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ABSTRACT  
 
Addressing the challenges of developing secure software systems remains an active research area in software 
engineering. Current research efforts have resulted in the documentation of recurring security problems as 
security patterns. Security patterns provide encapsulated solutions to specific security problems and can be used 
to build secure systems by designers with little knowledge of security. Despite this benefit, there is lack of work 
that focus on evaluating the capabilities of security analysis approaches for their support in incorporating 
security analysis patterns. This chapter presents evaluation results of a study we conducted to examine the 
extent to which constructs provided by security requirements engineering approaches can support the use of 
security patterns as part of the analysis of security problems. To achieve this general objective, we used a 
specific security pattern and examined the challenges of representing this pattern in some security modeling 
approaches. We classify the security modeling approaches into two categories: problem and solution and 
illustrate their capabilities with a well-known security patterns and some practical security examples. Based on 
the specific security pattern we have used our evaluation results suggest that current approaches to security 
engineering are, to a large extent, capable of incorporating security analysis patterns.  

 

1. INTRODUCTION 

 
The collective experience of engineering secure software systems indicates that potential considerations for 
vulnerabilities in system design are both broad and deep. Anything from a single line of program code, the level 
of power consumption by the computer, to lapses in human memory may invite security breaches. Security 
engineers, therefore, need an array of tools at their disposal in dealing with diverse security problems. An 
integral part of the toolkit is the ability to access transferable design knowledge. Very often it is convenient to 
document this transferable knowledge in a pattern. A pattern is a description of a recurring problem and its 
corresponding successful solution [12]. As a pattern describes the identified recurring problem and its solution 
in principle, it (pattern) can be described in different languages. We call the description of a pattern using a 
specific modelling language, such as UML, its representation. Security patterns are well-understood solutions to 
recurring security problems [35]. They enable engineers to recognise, with relative ease, known vulnerabilities in 
their design and potential solutions. Several security patterns have been reported by practitioners and 
researchers, and there are lively and ongoing discussions about the discovery, documentation and application of 
security patterns. 

Although many security patterns are documented in the public domain, they are often specifically tied to 
the language and the method in which they are expressed. Since security engineers do not have a common 
language and method to model, analyse and implement systems, it is important to know whether a particular 
security pattern can be expressed and applied in their own approach. This chapter aims to examine some of the 
languages in which security patterns may be expressed and the methods in which they are applied, with a view 
to articulating their relative strengths and weaknesses. 

In this survey, we will focus primarily on the languages for modelling and methods for applying security 
patterns in early requirements analysis and designs. This choices are both principled and practical: principled 
because earlier patterns are less understood compared to those at the implementation level and because early 



prevention of security vulnerabilities is thought to be less costly than remedial actions taken later; and practical 
because further expanding the scope of the survey would open up issues that are too many to be discussed in 
this chapter.  

The main contribution of this chapter is an evaluation of security pattern modelling approaches. Our 

evaluation builds on the survey of security patterns by Yoshioka et al. [45]. We compare approaches from the 

following three categories because these approaches are repeatedly referred as representative ones that address 

security in models[48][49]: object-oriented design (UML, SecureUML, UMLsec, Misuse Cases), goal-oriented 

(KAOS, SecureTropos, i*), and problem-oriented (problem frames, abuse frames). In comparing and 

contrasting these different approaches, we adopt the widely acknowledge security pattern, Roll-Based Access 

Control (RBAC), and a familiar example to illustrate different aspects of each approach using a common set of 

evaluation criteria to judge the pros and cons of each approach. The general objective of this survey is to 

evaluate how security patterns can be described in selected requirements engineering approaches: in particular 

whether all key properties of RBAC can be expressed in those approaches.  In other words, we are evaluating 

what each RE approach is able (and not able) to describe. Evaluation results should be useful to the following 

possible stakeholders using security patterns in their work:  
Security pattern designers: who represent security patterns, can use the results to find out what languages 
are appropriate for modeling their patterns.  
Application designers: who use security patterns to develop their applications with required quality 
characteristics including security, can use the results to improve understandings on existing security patterns 
that are modelled by one of the approaches evaluated in the chapter because the results provide what 
attributes of security patterns are described validly and how to interpret these representations. 
The chapter is structured as follows. Section 2 defines the main characteristics of security patterns using the 

well-known dimensions of pattern languages, focusing on what makes a security pattern distinctive from 
general ones. In Section 3, we present a running example consisting of a security problem from the banking 
domain and RBAC as an example of a security pattern. Based on the security pattern evaluation criteria 
introduced in section 2, Section 4 reviews security modelling approaches and evaluate their capabilities to 
representing security patterns using the RBAC and the banking example introduced in section 3. Section 5 
presents a comparative summary of the evaluation results from section 4. Finally, section 6 presents our 
conclusions, identifying open research issues in security pattern modelling and articulate an agenda for further 
research. 
 

2. CHARACTERISING SECURITY PATTERNS 
 
In software engineering a pattern documents an abstract relationship between a recurring software 
development problem that arises in a specific context and a well-proven schema for its solution [4]. Similarly, in 
security engineering a security pattern documents the description of a solution to a recurring security problem 
in a specific context [6].  In essence, security patterns are abstraction of real security problems and are 
identified through an analysis of real systems. In this section we present basic attributes of security patterns. By 
discussing these attributes we aim to address a question fundamental to the rest of the presentation of the rest 
of the chapter. This fundamental question is what makes a security pattern?  
 

2.1 Characteristics of Security Patterns 
 
According to Fernandez et al. [6], a security pattern has five main attributes, namely: the problem, context, 
forces, solution, and consequences. Besides these main attributes, others exist in a pattern template such as 
‘know uses’ and ‘related patterns’. In this survey chapter we will focus on the five main attributes as these are 
more relevant to our main objective. Worth noting from these main pattern attributes is the fact that each 
pattern is specific to a given type of generic problem, solution, and context. The rest of the section describes 
each of these attributes in detail and their rationale. 

Problem: The problem part of a security pattern captures the intention of the patterns as a specific recurring 
problem that it is aimed at addressing; that is, what is it for? The problem at which the pattern is aimed can be 
classified by the type of security goals such as confidentiality, integrity, availability, or accountability. Depending 
on the type of security goal, security patterns capture different concerns; for example, the set of challenges 
relevant to a confidentiality problem are different from those of an availability problem. For this reason, a 



security pattern must be specialised to certain types of security problems that it is intended to address. Being 
able to capture and analyse a security problem is an important characteristic of a security pattern modelling 
language.    

Context: The characteristics of a security problem are influenced by its environment referred as its context. 
Context defines the conditions or situation under which a security problem may occur. It can be specified in 
terms of: the type of attack that could exploit vulnerabilities resulting from the identified security problem; the 
types of assets that could be affected (whether tangible or intangible) by an attack; and the type of harm or loss 
on assets that could occur as a result of a successful attack. Context is an essential characteristic in a security 
pattern as it enables the user of a pattern to evaluate its relevance and limitations to its application in a 
particular domain. Also worth noting is that a security problem may raise different concerns, depending on the 
context in which it considered. For example, addressing the integrity goal in a database of medical records may 
present different security issues from addressing integrity in a nuclear plant control system. 

Forces: A security problem may have several potential solutions. Forces document the rationale for 
selecting one of these solutions. They state reasons for selecting a particular security solution from several 
potential solutions and capture the pros and cons (advantages and disadvantages) of applying the solution. 
Forces are critical for evaluating alternative solutions and for understanding the costs and benefits of applying 
the pattern. Such rationale helps the user of a pattern to appreciate why the particular solution was chosen to 
be part of the pattern.      

Solution: A solution is a description of the machine (plan, task, action or structure) whose execution (or 
application to the context) can mitigate the security problem. The solution is well-proven in the sense that it 
has been validated to address the security problem adequately in previous context in which the problem was 
encountered. For example one solution to confidentiality of data transmitted over a public network is to use an 
encryption mechanism which reduces the risk of confidential information being disclosed to an attacker 
tapping on the communication medium. In the context of protecting data stored on a computer an 
authentication mechanism may be a more appropriate solution. The solution part does not need to describe a 
particular concrete solution to a security problem, because a pattern is like a template that can be applied in 
different situations. Instead, it describes how a general arrangement of elements solves the corresponding 
security problem in the pattern. This confidentiality example also demonstrates the role of context in selecting a 
suitable security solution to a security problem. Documenting the solution-part of a security pattern is 
important as it facilitates the reuse of solutions to commonly recurring problems. This serves the essence of 
having a security pattern. 

Consequences: The application of a security pattern may result in changes in the context of application. 
Such changes are due to the fact that security requirements often conflicts with functional requirements and as 
a result the application of a security pattern may impact a system's flexibility, extensibility, portability, or 
usability. Consequences document the impact of the changes brought about by the application of pattern 
explicitly and help a security analyst understand and evaluate the capabilities of the given pattern. 

 

2.2 Patterns of Problems versus Patterns of Solutions 
 
In addition to the criterion described above, our evaluation of each security pattern modelling approach would 
also discuss the phase of application of the approach. In the context of software engineering approaches, 
security patterns can largely be classified into two categories, depending on the phase of software development 
where they can be applied. They can either be classified as patterns of security problems, patterns of security 
solutions, or both problem and solution. Patterns of security problems document recurring structures in 
analysis of software development problems in the problem space.  

Examples of problem patterns are Jackson’s problem frames [13] and their abuse frame extension [16, 17]. 
Once the security problem to be solved by the envisioned software system is well-understood, the next step is 
to move into the solution space to design the security solution. Designing and developing a security solution 
has its own set of problems which are determined by the characteristics of the chosen solution. The problem in 
the solution space should not be confused with the problem of understanding the security needs of 
stakeholders in the problem space. Patterns of security solutions document recurring structures of problems 
and their solutions in the solution space. Examples of solution patterns include architectural patterns such as 
pipe-and-filter [22] or design patterns in object-oriented software development [9]. 

We will use these characteristics of security patterns and evaluation criteria for comparing and contrasting 
approaches to security engineering. Our evaluation will look at the extent to which each approach is capable of 
supporting each of the attributes of security patterns discussed in section 2.1.  

 



3. RUNNING EXAMPLE 
 
This section presents a running example consisting of a security problem from the banking domain and RBAC 
as an example of a security pattern. We use this running example in the rest of the chapter for illustrating and 
comparing requirements languages that may be used in representing patterns.  

 

3.1 Banking Problem Example 
 

We use the “open account” use case in the bank example described by Fernandez et al. [8] to illustrate the 
features of the security analysis approaches surveyed. The execution of the use case involves the participation 
of two actors: a bank customer and bank manager. The example is about a bank customer opening a bank 
account securely.  

The use case has the following main steps: (1) the customer provides personal information to the bank 
manager; (2) the bank manager performs credit checks; (3) if the customer has a good credit record, the bank 
manager creates an account; (4) the customer then makes an initial deposit into the account, (5) the bank 
manager creates authorisation and issues a card to the customer. Each of the steps in fulfilling the requirement 
of opening the bank account presents potential security vulnerabilities.  
 

3.2 Role-Based Access Control 

 

The selected security pattern example is Role-Based Access Control (RBAC). In RBAC, access control policy is 
embodied in user-role and role-permission relationships for achieving Separation of Duties (SoD). Users and 
permissions are not directly bound but indirectly associated via roles. When a user acts one of his/her roles 
under a session, he/she does not have any permission bounded with the other roles. For the sake of valuable 
comparison, RBAC pattern described in this paper includes the functionalities of the authorization. 
 

 

Figure 1: Structure of RBAC0 (from [34]) 

 
For briefly understanding the structural aspect of RBAC, we explain RBAC0 [34], - a simpler variant of the 

RBAC which is rich enough for our discussions. The structure of RBAC0 is illustrated in Fig. 1. RBAC0 is 
formalised as the four sets, two relationships, and two functions. The sets of entities U, R, P, and S denote 
users, roles, permissions, and sessions, respectively. The relationship between users and roles, called user 

assignment, is denoted by UA UR. The permission assignment, PA P  R, also denotes the relationship 

between permissions and roles. Here, suppose that a session siS is given; the associated users and roles are 

determined by the following functions: user(si)U and roles(si) . Consequently, the session si has all the 

permissions of {p | (p, r)PA } for all  r roles(si). 
RBAC is a well-understood and widely used security pattern. A unified model for RBAC is published as the 

National Institute of Standards and Technology (NIST) RBAC model [11] and adopted as an ANSI/INCITS 
standard [3]. RBAC is implemented in a variety of commercial systems, such as Sun's J2EE and Microsoft 
Windows. 
  

4. SECURITY MODELLING APPROACHES 
 
In this section we review security modelling approaches and evaluate their capabilities to representing security 
patterns using the RBAC and the banking example introduced in section 3 and the security pattern evaluation 



criteria introduced in section 2. For each modelling approach we introduce only the aspects that are sufficient 
for the evaluation. As stated in the introduction, the main objective of this chapter is to survey requirements 
approaches to security patterns. We classify the approaches into three categories: design, goal-oriented, and 
problem-oriented. Under each category we selected several representative requirements engineering techniques 
such as problem frames, goals, and UML. 
 

4.1 Design Approaches 

 
Design approaches are based on the notion that models help requirements analysts in understanding complex 
software problems and identifying potential solutions through abstraction [10]. For example, models have been 
successfully for abstracting source code into class diagrams in reverse engineering. Such abstractions make it 
easier to understand the behaviour of a software system and how it might be improved.  In this section we 
review four representative design approaches in security engineering, namely: UML, SecureUML, UMLSec, and 
Misuse Cases.  
 

4.1.1 UML  

In this subsection we summarize the UML approach, and show how it may be applied to illicit the security 
concerns. 
 

(i) Overview of UML 
 
Unified Modelling Language (UML) [32] is a widely used model notation method for mainly software and 
systems. UML defines several diagrams to express different aspects of software and systems in an abstract way, 
such as the class diagram for the static structural aspect and the sequence diagram for dynamic behavioural 
aspect.  

Although UML does not originally cover non-functional characteristics including security in an explicit way, 
it is possible to analyse and represent vulnerabilities in the the target system and the vulnerabilities can be 
mitigated from the viewpoints of structure and dynamic behaviour. 
 

(ii) Representing a Security Pattern in UML 
 
In this subsection we show how the RBAC security pattern can be represented in UML. We also illustrate its 
application on the banking example. Our modelling of RBAC in UML is based on a meta-model proposed in 
Fernandez et al. [9, 35].  

The RBAC pattern describes how to assign precise access rights to roles in an environment where control 
of access to computing resources is required such that confidentiality and availability requirements are 
preserved, and where there are a large number of users and a variety of resources. Rights of access to resources 
are assigned to roles instead of users directly through an authorization policy and users are assigned to roles. 
An object-oriented class structural model provided by the solution of RBAC is shown in Figure 4.1.1a. The 
User, Role, Right classes describe the users registered in the system, the predefined roles in the system, and the 
types of access rights to the protected computing resources (described by the ProtectionObject class), 
respectively.  
 

 
Figure 4.1.1a. Structure provided by the solution, in the form of the UML class diagram [35] 

 
The user-to-role and right-to-role relations are many-to-many assignments. Among these relations, the 

separation of duties can be represented as an additional constraint on the user-to-role relationship. The Right 



class has accessType (such as “read only”) as its attribute, and a function for checking rights (i.e. permission) as 
its method (checkRights()). Usually the function receives an access request and returns the result of checking 
whether the request is permitted according to the accessType. The Session class describes temporal situations 
where the users activate a subset of the roles they belong to [34]. Each session must belong to a single user.  

  

 
Figure 4.1.1b. Structure of the analysis model of the bank domain with RBAC 

 
The application of RBAC to the bank domain is as shown Figure 4.1.1b. In this example, the main roles are 

the bank customer and the bank manager. Different rights are assigned to different actors (i.e. roles). For 
example, customers are granted to full access (including the transfer operation) to only their own accounts. 
Meanwhile, the bank manager is granted access to the customers’ accounts in restricted ways.  
 

(iii) Evaluation of Security Pattern Support in UML 
 
In this subsection we evaluate the extent to which UML supports the representation of security concerns using 
the generic characterization of security patterns.  

Problem: It is hard to model high-level security goals explicitly with UML. This is due to the fact that 
UML is a language for communicating designs rather than analyzing software problems. 

Context in General: Although UML does not have any feature specific to security patterns, the structural 
and behavioural aspects of attacks and assets can be modelled by UML.  

Context for Attack (Threat): It is possible to model concrete structures and behaviour of specific attack 
scenarios as threats with UML. This is achieved by using the dynamic behavioural constructs of UML such as 
sequence diagrams. 

Context for Assets: It is possible to model dependencies among tangible and/or intangible assets and 
other entities from the viewpoint of structure or behaviour with UML. However it is hard to clarify the type of 
each asset. 

Context for Harms to assets: It is hard to model characteristics and/or degree of certain harms to assets 
explicitly with UML. 

Forces: It is hard to model reasons or rationales affected for the choice of the certain security solution 
from potentially several solutions with UML. Moreover, UML is not appropriate for modelling complex 
dependencies including alternative solutions. 

Solution: It is possible to model structures and behaviour of the machine with UML. Moreover constraints 
(excluding temporal logics) on the machine and its environment can be represented by OCL included in UML 
2.0 or later. 

Consequences: It is hard to model tradeoffs and/or effects on quality characteristics including security 
explicitly with UML. The application of the RBAC pattern on a target environment makes it possible to control 
access to computing resources precisely while keeping high maintainability and low complexity because 
typically there are much more users than roles. 

Table 4.1.1 presents a summary of the evaluation of the support for security patterns in UML based on the 
discussion above. UML tends to be used for modelling solutions mainly because it can capture structural and 
behavioural aspects of security functions and/or constraints on the environment, and sometimes referring to 
problems. 
 



Table 4.1.1: Evaluation of Support for Security Patterns in UML (YES* denotes “Partially YES”). 
 

 
Problem 

 

Context  
Forces 

 
Solution 

 
Consequences General Attack Assets Harms to Assets 

NO YES* YES YES* NO NO YES* NO 

 

UML provides a special diagram notation for representing parameterized collaboration, which can be used 
for modelling structure and behaviour of the solution of any pattern. Moreover, UML provides a built-in 
generic extension mechanism called UML Profile to customize UML models for particular domains by using 
additional stereotypes, tagged values and constraints for specific model elements. There are several UML 
profiles for patterns such as the UML Profile for Patterns as a part of the UML Profile for Enterprise 
Distributed Object Computing (EDOC) specification [31]. However, these existing diagram and profile are not 
specific to security patterns so that they are incapable of representing security concerns with precise semantics 
explicitly.  

 
4.1.2 SecureUML  
 

(i) Overview of SecureUML 
 

Lodderstedt et al. [24] present a modelling language, based on UML, called SecureUML. SecureUML focuses on 
modelling access control policies and how these (policies) can be integrated into a model-driven software 
development process. It is based on an extended model of role-based access control (RBAC) and uses RBAC 
as a meta-model for specifying and enforcing security. RBAC lacks support for expressing access control 
conditions that refer to the state of a system, such as the state of a protected resource. In addressing this 
limitation, SecureUML introduces the concept of authorisation constraints. Authorisation constraints are 
preconditions for granting access to an operation. 

The combination of the graphical capability of UML, access control properties of RBAC, and authorisation 
constraints makes it possible to base access decision on dynamically changing data such as time. Similar to its 
parent modelling language UML, SecureUML focuses on the design phase of software development.  
 

(ii) Representing Security Patterns in SecureUML 
 

The representation of security patterns in SecureUML inherits features from both UML and RBAC and is 
based on the following concepts: Role, Permission, ResourceSet, ModelElement, ActionType, and 
AuthorisationConstraints [24]. Figure 4.1.2a is a meta-model that illustrates how these concepts are related. The 
concepts of Role, Permission, ResourceRType, and ActionType are from RBAC and they are described in 
section 3. Meanwhile ModelElement is a UML concept.  

 

Figure 4.1.2a. SecureUML meta-model (from [24]) 
 



SecureUML introduced the concepts of ResourceSet and AuthorisationConstraint. A ResourceSet represents a 
user-defined set of model elements used to define permissions or authorisation constraints. An authorisation 
constraint is a part of an access control policy that expresses a precondition imposed on every call to an 
operation on a resource. AuthorisationConstraint is derived from the UML core type Constraint. The 
precondition depends on the dynamic state of the resource, the current operation call, or the environment.  
 

 

Figure 4.1.2b. Example of SecureUML constraints 

 
Figure 4.1.2b illustrates an authorisation constraint which states that a manager can update and view a bank 
account, but such operations are limited to business hours only. As shown in the Figure, in SecureUML, 
authorization constraints are tagged with the stereotype <<secureuml.constraint>>. A role is identified with 
the stereotype <<secureuml.role>>. The Account class is an abstraction of the asset to be protected and it is 
identified with the <<object>> stereotype. 
 

(iii) Evaluation of Patterns Support in SecureUML 
 

Problem: SecureUML does not explicitly model security goals but focuses on modelling solutions to security 
problems. Its foundation of on RBAC implies that it is specific to security goals relating to controlling access to 
shared resources. 
Context: The modelling of context in SecureUML is similar to RBAC. However, the context only captures 
assets that may be harmed in the event of an attack. It does not model scenarios of attacks and possible harm 
to assets.  
Forces: There is no construct for capturing and modelling forces in SecureUML.  
Solution: Yes. The combination of RBAC with UML and the authorization constraints extension is the bases 
of a security solution in SecureUML.  
Consequences: Yes. The consequences of using SecureUML is a solution to an access control problem in 
access rights to resource are assigned to roles and users are assigned to roles with specific authorization 
constraints.  The evaluation of security pattern support in this approach is summarized in Table 4.1.2.  
 
Table 4.1.2: Evaluation of Support for Security Patterns in SecureUML 

 
Problem 

 

Context  
Forces 

 
Solution 

 
Consequences General Attack Assets Harms to Assets 

NO YES NO YES NO NO YES YES 

 
4.1.3 UMLsec 
 

(i) Overview of the UMLsec 
 

UMLSec [20] is an extension of UML which allows an application developer to embed security-related 
functionality into a system design and perform security analysis on a model of the system to verify that it 
satisfies particular security requirements. Security requirements are expressed as constraints on the behaviour of 
the system and the design of the system may be specified either in a UML specification or annotated in source 
code.  

Automated theorem proving or model checking is used to establish whether security requirements hold in 
the design. If the design violates security requirements, a Prolog-based tool is used to generate a scenario (in 
the form of attack sequences) of how security requirements may be violated by the design and countermeasures 
are taken to remove the vulnerability. In essence, UMLsec assumes that requirements have already been elicited 
and there exists some system design to satisfy them. Its objective is to establish whether the system design 

<<secureuml.role>> 

Manager 

<<Object>> 

Account 

balance: Integer 

- getbalance () 

- setbalance ()  

AccountPermissions 

- actiontype: read 

- actiontype: write 

<<secureuml.constraint>> 

BusinessHoursOnly 

(time.currentHour > 0900) and 

(time.currentHour < 1700) 



satisfies security properties. The design is then progressively refined to ensure that it satisfies security 
requirements. 
. 
(ii) Representing Security Patterns in UMLsec 
 

UMLsec defines several new stereotypes towards formal security verification of elements such as: fair exchange 
to avoid cheating for any party in a 2-party transaction; secrecy/confidentiality of information; secure 
information flow to avoid partial leaking of sensitive information; and, secure communication links. 

The UMLsec approach consists of two main steps. The first step is translating UML models into UMLsec 
specifications. UMLsec specifications describe the behaviour of a system in terms of its components and their 
interaction. The behaviour of system components is described in terms of the messages they exchange in 
communication links between them. The formal semantics of the communication between components are 
similar to Hoare’s communication sequential processes (CSP) [16].   

The next step, security analysis, involves eliciting ways by which an adversary may modify the contents of 
the data exchanged in communication link queues that may compromise the integrity of system behaviour. The 
analysis focuses on a consideration specific types of adversaries that may attack a system in a specific way. An 
example of such an attack on a communication link between components is breach of confidentiality, which 
state that some information will only become known only to legitimate parties. UMLsec specifications are 
checked for vulnerability to types of threats on contents of a communication link such as delete, read, and 
insert. The types of threats are adversary actions associated with particular adversary types. Delete means that an 
adversary may delete messages from a communication link queue. Read allows an adversary to read messages in 
the link queue, while insert allows the adversary to insert messages in the communication link.  

The above discussion illustrates how security patterns are supported in UMLsec. In summary, first, 
UMLsec specifications are described based on component behaviour and patterns of interaction between 
system components. Secondly, the analysis for security vulnerabilities is guided by specific types of adversaries 
with specific classes of threats on contents of communication links. The classes of threats are also associated 
with specific types of security goals that an adversary may violate. 
 

(iii) Evaluation of Patterns Support in UMLsec 
 

Problem: Although security analysis is guided by specific goals and constraints in checking for security 
vulnerabilities in a system design, UMLsec does not have a specific construct for modelling security problems.  

Context: Yes, the UMLsec approach explicitly models context of a security problem. However this context 
is limited to system design components, their interactions, and adversary models. Although this level of context 
consideration may be sufficient for identifying security vulnerabilities in system design, it is less useful for 
reasoning about vulnerabilities that arise due to threats initiated by the way the system is used such as an 
illegitimate transfer of funds by someone playing the legitimate role of a bank manager.  

Forces: Once security vulnerabilities have been identified the system design is progressively refined to 
eliminate the threat. The rationale for selecting a particular solution of refining a design is not explicitly 
captured and it is not explicit whether alternative solutions are explored. It is possible though that such 
alternative security solutions can be explored in the refinement process based on the native UML design.  

Solution: UMLsec provides an explicit refinement of design in order to ensure that they satisfy security 
constraints. Once a design has undergone refinement its ability to satisfy security requirements is re-verified. 
The refinement continue until it can be demonstrated that the vulnerability of the design to attacks is 
eliminated   

Consequences: When a design has been found to violate security requirements, UMLsec provides for the 
generation of scenarios, in the form of attack sequences, which explain how security requirements may be 
violated by the design. The results (consequences) of refining a system design in order to address security 
vulnerabilities are captured in the revised version of the design and assessed against security requirements. A 
summary of evaluation results of UMLsec is presented in Table 4.1.3. 

 
Table 4.1.3. Evaluation of Support for Security Patterns in UMLsec 
 

 
Problem 

 

Context  
Forces 

 
Solution 

 
Consequences General Attack Assets Harms to Assets 

NO YES YES NO YES YES YES YES 

 

4.1.4 Misuse Cases  
 



(i) Overview of the Misuse Cases 
 

Use cases document functional requirements of a system by exploring the scenarios in which the system may 
be used [19]. Scenarios are useful for eliciting and validating functional requirements [38, 43], but are less suited 
for determining security requirements – which describe behaviours not wanted in the system. Similar to anti-
goals [39], misuse cases are a negative form of use cases and thus are use cases from the point of view of an 
actor hostile to the system [1, 2].  They are used for documenting and analysing scenarios in which a system 
may be attacked. Once the attack scenarios are identified, countermeasures are then taken to remove the 
possibility of a successful attack. 

Although misuses cases are not entirely design-oriented as they represent aspects of both problems and 
solutions, they have become popular as a means of representing security concerns in system design. Worth 
noting is that they are limited by the fact that they are based only on scenarios. Completeness of requirements 
analysed through scenarios is not guaranteed as other scenarios by which the security of a system could be 
exploited may be left out.  
 

(ii) Representing Security Patterns in Misuse Cases 

Figure 4.1.4 shows some of the use cases and misuse case in the bank account example. Use cases are 
represented as clear ellipses while misuse cases are represented with the shaded ellipses. The <<threatens>> 
stereotype implies that the given misuse case is a threat to the satisfaction of the requirements of the 
corresponding use case.  The notation we use for misuse cases is based on requirements engineering process 
proposed by Sindre and Opdahl [38].  

    

 

Figure 4.1.4. Use case and misuse cases in the banking example 

  

As illustrated in Figure 4.1.4a, the security threats described in misuse cases are based on the functional 
requirements described in use cases. For example, the “create account” use case can be threatened by the 
“create spurious account” and “present counterfeit identity” misuse cases. The attacker in both misuse cases 
could be a malicious bank manager. An untrustworthy bank manager could also fraudulently transfer funds 
from a customer account to the spurious account. 
 

(iii) Evaluation of Security Patterns Support in Misuse Cases 
 

Problem: Misuses focus on describing security goals and refining them into corresponding security 
requirements. The identification of threats and definition of security goals in misuse cases tends to closely 
correspond to the use cases in which the threatened functional requirements are described. This bounds the 
identification of threats only to known functional requirements.   

Context: Context is not explicitly captured in the high-level descriptions of misuse cases. It is possible 
though to describe assumptions about the states of the environment that make the misuse case possible.  In the 
bank account example the “create spurious account” misuse case is possible if a user playing the role of a bank 
manager is untrustworthy. Similarly, the credit spurious account misuse case is based on the assumption that 
entities playing the role of a bank clerk may potentially divert funds from a genuine account to a fraudulent 
account. Hence, misuse cases describe assumptions about the problem context although these assumptions are 
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oversimplified and do not explicitly capture the context and the assets that can be harmed in the event of a 
successful attack [4]. 

 Forces: Apart from the basic solution to satisfying a security goal, misuse cases have constructs for 
capturing alternative solutions called alternative paths. Alternative paths describe ways to harm the proposed 
system that are not accounted for by the basic path, but are similar enough that they can be described as 
variation to the basic path. Arguably, solutions to alternative paths are also potential solutions to the basic path. 
Although, alternative solutions can be explicitly captured through alternative paths there are no explicit means 
of comparing and contrasting their contribution to addressing the basic security problem with the exception of 
the fact that they are customized solutions for more specific scenarios. Hence there is no provision for 
capturing forces in misuse cases. 

Solution: Misuse cases capture solutions for addressing security goals through mitigation points [38]. 
Mitigation points identify actions in a basic or alternative path where misuse threats can be mitigated and 
potential mitigation strategies that should be taken.    

Consequences: The guaranteed outcome of mitigating a misuse case is described in a mitigation guarantee 
[38]. In this respect, a mitigation guarantee captures the consequences of applying a security patterns. The 
description in a mitigation guarantee depends on the level of detail of the description in mitigation points. If 
mitigation points are not specified in detail, then a mitigation guarantee describes the level of security required 
from the mitigating use cases to be described later. On the other hand if mitigation points have been described 
in detail, then a mitigation guarantee captures the strongest possible security guarantee that can be made.   

 
Table 4.1.4. Evaluation of Support for Security Patterns in Misuse Cases 
 

 
Problem 

 

Context  
Forces 

 
Solution 

 
Consequences General Attack Assets Harms to Assets 

YES YES YES NO YES NO YES YES 

 

4.2 Goal-Oriented Requirements Approaches 
 
4.2.1 Secure i* 
 

(i) Overview 
 

Distributed intentions, also known as the i* representations [46] are used to model and explore goal-oriented 
requirements of stakeholders in the problem space. Tropos is a process [6] that applies i* to analyse early 
requirements in order to come up with a validated list of specifications (tasks or plans) for a solution.  

In i*, distributed stakeholders are categorised as agents, actors, roles and positions. Two kinds of relations 
among the goals of stakeholders are often analysed, one concerns the strategic rationale (SR) of individual 
stakeholders with AND-OR refinement respectively through decomposition and means-ends links; the other 
concerns the strategic dependencies (SD) among different stakeholders. Four types of intentions, namely goals, 
softgoals, tasks, resources, can appear in the SR model as nodes on the AND-OR refinement trees,  or appear 
in the SD model as the dependum of the dependencies. Goals represent the desired states of the stakeholders, 
whilst soft-goals model quality requirements that do not have clear-cut Yes/No answers, such as security. The 
goals/tasks connect to softgoals through four types of contribution links (HELP + , HURT -, MAKE ++ or 
BREAK –) [46].  
 

(ii) Security Patterns in i* 
 

Figure 4.2.1a is an example i* diagram where intentions such as goals are shown as labelled ovals, tasks as 
hexagons, resources as rectangles,  softgoals as clouds. The decomposition links are shown with arrowheads, 
whilst the means-ends links are shown with a mark of line segment, and the contribution links are shown with a 
type label. Agents are shown by dotted circles that enclose the intentions they contain. On the border of these 
circles are circular icons that indicate the type of the agent, such as Roles as shown in this figure.  Strategic 
dependencies between two intentions of different agents are shown by arrows connecting them with an 
intention node beyond the boundaries of any agents. These dependency arrows have a D-shaped mark in the 
middle to emphasise their difference to decomposition/contribution links. Figure 4.2.1a is also an example i* 
diagram representing the RBAC security pattern [47]. 



 
Figure 4.2.1a. A model showing the context of a security pattern in i* 

 
One of the important issues in RBAC [4] is to clarify the responsibilities of two different roles. This can be 

represented by using two dependent roles "Depender" and "Dependee", and the “Dependee” contains a soft-
goal “Security” in its SR model (Figure 4.2.1a).  The achievement of "Intention2" of “Dependee” depends on 
the achievement of "Intention1" through a dependum “Intention3”. If the role "Depender" may achieve 
"Intention1" by itself, there is no need for the role "Dependee" to achieve “Intention1”. According to the 
RBAC security requirement, however, only the role "Dependee" is allowed to achieve "Intention1" to separate 
the duty. To avoid a violation of the separation of duty requirement in RBAC, one therefore must prevent 
“Intention1” from being executed by the role “Depender”.   

Hence, we introduce the following security pattern in i* by adding a negative contribution (HURT or 
BREAK) from “Intention1” to "Intention2", as introduced in Figure 4.2.1b. Since one cannot have 
“Intention2” both satisfied and denied when “Intention1” is satisfied, it avoids the vulnerability in the model. 
This is the consequence of the security pattern in i*. 

 
Figure 4.2.1b. The security pattern in i* to enforce responsibility 

 
Figure 4.2.1c illustrates a realistic context for opening a bank account where the security pattern in Figures 
4.2.1a and 4.2.1b can be applied. A task "manage PIN" may be achieved by a "Bank Clerk", but it seems to be 
insecure because "Bank Clerk" can maliciously manage the PIN by, e.g., issuing a very simple PIN or leaking 
the PIN. Consequently, the task "mange Personal Info" cannot be achieved by "Bank Clerk" because otherwise 
the personal information could have been abused to open the account by the malicious bank manager.  

 
Figure 4.2.1c. A part of a Model for Opening Bank Account 

  



To prevent this from happening, we apply the security pattern that results in a new securer model in Figure 
4.2.1d, which satisfies the security property by the RBAC requirement.  
 

 
Figure 4.2.1d A new secure model  

 

(iii) Evaluation of Patterns Support in i* 
 

This subsection presents an evaluation of the extent to which security pattern modelling is supported in the i* 
approach. Table 4.2.1 presents a summary of the evaluation results based on the examples representing security 
patterns presented in the subsection 4.2.1(ii).  
  

 
Table 4.2.1. The strength of support of security pattern using the i* approach 

 
Problem 

 

Context  
Forces 

 
Solution 

 
Consequences General Attack Assets Harms to Assets 

YES NO NO NO NO YES NO YES 

 
Problem: Supported. The security goals are represented natively as softgoals in the i* approach in addition 

to the dependencies among them. This is a strength in the i* approach for security patterns. The vulnerability in 
the context is specified in the i* diagrams through goal-based reasoning analysis, which is already part of the 
validation process in the i*/Tropos methodology. For example, whether the “security” softgoal is satisfied or 
denied can be evaluated by a bounded SAT-solver [36], and which tasks prevent the softgoal from being 
satisficed can be diagnosed based on the algorithms in [42]. The reasoning-based requirements analysis is one 
of the strengths in goal-oriented approaches. 

Context: The i* diagrams (e.g., Figures 4.2.1a and 4.2.1c) present the situation when the security pattern of 
an i* approach is to be applied. Figure 4.2.1a is the general template of the security pattern whilst Figure 4.2.1c 
is an instantiated model where the intention names are instantiated by concrete names (e.g., 
Intention1=“account opened”). Although it is possible to identify such a relationship between the template 
parameters intentions and the instantiated intentions from the context i* diagrams, it is however not 
represented explicitly in visual form. One needs to provide such mapping pairs in a separate list. The security-
specific contexts, such as attacks, assets and harms, are not explicitly classified by the i* meta-model. These 
notations are considered as domain knowledge in i*. 

Forces: The softgoals such as “Security” must be made explicit in the i* based security patterns. If not, 
there is one approach based on anti-goal analysis proposed by Liu et al [23] to elicit possible counter-models 
based on a “normal” goal model. Other non-security forces that may be used in trade-offs analysis are also 
represented by softgoals, making it suitable to use i* as the pivotal representation for trade-offs analysis. For 
example, the NFR framework has classified Security further into Availability, Confidentiality, Authentication, 
etc. Such decomposition patterns are a strength of i* approach. One limitation of such analysis in the 
qualitative reasoning based on the i* meta-model can be improved by its extension, Secure Tropos, using 
quantitative evaluations for risk management [13].   

Solution: A plan for satisfying the security softgoal can be obtained by the application of reasoning 
algorithms on the i* diagrams. An exhaustive enumeration of all possible solutions can be found by several 
SAT-solver based algorithms.  On the other hand, the exponential number of possible solutions may require a 
sophisticated trade-off analysis with respect to explicit contribution links to various forces (softgoals).  



Consequences: Deriving the consequence contexts from i* is not natively supported for general patterns. 
However, it is possible with the model-driven transformations for well-defined security patterns such as RBAC 
[47]. 

4.2.2 Secure Tropos 

(i) Overview of Secure Tropos 
 

Secure Tropos [26-29] extends both the i* modelling language and its Tropos development process [5] . The 

main concept introduced by the secure Tropos is that of security constraints [27], which directly represent security 

requirements. The Secure Tropos methodology also provides a number of modelling activities for developers 

to analyse, delegate and decompose security constraints. Security constraints are satisfied by secure entities, 

which describe any goals and tasks that are related to the security of the system. Representing the strategic 

interests of an actor in security, secure goals model the high level goals an actor employs to satisfy any imposed 

security constraints. A secure goal can be achieved by an actor in various ways since alternatives can be 

considered [27].  

The precise definition of how the secure goal can be achieved is given by a secure task.  Secure dependency 

introduces security constraint(s) that must be respected by actors for the dependency to be satisfied. Both the 

depender and the dependee must agree for the fulfilment of the security constraint(s) in order for the secure 

dependency to be valid. This means the depender expects the dependee to satisfy the security constraint(s) and 

also that the dependee will make an effort to deliver the dependum by satisfying the security constraint(s). A 

graphical representation of a Secure Tropos model with the above concepts is shown in Figure 4.2.2a. 

 

 

Figure 4.2.2a: A Secure Tropos model. 

The process of Secure Tropos analyses the security needs of the stakeholders and the system in terms of 
secure dependencies and security constraints imposed to the stakeholders and the system; of identifying secure 
entities that guarantee the satisfaction of the security constraints; and of assigning capabilities to the system 
towards the satisfaction of the secure entities [27]. This process is spread out into four main phases: early 
requirements analysis, late requirements analysis, architectural design, and detailed design. During the early 
requirements analysis phase the secure dependencies between the various stakeholders of the system are analysed. 
In particular, secure dependencies and security constraints are identified for the various actors. During this 
stage, imposed security constraints are expressed, initially as high-level statements which are later further 



analysed. Then secure goals and entities are introduced to the corresponding actors to satisfy the security 
constraints. 

During the late requirements analysis phase, security constraints are imposed on the system under development. 
These constraints are further analysed according to the analysis techniques of secure Tropos and secure goals 
and entities necessary for the system to guarantee the security constraints are identified. During the architectural 
design any possible security constraints and secure entities that new actors might introduce are analysed. 
Additionally, the architectural style of the information system is defined with respect to the system’s security 
requirements and the requirements are transformed into a design with the aid of security patterns.  
Furthermore, the agents of the system are identified along with their secure capabilities. During the detailed 
design phase, the components identified in the previous development stages are designed. In particular, 
actor/agent capabilities and interactions are specified taking into account the security analysis that took place in 
the previous stages. 
 

(ii) Representing Security Patterns 
 

In Secure Tropos, patterns are normally used to assist developers to identify a network of actors or a set of 
agents to solve specific security problems based on the security requirements of the system. In doing so, 
patterns are documented using a template that it is mostly based on the Alexandrian format. Each pattern is 
described in terms of its problem (intent), context, forces, solution and consequences. Depending on the 
targeted solution paradigm (network of actors or set of agents) developers can describe the patterns using 
standard or agent-oriented terminology and concepts (e.g. agency: the place where an agent resides). The 
solution proposed by any pattern in Secure Tropos is described in terms of social dependencies and intentional 
elements. This makes it possible to achieve a good understanding of the pattern’s social and intentional 
dimensions -  two factors very important for security. 

In the context of the Bank Example, the agency represents a Bank and agents represent different individuals 
playing different roles such as Customer, Bank Cashier, Bank Manager.  Assuming that an account is open, a 
customer might want to access the account information (balance, transactions, etc.) In doing so, the customer 
depends on the Bank. This simple dependency is represented as shown in Figure 4.2.2b. Following security 
related analysis in Secure Tropos, a number of security constraints are identified. For simplicity, in this example 
we keep the number of security constraints to a minimum. In particular, the customer is given the security 
constraint “to Keep Account Information Secure” and the Bank is required to maintain two security 
constraints “to Keep Customer Information Private” and “to Allow Account Access Only to Authorised 
Customers” as shown in Figure 4.2.2c. Once security constraints have been identified, it is important that a 
design is developed to fulfil such security constraints. It is at this stage that security patterns are applied.   

 
Figure 4.2.2b: A Simple Dependency for the Bank Example 

 
Figure 4.2.2c: A Secure Dependency for the Bank Example 

 
In particular, the RBAC pattern can be used to create a design that satisfies the “Allow Account Access 

Only to Authorised Customers”. The rest of the subsection illustrates how the RBAC pattern is represented 
using the Secure Tropos approach and how the pattern assist in developing a design that fulfils the appropriate 



security constraint. It is worth mentioning that Secure Tropos adopts agent-oriented terminology and concepts 
when describing the pattern. This enables us to demonstrate how the approach deals with agent related security 
patterns and it also provides a slightly different view of the pattern as described in the rest of the approaches. 
This, in turn, allows us to demonstrate a wider application domain for the Secure Tropos approach and its 
representation of patterns, and enables us to evaluate the approaches described in this chapter in a wider 
context. 

Problem: Allow an agency to provide access to its resources, according to its security policy, based on the 
roles that each agent plays. Agents belonging to an agency might try to access resources that are not allowed. 
Allowing this to happen might lead to serious problems such as disclosure of private information or alteration 
of sensitive data. How can the agency make sure that agents only access resources which they are allowed to 
access?  

Context: Many agents exist in an agency. These agents often play different roles and most likely will require 
access (according to the role they play) to some of the agency’s resources in order to achieve their operational 
goals.  

Forces: It is unlikely that the access control facilities of all internal resources are activated and configured 
appropriately. In particular, out-of-the box installations offer standard services that can be misused by 
malicious agents. Even if there are restrictions to access, it is unlikely that they are consistent, especially when 
more than one administrator is involved and there are no “global” guidelines. Even worse, it could be assumed 
that most internal resources are not hardened. Experience shows that patches are not applied in time and that 
many, often unneeded services are running. Furthermore, it might happen that attacks cannot even be detected, 
as one cannot ensure that the audit facilities of the internal resources are activated and configured appropriately. 

 

Figure 4.2.2d: Pattern Solution representation  

Solution: Each agent is allowed access to a resource according to the role they play. A Role Controller 
agent exists in the Agency to enforce the role based policy of the Agency. Thus, when an agent, playing a 
specific role, requests access to a resource; this request is forwarded to the Role Controller agent. The Role 
Controller checks the role based policy against the agent’s role and determines whether the access request 
should be approved or rejected. If the access request is approved the Role Controller forwards the request to 
the Resource Manager. The graphical representation of the pattern dependencies is shown in Figure 4.2.2d. The 
Requester Agent depends on the Resource Manager for the resource, and the Agency depends on the Role 



Controller for checking the request.  The Role Controller depends on the Agency for receiving the role based 
policy and for forwarding the request, which is forwarded to the Resource Manager in case it is approved. 

Consequences: Agency’s resources are accessed only by agents which playing specific roles. Different role 
based policies can be used for accessing different resources. However, a possible attack is that, if this fails the 
role base access control system fails. 
 

4.2.2.3 Evaluation of Security Patterns Support in Secure Tropos 

 

As mentioned before, security patterns can assist developers to develop a design that satisfies specific security 
constraints. Therefore, the use of security patterns in Secure Tropos is particularly encouraged during the 
architectural design stage of the methodology. Although an extended Alexandrian format is used to represent 
the security patterns in Secure Tropos, the real novelty of the pattern representation template used above is 
based on the presentation of the solution in terms of social dependencies of the actors. Such representation 
enables one to directly fit security patterns to Secure Tropos models. Going back to the Bank Example, the 
Requester Agent of the pattern solution representation is effectively the Customer, the Agency represents the Bank 
and the Resource Manager and Role Controller represent roles within the bank that are required for the RBAC to 
work such as Account Manager and Bank Cashier (or an electronic system in case request is made online or 
through a system).  

It is now well recognized that security is not just a technical issue but it also demonstrates a social 
dimension. Therefore, to completely represent security patterns, it is important that Secure Tropos model the 
social dependencies that a security pattern introduces as part of its solution. Moreover, since the security aware 
concepts of the methodology contribute to the various security related analysis (attacks, assets, harm etc), the 
Secure Tropos allows one to specify contexts or applicability of the pattern and to quantify the risks. It is also 
important to mention that the methodology supports not only the representation of individual security patterns, 
but the representation of security pattern languages and the formalization of the properties of the patterns that 
belong to the language as demonstrated [30]. A number of guidelines on the application of patterns have also 
been defined [30]. Table 4.2.2.1 summarises the support provided by the Secure Tropos approach to the 
representation of security patterns.  
  
Table 4.2.2: Summary of Evaluation of Pattern Support in the Secure Tropos approach 
  

 
Problem 

 

Context  
Forces 

 
Solution 

 
Consequences General Attack Assets Harms to Assets 

YES YES YES YES YES YES NO YES 

 
Secure Tropos is an improvement over i* on the Forces and Context attributes. Forces in Secure Tropos fully 

consider the quantified risks. It also improves partially the Context attribute of security constraints by 

providing additional contexts for security patterns. 

 
4.2.3 KAOS  
 

(i) Overview of KAOS 
 

Introduced by van Lamsweerde at al., the KAOS is a requirements engineering framework that supports 
patterns of goal refinement that allow high-level goals to be stated in terms of a combination of lower level 
ones [7, 40, 41]. A goal is defined as statements that express the intended behaviour of the system under 
development, and in general it is expected that this behaviour will be achieved through the cooperative 
interaction of the agents that make up the system.  Agents are the active components of the system, be they 
humans, devices, existing software or software-to-be, that will play some role in satisfying the goals of the 
system.   

The goals can be specified in KAOS using both a formal and informal notation.  The informal definition is 
specified is natural language whilst the formal definition uses the temporal logic notation introduced by [25].  
KAOS provides reusable patterns of goal refinement which are formally proven in terms of temporal logic 
expressions.  The approach taken for proving a given pattern is to assume that each of the sub-goals holds and 
then show that it is possible to infer the truth of the base goal from the conjunction (or disjunction) of the sub-
goals.  The patterns ensure that each stage of the elaboration process is correct, i.e. achieving the low level 
goals is equivalent to achieving the higher-level one; consistent, meaning that it is possible to satisfy all the low-
level goals; and minimal, i.e. there are no redundant goals in the refined set.   
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Figure 4.2.3a: KAOS goal elaboration process 

KAOS represents each goal as a Temporal Logic rule and then makes use of refinement patterns to 
decompose these goals into a set of sub-goals that logically entail the original goal (Figure 4.2.3a). Obstacles 
were introduced into the KAOS framework in order to help identify scenarios that might cause goal violations.   
Obstacles are essentially negated goals that are used to prompt thinking about requirements in terms of states 
that the system should not achieve.  Like goals, obstacles will at first be defined at a high-level and need to be 
elaborated into more precise definitions.  The KAOS methodology provides techniques for resolving these 
lower-level obstacles by introducing new goals that ensure that the obstacles are avoided.   

 Once a goal has been elaborated to the level of a system-level requirement (i.e. an operational goal), the 
final stage of the procedure is to assign each of the refined goals to a specific object/operation such that the 
final system will meet the original requirements. KAOS defines a library of domain-independent refinement 
patterns, backed up by logical proofs that can be used to refine goals and obstacles (Figure 4.2.3b).   
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Figure 4.2.3b: Example of KAOS goal elaboration pattern 
 

Once a refinement pattern has been derived, it can be applied to any matching scenario without the need to 
recreate the proof again.  When applying a goal elaboration pattern, the system will present the user with the set 
of patterns that are valid for the given higher-level goal.  Then it is up to the user to select a pattern that can be 
instantiated with meaningful values for each of the missing goal properties in the sub-goal formulae. 

 
(ii) Representing a Security Pattern in KAOS 
 

The KAOS approach provides support for security goal specification in terms of a number of specialised meta-
classes of goal, namely, Confidentiality, Integrity, Availability, Privacy, Authentication and Non-repudiation goal 
subclasses.  In order to support the concepts of attacker knowledge, the formal language of goals is extended 
with the epistemic operators, KnowsVag, which is defined as follows: 
 

KnowsVag (v) = x: Knowsag(x=v)  (“knows value”) 

Knowsag(P) = Beliefag (P)  P   (“knows property) 
 

The operational semantics of the epistemic operator Beliefag(P) is defined as “P being one of the properties 
stored in the local memory of agent ag”.  The knowledge of a value of a property at a given point depends on 



both the agent having a value for the property in its local memory and that property value actually holding at 
the given point in time. 

The use of obstacles for security goals makes obstacle refinement trees analogous to the threat trees that are 
used for modelling potential attacks security-critical systems.  However, obstacles neither capture the goals and 
knowledge of a potential attacker; or the vulnerabilities in software systems.  The notions of anti-goals and anti-
models were introduced to the KAOS framework in order to deal with these problems [40].  Combining with 
the epistemic operators described above, allows security patterns to be expressed in the KAOS framework.  We 
illustrate this using the RBAC example presented previously. 

In the banking example, the requirement is to ensure that only authorized users are allowed to perform 
particular operations on bank assets, such as accounts.  We can document this requirement as the following 
top-level goal  
 
Goal Maintain  [OperationOfAccountOnlyByAuthorizedUser] 
InformalSpec  If user performs an operation on an account, they must be authorised to do so 

FormalSpec  acc:Account, op:Operation, u: User 

  Supports(acc, op)  Authorized(u, op, acc) => CanDo(u, op, acc) 
 
A security pattern that documents a solution to satisfying this high-level goal, must take into account the 
potential attacks on the system that would negate the above, as shown in the following anti-goal. 
 
AntiGoal Achieve [UnauthorizedUserOperatesAccount] 
InformalSpec A user performs an operation on an account, with no authority to do so 

FormalSpec  acc:Account, op:Operation, u:User 

  Supports(acc, op)  Unauthorized(u, op, acc) => CanDo(u, op, acc) 
 
This top level anti-goal identifies the asset and the capabilities of the attacker, and provides the general context 
for the security requirement being modelled.  By decomposing the anti-goal, we can elaborate particular threats 
that would lead to the unauthorised operation of an account.  The maintainability problem of the direct user-
permission assignment model is highlighted by the following anti-goal: 
 
AntiGoal Achieve [FormerEmloyeeAuthorizationUnrevoked] 
InformalSpec A user retains permission to perform operation even after leaving employment  

FormalSpec  acc:Account, op:Operation, u:User 

  [ExEmployee(u) => Unauthorized(u, op, acc)]   

[Supports(acc, op)  Unauthorized(u, op, acc) => CanDo(u, op, acc)] 
  
RBAC provides a countermeasure to the above anti-goal by decoupling users from permissions using roles.  
Thus, permission revocation can be achieved by simply removing a user from a particular role.  We can 
document the RBAC goal as follows: 
 
Goal Maintain  [RBACModelForBank] 
InformalSpec  Maintain a role-based access control model for the bank 

FormalSpec  acc:Account, op:Operation, u: User,  r: Role 

  Supports(acc, op)  Member(u, r)   
Authorized(r, op, acc) => CanDo(u, op, acc) 

 
Sub-goals of this can be used to instantiate specific roles, operations and authorizations.  A particular advantage 
of the KAOS approach to security requirements patterns is that the formal specification can be used to 
formally prove the correctness of the goal refinement.  This allows the final pattern to be reused with 
confidence. 

(iii) Evaluation of Security Pattern Support in KAOS 

The KAOS framework allows security requirements patterns to be expressed in terms of the goals of the 
attacker (anti-goals) and vulnerabilities of the system under study.  Patterns can also include a definition of the 
solution, or counter-measure, to the attack in terms of goals that avoid a given vulnerability.  In this subsection 



we evaluate the extent to which KAOS the representation of security patterns using the generic 
characterization presented in section 2. 

Problem: The intent of a security requirements pattern expressed in KAOS is documented in the top-level 
goal of the pattern.  The meta-class of the top-level goal will identify if the pattern pertains to a confidentiality, 
integrity, availability, privacy, non repudiation or authentication concern. The anti-goal model that forms part 
of the pattern definition can be used to identify the problem addressed by the pattern.  In the example given 
above, the low-level anti-goal relating to permission revocation presents the permission maintainability problem 
that is addressed by the RBAC pattern. 

Context:  As with the intent, the general context of the problem the pattern aims to address will be 
documented in the top-level anti-goal.  More specific details of the attacker knowledge, intention and asset 
properties will be captured in lower level goals of the pattern definition.  The notation doe not provide an 
explicit means of specifying harms to assets, although these can be captured as annotations to the anti-goal 
model. 

Forces:  The KAOS pattern notation does not provide an explicit means of capturing the forces that might 
influence the selection of a particular refinement pattern.  However, requirements engineers are able to use the 
preconditions specified in the formal definition of goals to determine the suitability of a give pattern for the 
problem at hand.   

Solution: The KAOS pattern notation allows specification of the solution to the initial problem in the 
form of sub-goals that satisfy the original goal.  In the RBAC example, the solution is denoted by the 
RBACModelForBank sub-goal, which can be further refined into specific instances of roles, operations and 
authorisations for a given scenario. 

Consequences:  The consequence of a KAOS refinement pattern is to satisfy the original, high-level goal.  
If a pattern is specified using the formal notation provided by KAOS, the entailment relation between the sub-
goals and top-level goal can be formally proven.  This ability to validate that the consequences specified for a 
given pattern are correct is particularly useful in the domain of security patterns. 
 
Table 4.2.3: Evaluation of Support for Security Patterns in KAOS 

 
Problem 

 

Context  
Forces 

 
Solution 

 
Consequences General Attack Assets Harms to Assets 

YES YES YES YES Not Explicitly Not Explicitly YES YES 

 
4.3 Problem-Oriented Approaches 

 
Problem oriented approaches [14, 15, 18], bring informal and formal aspects of software development together 
in a single theoretical framework for software engineering design – presenting software development as the 
representation and step-wise transformation of software problems. This theoretical framework allows for: 
identification and clarification of system requirements; the understanding and structuring of the problem world; 
the structuring and specification of a machine that can ensure satisfaction of the requirements in the problem 
world; and the construction of adequacy arguments, to convince both developers and other stakeholders that 
the system will provide what is needed. In this section we review two problem-oriented approaches, namely: 
problem frames [17]   and abuse frames [21, 22]. 
  

4.3.1 Problem Frames  
 

In this subsection we summarize the Problem Frames approach, and show how it may be applied to illicit the 
privacy and security concerns. 
 

(i) Overview of Problem Frames 
 

Introduced by Jackson [17], the Problem Frames approach (PF) provides a intellectual structure for analyzing 
software problems in the problem space. There are a few principles that are relevant this discussion. First, PF 
emphasizes the need for separating three descriptions: specification, problem world domains, and the requirement. 
Roughly, a specification (S) is a description of a software system that, within the context of certain problem 
world domains (W), satisfies a requirement (R). A problem diagram describing the relationship between W, S 
and R are typically described as shown in Fig. 4.3.1a. Ps is the phenomena shared between the machine and 
problem world, while Pr is the requirements phenomena. Second, in PF, a complex problem is decomposed by 
fitting its subproblems into of known problem patterns called problem frames. A frame captures the contextual 



structure of a problem and concerns associated with the frame. One of such concern is the `proof obligation' 

to show W, S ⊨ R.  

 

Figure 4.3.1a Separation of Descriptions in Problem Frames 

The philosophy of problem frames is that some software development problems are recurring. Based on this 
premise, the main idea of problem frames is to document classes of commonly recurring problem structures 
and their solutions in problem-solution patterns. When a problem that matches a well known problem 
structure is encountered, the solution part of the pattern can then be re-used to solve the problem at hand. 

 

(ii) Representing a Security Pattern in Problem Frames 
 

The way patterns or frames are represented in PF has the following characteristic. Each frame is a 
generalization of some instances of recurring software problems. Frames tend to focus on the structure of 
problems rather than the solutions, although some work has been done to explore how the problem and 
solution structures are related. In each frame, there are three descriptions: the requirement, the problem world 
domains and the machine. A potential security vulnerability may be identified as a “concern”, which may be 
attached to either the frame, the machine, the problem world domains and their connections, or the 
requirements itself. It means that vulnerability may arise from any of the elements. 

One of the several problem frames currently recognized is called workpiece frame. Fig. 4.3.1b shows the 
structure of software certain problems in which an operator needs to use a computer program to edit a lexical 
object such as a text document, a picture, a variable and so on. The main concern of the problem is to take in 
certain commands from the operator, interpret them appropriately, and if the commands are valid, operate on 
the lexical object accordingly. 
 

 
 

Concerns Descriptions 

Workpiece Frame Concern Desired effect of user actions on the workpiece 

Disobedience Concern The user not following the appropriate course of actions 

…… …… 

Figure 4.3.1b Workpiece Frame and Some Known Concerns 

 

 
In PF, the account opening problem (without the security concerns first) fits a frame called the Workpiece 
frame. Fig. 4.3.1c shows how the problem of “opening of a bank account" may be represented in PF. 
 

 

Figure 4.3.1c Problem Diagram for “Opening a Bank Account” 

Informal descriptions of W, S and R are as follows: 
 

Pr Ps 

Specification   Requirement Problem 
World 

Managers 

Account 
Details 

Secure 
Account 

Opening 

Customers 

Accounts 
Editor 

Editing 
Tool 

Workpiece 

User 

Command 
Effects 



R  “opening of a bank account": if the customer is new, create a new bank account with the customer's 
details. 

 

W  Customers: people who provide their details to open a new bank account.  
Managers: people who use the software to open a new back account. 
Account Details: a storage where the details of the customer who opened a bank account is kept. 
 

S  The software examines whether the system already has opened an account for the customer, and if 
not, opens a new one. 

 

Once a problem is fitted to a frame, problem frames provides a way of methodically checking whether W, S ⊨ 

R holds and how this relationship may be broken. Here are some standard concerns that may be applied to 
illicit security vulnerabilities in the subproblem: 

Identity Concern in Customers: Can the software discriminate one customer from another? If someone 
turns up and say s/he is an existing customer, or provide some details purporting to be an existing customer, 
can the software determine whether the claim is true? The answer is clear `no'. This environmental assumption 
is too weak. We may strengthen it by saying that the manager should check that a customer is who they say 
they. Again, this is not foolproof, but may be the best one can do. This assumption that the manager can really 
verify customer details is an important assumption in our proof obligation. 

Credibility Concern in Managers: Will the manager always input the customer details faithfully? Can the 
manager act maliciously by fraudulently transferring money from a customer’s account to their personal 
accounts or those of their associates? Although it may be impossible or very difficult for the software to 
prevent such malicious actions, it is important for a requirements analyst to be aware that this is possible.  

Interception Concern: All connections between the customers, managers, software and the database may 
be intercepted. For example if the customer has subscribed to online banking, there is a possibility that 
information sent or received from the bank server may be intercepted by attackers and replayed later. The 
analysis of this problem needs to take into account the possibility that this may occur and identify appropriate 
solutions to address this concern.  
 

(ii) Evaluation of Security Pattern Support in Problem Frames 
 

Problem Frames are a way of structuring software development problems, and concerns associated with the 
frames raise important security and other dependability issues. In this subsection we evaluate the extent to 
which problem frames support the representation of security concerns using the generic characterisation of 
security patterns presented in section 2. 

Problem: The security goal analysed through a given problem frame depends on the concerns that are 
associated with that problem frame. For example the structuring of the bank account opening example as a 
workpiece raises confidentiality and accountability concerns of bank customer and managers, respectively. This 
illustrates that the structuring of software problems using problem frames leads to the identification and 
analysis of specific security concerns associated with the given frame/pattern. Therefore, although the intention 
of problem frames is classification of recurring software development problems, these patterns can be used to 
elicit associated security goals. It is also worth noting that even though security concerns can be identified from 
generic frame concerns, such identification of security goals depends on the specific problem represented in the 
problem frame.   

Context in General: Explicit modelling of physical context and phenomena shared between domains is 
one of the core characteristics of problem frames. The context may represent the assets that may be harmed 
and domains that may interact with the assets. The domains interacting with the assets may either do so in 
good faith or with intent to cause harm. For example the bank manager may edit a customer account with the 
intent of serving the needs of the client or may act maliciously by fraudulently transferring money from the 
account. By explicitly showing the context in which an application will operate and relationships between 
domains, problem frames enables requirement analyst to assess potential threats that may arise. 

Context for Attack: Potential attacks may be identified through frame concerns. However, there is no 
explicit risk analysis; that is, assessment of the probability of an attack occurring and the extent of the resulting 
damage that may be incurred. Hence frames concerns are sufficient for identifying potential attack, such as how 
do we authenticate the customer in order to ascertain that he is who he claims to be and is the legitimate owner 
of the bank account. In this respect, frames concerns allow requirements analysts to ask “what if” questions 
about the behaviour of the domains in a problem structure with respect to violation of security goals. Although, 
frame concerns may help surface potential attacks on assets, they are not detailed enough to explain scenarios 



by which a security goal may be violated. This may be achieved by elaborating the identified security concerns 
with scenario-based approaches such as misuse cases [2, 44].  

Context for Assets: As earlier stated, problem frames provide explicit modelling of the context in which a 
system will operate. This includes the assets that may be harmed and their potential attackers. It is worth 
mentioning that, initially, in a problem frame these assets and attackers are modelled as domains.  It is only 
when security issues are taken into account that these domains can be classified as assets or potential attackers. 
For example, the customer in the bank account opening example is a domain but upon consideration of 
security concerns, s/he can also be a considered as a potential malicious customer who can commit identity 
fraud.  Similarly, when security concerns are considered the bank account becomes an asset to be protected 
against harm from malicious customers and bank managers.  

Context for Harm to Assets: Problem frames do not provide explicit modelling for harms to assets. It is 
possible, though to describe such harm as a security requirement in a different problem description once 
vulnerability has been identified. 

Forces: Although there is no explicit support for trade-off analysis in problem frames, alternative solutions 
can be evaluated by re-analysing a problem with different context as demonstrated in the work on context-
awareness [33]. The selection of a problem pattern depends on the characteristics of the problem at hand. 

Solution: The emphasis in the problem frames approach is on structures of problems rather than solutions. 
In a problem frame, the solution is modelled as an abstract machine without going into details about its 
dynamic behaviour. In order to model the dynamic behaviour of a machine, problem frames is often 
complemented with behavioural languages such as the Event Calculus [37]. 

Consequences: The consequences for applying a given problem frame for analyzing a security problem 
can be evaluated through the concerns associated with the problem pattern. An adequacy argument is then 
used to demonstrate that the behaviour of the security solution (S) in the problem context (W) satisfies the 
security requirements. 
 
Table 4.3.1 Evaluation of Support for Security Patterns in Problem Frames  

 
Problem 

Context  
Forces 

 
Solution 

 
Consequences General Attack Assets Harms to Assets 

YES YES YES YES NO YES NO YES 

 
The classification and structuring of problems with problem frames provides a systematic way of capturing 

recurring software development problems. The frames also document standard concerns that should be 
addressed when a problem that fits a given pattern is encountered. Identification and reasoning about the 
concerns of each frame provides a means to identifying potential security issues that need to be addressed for a 
given problem. Table 4.3.1 presents a summary of the evaluation of the support for security patterns in 
problem frames based on the discussion above. 

 

4.3.2 Abuse Frames  
 

(i) Overview of Abuse Frames 
 

Lin et al. [21, 22] proposed abuse frames, an approach to analysing security problems in order to determine 
security vulnerabilities. This approach is based on Jackson’s problem frames approach to structuring and 
analysing software development problems [17]. While problem frames are aimed at analysing the requirements 
to be satisfied, in contrast, abuse frames are based on the notion of an anti-requirement. An anti-requirement is 
the requirement of a malicious user that can subvert an existing requirement (similar to the concept of an anti-
goal [39]).  

Abuse frames represent the notion of a security threat imposed by malicious users and a means for 
bounding the scope of security problems in order to provide early focus for security threat analysis. Binding the 
scope of a security problem makes it possible to describe it more explicitly and precisely. Such explicit and 
precise descriptions facilitate the identification and analysis of threats, which in turn drive the elicitation and 
elaboration of security requirements. 
 

(ii) Security Patterns in Abuse Frames 
 

Abused frames are based on the notion of an anti-requirement. An anti-requirement defines a set of 
undesirable phenomena imposed by a malicious user that ultimately cause the system to reach a state that is 
inconsistent with its requirement.  The representation of security analysis patterns in abuse frames share the 



same notion as problem frames. However, in abuse frame frames the domains are associated with a different 
meaning. An abuse frame consists of three domains: vulnerability machine, asset, and malicious user; as shown in 
Figure 4.3.2a. Phenomenon P1 represents undesirable effects on the asset resulting from an attack and 
phenomenon P3 represents abuse actions sent by the vulnerability machine to the asset on behalf of the 
malicious user. Similarly, phenomenon P4 represents interaction between the malicious user and the vulnerable 
machine during an attack.    

  
Figure 4.3.2a Generic Abuse Frame describing a threat 

 
A vulnerability machine domain describes the behaviour that a malicious user exploits to make an attack 

possible. The asset domain represents the asset that will be harmed if an attack succeeds, while the malicious 
user domain represents a potential attacker. Similar to problems frames, each abuse frame is associated with a 
set of abuse frame concerns which need to be addressed to minimise possibility of an attack from being 
successful. Figure 4.3.2b is an abuse frame describing a possible attack on the bank account. The attack 
scenario described is one where a malicious bank manager transfers funds from an account without 
authorisation for the account owner.   

 
Figure 4.3.2b. Abuse Frame describing possible attack on a bank account 

 
(iii) Evaluation of Patterns Support in Abuse Frames 
 

Support for patterns in abuse frames is very similar to problem frames. The difference is that abuse frames 
have specific constructs for security analysis, while problem frames are generic patterns of software 
development problem. Table 4.3.2 presents a summary of the evaluation of security pattern support in abuse 
frames.  
 
Table 4.3.2 Evaluation of Support for Security Patterns in Abuse Frames 

 
Problem 

Context  
Forces 

 
Solution 

 
Consequences General Attack Assets Harms to Assets 

YES YES YES YES YES YES NO YES 

 
As shown in the table, abuse frames provide explicit support for modelling potential attackers, assets, and 
harms to assets. By modelling the behaviour of an attacker, the properties assets, and the specification of a 
vulnerable machine that an attacker could use to harm assets; abuse frames provides systematic means of 
eliciting security requirements. 

 

5. COMPARING MODELLING APPROACHES 
 
Table 5.1 presents a summary of the evaluation results presented in section 4.  Our evaluation results suggest 
that approaches to security analyses are similar in their capabilities to capturing and modelling security analysis 
patterns. The differences between the features of the approaches are dependent on the different concerns they 
were originally meant to address. This suitability of each security analysis approach to specific security concerns 
makes it possible for the approaches to complement each other in a number of ways.  
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Table 5.1 Comparison of Modelling Approaches 
 

Modelling 
Approaches 

 
Problem 

Context  
Forces 

 
Solution 

 
Consequences General Attack Assets Harms to 

Assets 

D
es

ig
n

-

O
ri

en
te

d
 UML NO YES YES YES NO NO YES NO 

SecureUML NO YES NO YES NO NO YES NO 

UMLSec NO YES YES NO YES YES YES YES 

Misuse Cases YES YES YES NO YES NO YES YES 
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Secure i* YES YES YES YES NO YES NO YES 

Secure Tropos YES YES YES YES YES YES YES YES 

KAOS YES YES YES YES NO NO YES YES 

P
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-
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d
  Problem Frames YES YES YES YES NO NO NO YES 

Abuse Frames YES YES YES YES YES YES NO YES 

 
Problem-oriented and goals oriented approaches document problem structures in the problem space; while 
design approaches document solution patterns. Goal-based approaches are useful in documenting security 
goals at a higher-level of abstraction than problem-oriented approaches. Goal-based approaches are useful for 
capturing and refining security goals. Problem-oriented approaches further analyse the security goals 
structuring them into problem structures whose solutions can be identified with design approaches.  
 

6. CONCLUSION AND FURTHER WORK 
 

Security remains a key challenge in the development of software systems and the goal of developing secure 
software systems has remained an area of active research. Research in security engineering has resulted in the 
realization that documenting recurring security problems and their solutions as security patterns is an important 
advancement as it allows software designers with little knowledge of security to build secure systems. When a 
designer encounters a security problem that match a given pattern, they can reuse the solution part of the 
pattern or use the pattern to guide them in finding a solution to the problem at hand. In this chapter we have 
reviewed approaches to security analysis. Our review focused on evaluating the capabilities of these approaches 
to supporting security analysis patterns and is based on a set of evaluation criteria for characterising security 
patterns.  

Although the approaches reviewed were originally aimed at addressing specific security concerns our 
evaluation results suggest that these approaches are, to a large extent, overwhelmingly similar in their 
capabilities to capturing and modelling security analysis patterns. The minor differences in their capabilities to 
modelling security patterns seems to imply that these approaches complement each other in a number of ways. 
Problem-oriented approaches document problem structures in the problem space; while design approaches 
document solution patterns. Goal-based approaches are useful in capturing and refining security goals at a 
higher-level of abstraction than problem-oriented approaches. On the other hand, the explicitness of context 
modelling in problem-oriented approaches make them more suited to further analyses of security goals, 
structuring them (security goals) into problem structures whose solutions can be identified with design 
approaches. This systematic structuring of security problems could potentially result in more clearly defined 
structures of common security goals such as confidentiality, integrity, etc, into generic problem structures that 
can be instantiated for analysing security problems in different application domains.   

Although our conclusion is based on the evaluation representation of a single security patterns with 
different languages, we believe that our results may be generalized to other security patterns. Part of our future 
work is validating the extent to which the conclusions we have draw here can be generalized.  
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