10 16 7 6 37.5% 85.7% 0.522 

manages the memory. Therefore, MyMem.c links with requirements 

regarding adding, deleting, and initializing tests and suites. 

However, the relationship between MyMem.c and those 

requirements were not mentioned in the user manual. When we 

included these 5 links to Relevant, Recall became 76.0%, 

Precision 70.4%, and F-measure 0.731. 

Regarding the time taken to recover traceability links in CUnit, 

most of our framework is automated, and the running time of our 

tool was 1 minute 40 seconds. The semi-automated parts of our 

framework are Step (3) and (7). These steps took 30 minutes each. 

4.2 Network Control System 

4.2.1 Experimental Overview 
We experimented with three versions of the network control system 

developed by a company. We targeted five modules that cover the 

basic features of the system. A module is a group of components. 

Table 2 shows SLOC and the number of requirements for each 

version. The SLOC in Table 2 represents the size of the five 

modules. The size of the entire system is 1.4 ~ 1.7 MLOC. The 

requirements were extracted from the design documents of features. 

We used the log of SVN as the configuration management log. The 

number of revisions in this log is 5727. 

Engineers previously prepared traceability links between 

requirements and modules, so their granularities were larger than 

those of links recovered by our method. After recovering 

traceability links between requirements and components, we linked 

these requirements with the module that contains the corresponding 

components. This eliminated the difference in granularity. 

First, we recovered traceability links between 49 requirements and 

5 modules by conducting Steps (1) ~ (5). We set three different 

threshold numbers of keyword appearance in Step (5) to study the 

relationship between keyword appearance and accuracy of 

traceability links. The thresholds were 1, 5 and 10. 

Next, in Step (6), we confirmed the traceability links between 

requirements and functions. 

Finally, in Step (7), we looked for traceability links that were 

unknown to engineers. The review was conducted by engineers. 

4.2.2 Experimental Result 
Table 4 shows the result of the recovery of traceability links 

between requirements and components. The first column, Thres 

(Threshold), contains the threshold numbers of keyword 

appearance. The second column, Rel (Relevant), contains the 

number of traceability links prepared by engineers. The third 

column, Ret (Retrieved), contains the number of traceability links 

retrieved by Step (5). The fourth column, Rel Ret 

(Relevant Retrieved), gives the number of traceability links that 

are both prepared by engineers and retrieved by Step (5). These 

results were obtained by using revisions of Types A and B. They 

were almost the same as the results using only revisions of Type A 

because there were only a few traceability links recovered from 

revisions of Type B. 

The value of F-measure was highest when the threshold number of 

keyword appearance was 5. Therefore, we used the result from this 

threshold number for Steps (6) and (7). 

3 of the 17 traceability links retrieved by Step (5) were of Type 3. 

These were links between requirements that belong to the products 

{3.02, 3.03} and components that belong to the products {3.01, 

3.02, 3.03}. We extracted functions that belong to the products 

{3.02, 3.03} from these components using our tool, and found that 

the identifiers of some of these functions used the short form of the 

requirements. 

6 of the 17 traceability links retrieved by Step (5) were not 

mentioned by engineers. By reviewing revision messages for these 

links, we determined that at least 5 of the links were valid. When 

we included these 5 links to Relevant, Recall became 76.2%, 

Precision 94.1%, and F-measure 0.842. 

Regarding the time taken to recover traceability links in the 

network control system, the running time of our tool was 13 

minutes 36 seconds. Step (3) took approximately 2 hours. Step (7) 

took approximately 1 hour. 

4.3 Discussion 

4.3.1 Research Questions 
RQ1  How accurately can we recover candidate traceability 

links semi-automatically? 

For CUnit, Recall was 70.0%, and Precision was 51.9%. For the 

network control system, Recall was 68.8%, and Precision was 

64.7%. These were the results with the highest value of F-measure. 

With regard to false negatives, we failed to recover approximately 

30% of known links. We have not been able to recover traceability 

links involving components that have not been modified in the 

period of the configuration management. For example, if a 

component that is reused from past assets is not modified, only the 

record of adding it remains. This will make it difficult for our 

framework to recover traceability links involving this component. 

However, traceability links of reusable past assets tend to be 

known to engineers, so the engineers may recover these links easily. 

With regard to Precision, it was high enough to judge the validity 

of links that were unknown to engineers. 

RQ2  How many non-explicit traceability links can we 

manually  refine from candidate links? 

In CUnit, 5 of 13 traceability links that were not mentioned in the 

user manual were refined as non-explicit traceability links. 

Consequently, Recall became 76.0%, and Precision became 70.4%. 

In the network control system, 5 of 6 traceability links that were 

not grasped by engineers were refined as non-explicit traceability 



links. Consequently, Recall became 76.2%, and Precision became 

94.1%. These results show that non-explicit traceability links can 

be successfully recovered. 

With regard to false positives, when the name of an asset treated by 

multiple requirements is set as the keyword of these requirements, 

if a revision message contains the keyword, the components tied to 

the revision will be linked with all of these requirements. If the 

same keyword needs to be used for multiple requirements, the 

possibility of the number of false positives increasing should be 

considered. 

RQ3  Can we recover traceability links within a reasonable 

amount of time? 

In CUnit, automatic parts took 1 minute 40 seconds, and non 

automatic parts took about 1 hour. In the network control system, 

automatic parts took 13 minutes 36 seconds, and non automatic 

parts took about 3 hours. These results show that traceability links 

can be recovered within a reasonable amount of time. Moreover, 

when we applied our framework to 35 modules (200 KLOC) of the 

network control system, the running time of our tool was 58 

minutes 12 seconds. 

4.3.2 Auto Refine of Traceability Links 
In both targets, we could recover links between requirements and 

functions. This shows that using the CVA is effective in the 

recovery of links between requirements and functions. 

In contrast, with regard to the detection of mismatches between 

documents and source code, we could not find practical examples. 

This may indicate that documents and source code are 

comparatively properly managed in the targeted products. However, 

it is also possible that our technique is not effective in the detection 

of mismatches, so we should show practical examples by 

conducting additional experiments for another target in the future. 

4.3.3 Keyword Setting 
We have tested two patterns of the keyword setting in CUnit. 

Recall and Precision in Table 3 show that the accuracy of 

traceability links is higher in Pattern 2 than in Pattern 1. TF-IDF 

has the ability to filter general words, but it is not perfect. Manual 

adjustment is required because the impact of false positives is large. 

4.3.4 Classification of Revisions 
From Table 3, we can see that by including revisions of Type B, 

Recall increases while Precision decreases. When we use revisions 

of Type B, we should keep in mind that false positives may 

increase, but we may be able to recover additional useful links. 

4.3.5 Threshold Number of Keyword Appearance 
In the network control system, we set three different threshold 

numbers of keyword appearance. From Table 4, we can see that as 

the threshold increases, Recall decreases while Precision increases. 

In this target, the case in which the threshold is 5 produces the 

highest value of F-measure. However, in CUnit, the threshold is 

limited to 1 because a threshold of over 2 causes a significant 

decrease in Recall. Therefore, the suitable threshold depends on the 

target, and users should adjust it accordingly. 

4.4 Limitations 

4.4.1 Quality of Log Messages 
Our frame work is highly dependent on the quality of log messages. 

If engineers do not record detailed information about modifications 

in log messages, our framework cannot work well. For example, if 

a revision only contains “Fix” in the log message, our framework 

cannot use such a revision to recover links. As in Figure 1, at least 

one meaningful phrase is required for each revision. 

4.4.2 Limitation of the CVA 
In some cases, elements common to multiple products are classified 

as different elements. For example, if the contents of source code 

are significantly modified by refactoring while its feature is not 

changed, code elements that have the same feature are classified as 

different elements because their similarity is lower than the 

threshold. In CUnit, Console.c is consistent with the above 

example. However, if users set a low threshold to avoid the above 

problem, different elements that have small amounts of code clone 

may be classified as identical. Therefore, we should consider that 

the results of the CVA have some errors, and develop 

countermeasures. For example, we should compare the identifier of 

code elements in addition to code clone detection. 

4.4.3 Threats to Validity 
In CUnit, we manually set the keywords for each requirement. We 

empirically got the trends of unsuitable or effective keywords. This 

may have affected the accuracy and costs of our evaluation, and is a 

threat to internal validity. In the future, we would like to confirm 

the influence of having multiple people set the keywords on 

accuracy and costs. 

The two targets we used are different in terms of software domain, 

size, and the development organization. These factors should not 

significantly affect the validity of our framework. However, these 

targets are both implemented in the C language. It is a threat to 

external validity that our evaluation has been limited to a single 

programming language. Although our framework does not depend 

on the programming language of targeted products, we should 

confirm that language does not affect the results by applying our 

framework to targets implemented in another language. 

In both targets, we chose three versions. We have not confirmed the 

impact of the number of products on the accuracy of the recovery, 

which is a threat to external validity. Therefore, we should confirm 

this by applying our framework to more versions. 

In our evaluation, Relevant consisted of links known in advance 

and correct links recovered by our framework. However, there 

should be some links that were not known and could not be 

recovered. Therefore, if we include these links to Relevant, Recall 

may become lower. We should conduct experiments using a 

benchmark in order to evaluate our framework more accurately. 

5. RELATED WORK 
Antoniol et al. have proposed a method to recover traceability links 

between code and documentation using information retrieval 

technologies, such as the probabilistic model and the vector space 

model [5]. They compare the identifier in source codes and the 

words in documents to recover links. In contrast, we recover links 

using the configuration management log. Our framework can 

recover links even if the identifier in source codes and the words in 

documents are different. 

Dagenais et al. have proposed a method to recover traceability links 

between an API and learning resources by using code-like terms in 

documents and analyzing their contexts [6]. Our framework does 

not require code-like terms in documents because it uses the 

configuration management log to recover links. 



There are additional studies that have compared the representation 

between requirements and source code to recover traceability links 

[7][8]. Our framework is intended to cover the weakness of their 

methods rather than to be upward-compatible with them. Our 

method does not depend on the representation, but it may be 

inferior to their methods for targets in which there is little 

difference in the representation between requirements and code. So 

the completeness and correctness of the traceability link recovery 

may be improved by combining our framework with previously 

proposed methods. 

Kaiya et al. have proposed a method to find change impacts on 

source codes caused by requirements changes [9]. They use 

documents written in Japanese, and identify requirements from 

Japanese sentences and implementation points from English 

sentences. In our method, we use the configuration management log. 

In the log, requirements and implementation points are 

distinguished as messages and file paths, so our framework does 

not depend on the language of targets. 

Settimi et al. have proposed a goal-centric approach to managing 

the impact of change upon the non-functional requirements (NFRs) 

of a software system [10]. They retrieve links between classes 

affected by a functional change and NFRs using a probabilistic 

network model. In contrast, our framework primarily targets 

functional requirement. However, if keywords can be set for each 

NFR, our framework may recover links between NFRs and source 

code.  In the future, we should evaluate our framework using a 

target that contains NFRs. 

Dekhtyar et al. have proposed a method of requirements tracing 

that uses TF-IDF vector retrieval and latent semantic indexing [11]. 

The requirements tracing contains tracing between high-level and 

low-level requirements. We have not made a hierarchy of 

requirements, so their method may be used to improve Step (6) of 

our framework (section 3.7). 

Ghabi et al. have proposed an approach for validating 

requirements-to-code traces through calling relationships within the 

code [12]. In the future, we will utilize calling relationships in order 

to improve the accuracy of traceability recovery. 

6. CONCLUSION AND FUTURE WORK 
We have proposed a framework that includes the process to recover 

traceability links between requirements and source code. We have 

recovered links using the configuration management log, and have 

refined the links by applying CVA and having engineers review 

them. We have also developed a tool that automates parts of our 

framework. Moreover, we have applied the framework to actual 

products that have more than 60KLOC, and have confirmed its 

validity. Our framework enables cost reduction of the recovery of 

traceability links, and the recovery of non-explicit traceability links. 

Recovering traceability links may increase the reusability of the 

software, thereby facilitating the subsequent derived development 

and introduction of product line. 

For future work, we will consider the hierarchical structure of 

requirements and code elements, and aim to improve our methods 

for keyword setting and refining links. Furthermore, we are aiming 

for our framework to be able to support software product line 

introduction. 
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