
Model-Driven Security Patterns Application Based on Dependences among Patterns

Yuki Shiroma, Hironori Washizaki,
Yoshiaki Fukazawa

 Dept. Computer Science and Engineering
WASEDA University

Tokyo, Japan
shiroma1986@moegi.waseda.jp, washizaki@waseda.jp,

fukazawa@waseda.jp

Atsuto Kubo, Nobukazu Yoshioka

Dept. Information Systems Architecture Science
Research Division

National Institute of Informatics
Tokyo, Japan

kubo@nii.ac.jp, nobukazu@nii.ac.jp

Abstract— The spread of open-software services through the
Internet increases the importance of security. A security
pattern is one of the techniques in which developers utilize
security experts’ knowledge. Security patterns contain typical
solutions about security problems. However there is a
possibility that developers may apply security patterns in
inappropriate ways due to a lack of consideration on
dependencies among patterns. Application techniques of
security patterns that consider such dependencies have not
been proposed yet. In this paper, we propose an automated
application technique of security patterns in model driven
software development by defining applications procedures of
security patterns to models as model transformation rules with
consideration for pattern dependencies. Our technique
prevents inappropriate applications such as the application of
security patterns to wrong model elements and that in wrong
orders. Therefore our technique supports developers apply
security patterns to their own models automatically in
appropriate ways.

Keywords-component; Security Patterns; Model Driven
Development;UML;ATL;

I. INTRODUCTION
The spread of open-software services through the

Internet highlights the growing importance of software
security.

It is imperative to consistently improve security because
security is at risk in security problems at every phase of
development. How to do so is non-straightforward.
Moreover, ever when security has been achieved, it is
necessary to consider the trade-off with other quality
characteristics, and a lot of development experience is
required to make an appropriate judgment. Security patterns
have been proposed to assist developers in handling security
concerns. By using security patterns, software developers
can utilize security specialists’ knowledge by using security
patterns.

Moreover, security patterns have dependences among
patterns. So developers should decide the sequences of the
pattern application considering dependences. If this
dependency is not considered, there’s a chance that security
patterns could be incorrectly applied and the security of the
entire system would suffer. However, as far as we know, no

application support technique that considers dependences
between patterns has been proposed.

To remedy this situation, we propose a security pattern
application technique considers dependences between
patterns. Patterns are applied by making model
transformations. When a security pattern is applied, our
proposed system leaves a mark about its application in the
model, and subsequent security patterns are applied at this
mark left previously. This enables consecutive applications
of security patterns.

II. BACKGROUND FOR THE PROPOSED TECHNIQUE
This section describes the ideas behind model-driven

development and security patterns. In addition, it discusses
the problem in regard to dependences between security
patterns.

A. Model Driven Development(MDD)
Model driven development is a methodology that builds

software around a model [7]. The developers translate an
abstract model into a more concrete model (i.e. UML). The
developer can obtain the source code semi-automatically by
repeating the transformation into a more concrete model.
Moreover, there are various model transformations, e.g.,
model merging and model marking.

B. Security Patterns
Security patterns describe problems which frequently

occur and the core of the solution to each problem. The
advantage of the security patterns is that they utilize the
knowledge of security specialists. Security patterns provide
guidelines for improving confidentiality, integrity, and
availability in the software development. Security patterns
are described in terms of a Structure, Context, Problem,
Solution, and Consequences [2].

Figure 1. Example of dependences among security patterns

Security patterns have dependences among patterns and
when developers are to apply security patterns consecutively,
they should be applied consistently throughout the
development process. Thus it is very important to consider
the dependences between security patterns in the entire
development process. Figure 1 shows an example of
dependences between security patterns. For instance,
“Authenticator <- Authorization” means that the
Authenticator pattern should be applied before applying the
Authorization pattern. The sequences of the possible
application are as follow.

• Authenticator, Authorization, RBAC, Reference
Monitor

• Authenticator, Authorization, Reference Monitor
• Authenticator, RBAC, Reference Monitor

Notice that the three problems.
P1. Possibility of the wrong application of the security

pattern if the dependences among patterns is not
considered

P2. Possibility of the security pattern application in an
incorrect part of the model

P3. Huge cost of time and labor
However, the known supports for developers include only

classification [3] and unit security pattern application
support [5].

III. PROPOSED TECHNIQUE
This section describes the method for making

transformation rules, the use of the proposed system, and the
solution to the problems. There are three solutions to the
above problems correspondingly named S1, S2, and S3.

S1. Automatization of model transformation
S2. Making of a security pattern transformation rule

library
S3. Marks of the application result are left in the class,

and use them to apply following security patterns.
S3 corresponds to the solution of P1 in the preceding

section, S1 and S3 correspond to the solution of P2, and S1
and S2 correspond to the solution of P1.

A. Method of Describing Transformation Rules
A security specialist describes transformation rules

derivable from a security pattern by using ATL (ATLAS
Transformation Language)[8]. The transformation rules each
consist of a pre-condition, an argument and operation.

A pre-condition is the assumption of the security pattern
application. The definition of a pre-condition varies
according to the presence of an existing pattern upon which
the to-be-applied security pattern depends.

If no pattern on which the applied security patterns
depends exists, security specialists define which part
corresponds to the role of the security pattern in the model. If
such a pattern exists, security specialists place a mark in the
model that indicates that the existing pattern is a pre-
condition for applying the new pattern. Our technique
supports consecutive applications of security patterns
considering the dependence among patterns by defining the

output of the previous model transformation as a pre-
condition in the subsequent model transformation.

Security specialists should determine the dependences
among patterns by referring to the “Related patterns” section
in the security pattern catalog. Moreover, there is a
possibility that the dependence could be obtained by looking
at the problem and the context of the applied pattern, and
also by looking at the context, solution, and consequence
sections of all the other patterns.

For instance, it is described that "The authenticated user,
represented by processes running on its behalf, and is then
allowed to access resources according to their rights" (p.
323) in the context of the Authenticator pattern in [1]. On the
other hand it is described that "Any environment in which
we have resources whose access needs to be controlled" (p.
245) in the context of the Authorization pattern. It can be
judged that a relation exists between these two patterns
because their context sections resemble each other with
regard to controlling access to the protected property, even
though this relationship is not explicitly written in either
pattern. Moreover, the description "What the attested user
accesses the protection property by the authority is
permitted" shows that we should authorize after
authenticating. Therefore, we can see that the Authenticator
pattern should be applied before applying the Authorization
pattern.

The argument is a parameter that the software developer
should input (i.e., the name of the class that corresponds to
the role of the applied security pattern).

The operation maps a set of classes and relations among
classes in the model when the pattern is applied. Security
specialists should look for common roles between the
applied pattern and to-be-applied pattern in their structural
description.

For instance, the Subject role of the Authenticator pattern
is described in [1] as, "A Subject, typically a user, and
requests access to system resources" (p. 324). Moreover, the
Subject role of the Authorization pattern is described in [1]
as, "The Subject class describes an active entity that attempts
to access a resource (Protection Object) in some way" (p.
246). The Subject roles of the two security patterns are
identical because the descriptions of the Subject role are very
similar. In a word, when there is the dependence between the
two patterns, a common role is the basis for deriving the
transformation rule of each pattern. Therefore, security
specialists should describe a transformation rule whereby the
Subject role of the Authenticator pattern corresponds to the
role of the Authorization pattern. A security pattern is
applied by transforming the model by using the above-
mentioned transformation rule.

B. Example Description of Transformation Rules
We offer an example of describing the transformation

rules when applying an Authorization pattern.
A pre-condition is that the class with the stereotype

described 'Authenticator.Subject' exists. This stereotype
indicates where the Authenticator pattern, on which the
Authorization pattern depends, is applied in the model.

The argument is a class name that corresponds to the
Protection Object role of the Authorization pattern.

The operation has the following five steps.
• Add the stereotype ‘Authorization.ProtectionObject’

to the Class that corresponds to the Protection Object
role that the developer inputs as an argument.

• Add the class that corresponds to the Right role.
• Add the relation between the class that corresponds

to the Subject role and the class that corresponds to
the Right role.

• Add the relation between the class that corresponds
to the Protection Object role and the class that
corresponds to the Right role.

• Remove the relation between the class that
corresponds to the Protection Object role and the
class that corresponds to the Subject role.

To do the above-mentioned mapping, security specialists
describe the transformation rules by using ATL. Figure 2
shows part of a transformation rule of the Authorization
pattern described in ATL. The isProtOb function of the first
line in Figure 2 judges whether the character string of the
class name that corresponds to the Protection Object role that
the software developer inputs correspond to the class name
in the model. The hasStereotype function of the fourth line
judges whether the class in the model has the stereotype
described 'AuthenticatorSubject'.

helper context UML!Class def:isProtOb() : Boolean =
if self.name = thisModule.ProtObName
 then true else false endif;
Helper context UML!Class def:hasStereotype(stereotype : String) :
Boolean = self.stereotype->collect(s|s.name)->includes(stereotype)…
rule ProtectionObjectClass {
 from s : UML!Class (s.isProtectionObject())…
 stereotype <- stereotypePO),
 stereotypePO : UML!Stereotype (
 name <- 'Authorization.ProtectionObject', …
rule SubjectClass {
 from s : UML!Class (s.hasStereotype('Authenticator.Subject')) …

Figure 2. Part of the transformation rule of the Authorization pattern

Marking by the stereotype was chosen as the form of the
model transformation in to show where a security pattern is
applied.

The reason for choosing ATL as the model
transformation language is that it is easy for software
developers to understand and it can easily be extended
because it is based on Queries/Views/Transformations
(QVT), which is a standard model transformation.

C. Application Procedure
The system transforms a UML model (XMI format)

inputted by software developers and the security pattern is
applied by making a model transformation. Figure 3 shows
the image of the proposed system. The security pattern is
applied as follows.

1. The developer selects the security pattern.
2. The developer inputs the model and the parameters

to the proposed system.
3. The system transforms the model and outputs the

model with the applied security pattern applied.

The system deals with two models as input and output:
Class diagram and Communication diagram. These are
described in XMI format. The transformation rules, once
described can be reused. Consecutive application of security
patterns considering the dependences among patterns
becomes possible by using the obtained output model as the
input model for the subsequent transformation. By using
marks, it can be automatically judged whether the class and
the pattern role are the same.

Figure 3. Entire image of the proposed system

D. The Distribution of Security Patterns
The proposed technique can deal with security patterns

that are described the structure. The proposed technique
deals with 27 security patterns in [1]. So far, 19 security
patterns in [1] cannot be dealt with because their structures
are not described.

IV. EXAMPLE
We shall consider a Patient’s Information Management

System (PIMS) in a hospital as an example of applying the
proposed technique. Figure 4 shows the use-case diagram of
the PIMS. The following two security requirements are
necessary for the PIMS.

SR1. Only hospital employees can access the PIMS.
Confidentiality is thus maintained.

SR2. The user of the PIMS can only do the use case with
the allocated authority. Confidentiality is thus
maintained.

The PIMS faces two problems in regard to meeting the
security requirements.

The first problem is that there is no structure to judge if
the user is an employee or not. A third party could thus pose
as an employee in order to steal patient information and sell
it (misuse case 1).

The second problem is that everyone related to the
hospital has read and write access to the patient's information.
Even if the first problem is solved, the second problem
remains. A potential problem is that someone could illegally
rewrite a patient’s examination results (misuse case 2).

The class diagram of the PIMS is shown in Figure 5, and
part of XMI of the class diagram is shown in Figure 6. Two

security patterns are applied as a solution of the above-
mentioned threats. First, the Authenticator pattern
concerning the authentication is applied. Then, the
Authorization pattern concerning authorization is applied.

Figure 4. Use-case diagram of the PIMS.

Figure 5. Class diagram of the PIMS

<UML:Class xmi.id = 'a2' name ='Employee' …
Figure 6. Part of XMI in the class diagram

A. Application of the Authenticator Pattern
After selecting the ATL file in which the Authenticator

pattern is described, the developer inputs the model and the
parameters to the system. If the developer inputs “sbjName
=‘Employee'”, the system decides that the Employee class
corresponds to the Subject role of the Authenticator pattern
and applies the Authenticator pattern. A stereotype is added
to indicate that the Employee class corresponds to the
Subject role. Figure 7 shows the class diagram of the
Authenticator pattern and Figure 8 shows the class diagram
after the Authenticator pattern has been applied. Figure 9
shows the XMI for the class diagram after the Authenticator
pattern has been applied.

The system judges that the Employee class corresponds
to the Subject role of the Authenticator pattern and applies
the Authenticator pattern to the model because developers
inputted the parameter “sbjName =‘Employee'”. At this time,
a mark is applied to indicate that Employee class
corresponds to the Subject role by adding the stereotype to
the Employee class.

Because of the authentication structure is added to the
model by applying Authenticator pattern, countermeasures
against a malicious third party disguised as a user were given.
However, the problem that a malicious employee can access
patient information remains because every employee is
granted access to the information. To combat this problem,
an Authorization pattern is required.

Figure 7. Class diagram of the Authenticator pattern

Figure 8. Class diagram after the Authenticator pattern is applied

<UML:Class xmi.id = 'a2' name ='Employee' …
 <UML:Stereotype xmi.idref = 'a3'/> …
 <UML:Stereotype xmi.id = 'a3' name =
'Authenticator.Subject'…
<UML:Class xmi.id = 'a10' name =
'Authenticator'…

Figure 9. XMI of the class diagram after the Authenticator pattern

B. Application of the Authorization Pattern
After selecting the ATL file in which the Authorization

pattern is described, the developer inputs the model and the
parameters to the system. If the developer inputs
“protObName =‘Patient”, the system judges that the Patient
class corresponds to the Protection Object role of the
Authorization pattern and applies the Authorization pattern.

Moreover, because the Employee class that corresponds
to the Subject role applies the stereotype
‘Authenticator.Subject' when the Authenticator pattern was
applied, the system judges that the Employee class
corresponds to the Subject role of the Authenticator pattern
and to the Subject role of the Authorization pattern.

The Authorization pattern is applied to the model through
the above process. Also, a stereotype is added to indicate
that the Patient class corresponds to the Protection Object
role and to indicate that the Subject role corresponds to the
Employee class of the Authorization pattern. Figure 10
shows the class diagram of the Authorization pattern, and
Figure 11 shows the class diagram after the Authorization
pattern has been applied.

Figure 10. Class diagram of the Authorization pattern

Figure 11. Class diagram after the Authorization pattern is applied

The PIMS had two security problems in that there was no
authentication and authorization structure. To solve them
patterns were applied. The countermeasure against user
impersonation was taken by applying Authenticator pattern
correctly and the countermeasure against use without
authorization was taken by applying Authorization pattern
correctly.

V. EVALUATION
Here, we weigh the merits of the proposed security

pattern application against those of the manual security
pattern application. The comparison shall be in terms of the
number of work steps and the time required for the security
pattern application.

There are five work steps calculated is the following five:
(1) addition, deletion of the class, (2) addition, deletion of
the relation, (3) input the name of the class, (4) automatic
model transformation, and (5) input an argument in the
model transformation.

The time required was assumed to be the mean value of
the times required to apply security patterns measured in an
experiment involving six senior year university students who
had experience with a UML modeling tool.

Figure 12 shows the times required for the security
pattern application and Table I lists the number of work steps.
The proposed technique saves 71% of the time spent
manually, and it reduces the number of steps by more than
50%.

Figure 12. Time required for the security pattern application

TABLE I. NUMBER OF WORK STEPS

Method
Security Pattern

Authenticator Authorization Reference Monitor

Manual 7 4 5

proposed 2 2 1

VI. RELATED WORK
Yu et al. [3] proposed a security pattern technique that

transforms the i* model using ATL. Moreover, Horvath
proposed a technique for converting a model using the petri
net. [5] Ours is different from these existing techniques
because its model transformations use UML and its security
patterns are written in ATL.

VII. CONCLUSION
The proposed technique enabled automatic consecutive

applications of security patterns that depend on each other
by concretely establishing a method of describing security
pattern transformation rules and by marking the point in the
model at which it was transformed.

Although other patterns besides the ones discussed here
can be applied, their dependences may not be as obvious as
illustrated here.

Our future work will include the following four tasks.
• Cover all 27 security patterns that can be treated by

the proposed technique.
• Ensure the security of the entire system by using

security patterns that strictly describe the security
properties.

• Derive dependences between patterns from the
pattern documents by applying Kubo’s technique
[4]

• Quantitatively evaluate the accuracy of the security
pattern applications.

REFERENCES
[1] Schumacher, M et al.:Security Patterns, Wiley, 2006
[2] Yoshioka, N et al.: A Survey on Security Patterns, Progress in

Informatics, no.5, pp. 35-47. 2008
[3] Yu, Y et al.:Enforcing a Security Pattern in Stakeholder Goal Models,

ACM Proc. ACM workshop on Quality of protection (QoP’08), 2008
[4] Kubo, A et al.: Extracting Relations among Embedded Software

Design Patterns, Journal of Integrated Design and Process Science
(SDPS), pp.39-52, vol.9, no.3, 2005

[5] Horvath, V. Dorges, T.:From Security Patterns to Implementation
Using Petri Nets, ACM, 2008

[6] Schumacher, M. Roeding, U.:Security Engineering with Patterns,
LNCS2754, pp. 121 – 140,2003

[7] Frankel, D.:Model Driven Architecture, Wiley,2003.
[8] Eclipse.org. ATL Project, http://www.eclipse.org/m2m/atl/
[9] Jurjens, J.: Secure Systems Development with UML, Springer, 2004
[10] Lodderstedt, T et al.:SecureUML: A UML-Based Modeling

Language for Model-Driven Security, In Proceedings of the 5th
International Conference on the Unified Modeling Language, pp.
426-441,2002

[11] Sindre, G et al.: Elicting security requirements with misuse cases,
Requir.Eng., vol 10, no.1, pp.34-44, 2005

	Introduction
	background for the proposed technique
	Model Driven Development(MDD)
	Security Patterns

	Proposed Technique
	Method of Describing Transformation Rules
	Example Description of Transformation Rules
	Application Procedure
	The Distribution of Security Patterns

	ExAMPLE
	Application of the Authenticator Pattern
	Application of the Authorization Pattern

	Evaluation
	Related work
	Conclusion
	References

