
UniAspect: A Language-Independent
Aspect-Oriented Programming Framework

Akira Ohashi Kazunori Sakamoto Tomoyuki Kamiya Reisha Humaira Satoshi Arai
Hironori Washizaki Yoshiaki Fukazawa

Waseda University

{akira-radiant@akane, kazuu@ruri, kamiya7140@akane, reisha@fuji, www.31o4-xy@fuji}.waseda.jp,
{washizaki, fukazawa}@waseda.jp

Abstract
Existing AOP tools, typified by AspectJ, are proposed as
extensions of a single language. Therefore, most existing
AOP tools cannot deal with cross-cutting concerns, which
are scattered on many modules implemented in two or more
languages. We propose a novel language-independent AOP
framework named UniAspect. UniAspect translates pro-
grams written in various languages into a Unified Code
Object, which is our common representation of source code.
And it achieves the modularization of scattered cross-cutting
concerns in multiple languages by weaving aspects through
the Unified Code Object. In this paper, we introduce a case
study of the implementation of logs in a web application that
is implemented in Java and JavaScript. Its result shows that
UniAspect achieves the modularization of these concerns by
a single aspect.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications

General Terms Languages, Design

Keywords Aspect-oriented programming, Language inde-
pendent, UniAspect, UNICOEN

1. Introduction
Programs run on various machines can be written in various
programming languages according to the hardware charac-
teristic or the purpose of the software, such as system soft-
ware, middleware, mobile and web platform. Moreover large
scale systems providing a large amount of functions could be
realized by composing many program modules deployed on
different machines.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

MISS’12, March 27, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1217-2/12/03. . . $10.00

In such a background, various aspect-oriented program-
ming (AOP) tools corresponding to various different pro-
gramming languages have been proposed. For example, As-
pectJ [4] is an extension of Java language, and AOJS[5]
supports AOP for JavaScript. Developers can benefit from
AOP in most major languages. However, since most existing
AOP tools are implemented for a specific language, these
tools cannot deal with cross-cutting concerns scattered on
many modules implemented in multiple languages. There-
fore, there is a possibility that a single concern is not al-
ways modularized to a single aspect. Moreover, the weaving
mechanism and the description of the aspect are not unified
among existing AOP tools. It leads to cost in terms of the
time required for learning.

In this paper, we propose a language-independent AOP
framework named UniAspect. UniAspect achieves language
independence by translating programs written in various lan-
guages into a Unified Code Object (UCO), which is our
common representation of source code, and weaving aspects
through the UCO.

The Contributions of the paper are as follows:

• We show cross-cutting concerns that are written in mul-
tiple languages and scattered on many modules can be
modularized into a single module using UniAspect.

• We explain the learning cost due to the introduction of
AOP for a new language can be reduced because Uni-
Aspect supports AOP in multiple languages.

UniAspect is ongoing project as open-source software,
and it can be downloaded from the UniAspect website [7].

In this paper we introduce UniAspect as follows. Section
2 illustrates the problems in existing AOP tools. Sections 3
and 4 give an overview of UniAspect and the UCO, respec-
tively. We describe the join point model and the weaving
process of UniAspect in Sections 5 and 6, respectively. Sec-
tion 7 reports a case study. Section 8 refers to related work
and Section 9 concludes the paper.

39



Figure 1. Aspects for Web application

2. Background
In this section, we illustrate the problems in existing AOP
tools. These are as follows.

• P1: Most existing AOP tools cannot deal with cross-
cutting concerns, which are scattered on many mod-
ules implemented in two or more languages.

For example, web applications are usually implemented
by using multiple languages because the client side pro-
gram and the server side program run on the different
platform. To obtain logs of such a web application, it is
necessary to use two AOP tools to support the implemen-
tation languages on both sides (Figure 1). In this example,
AOJS is used for the client side and AspectJ is used for
the server side. Therefore, the log code must be written as
two aspects, and it is difficult to deal with these aspects as
a single module. As a result, if the module has been mod-
ified about a concern, it is necessary to confirm its extent;
how many languages are affected. Incorrect confirmation
leads to missing some modifications.

• P2: There is no consistency in the weaving mechanism
and the description of the aspect among AOP tools.

Each existing AOP tool has its own mechanism for weav-
ing. Therefore, developers need to pay a lot of atten-
tion to the consistency of weaving among multiple tools.
In addition, the description of the aspect varies depend-
ing on the tool: an extended grammar of the specific
language[4], a XML notation[5] and a function provided
by AOP library within specific language’s grammar[6].
Thus, the introduction of a new AOP tool results in a cost
in terms of the time required for learning.

3. Overview of UniAspect
In this section, we give an overview of UniAspect. Uni-
Aspect translates programs written in various languages into
a UCO and weaves aspects through the UCO. The details of
the UCO will be described, in section 4.

Figure 2 shows an overview of UniAspect. The entire pro-
cess of the system is as follows, where numbers correspond
to those in the figure.

Figure 2. Overview of UniAspect

Figure 3. Example of unified code object

1. The developer inputs source code written in supported
language and aspect.

2. Weaving information and code fragments from the aspect
are extracted in the aspect analyzer.

3. The UCOs of the input source code and code fragments
are generated in the UCO generator.

4. Code fragments are woven into the input source code in
the UCO in the weaver.

5. The source code with aspect is regenerated from the UCO
and outputted.

UniAspect performs weaving by transformation of the
source code on the UCO. Therefore, developers can compile
or execute output source code using any system.

4. Unified Code Object
UniAspect is based on UNICOEN [8], a source code pro-
cessing framework for multiple languages. UNICOEN is a
framework for developing source code analysis or transfor-
mation tools, and our research team is developing it as open-
source software. UNICOEN supports the development of
language-independent source code processing tools by sup-
plying a common representation of source code for different
programming languages. The common representation that
UNICOEN supplies is called the unified code model (UCM),
and objects generated from the source code according to the
UCM are called UCOs.

For example, an If statement is composed of a conditional
expression, a true block and a false block in all programming
languages. Therefore, UNICOEN translates an If statement

40



1 aspect Sample {

2 Foo : @Java{

3 public void __debug () {

4 System.out.println (...);

5 }

6 }end

7
8 pointcut move() :

9 execution(double Foo.hoge ());

10 pointcut init() :

11 execution (* *.init *());

12
13 before : init() {

14 @Java { __debug (); }end

15 @JavaScript { console.log (...); }end

16 }

17 }

Figure 4. Example of aspect in UniAspect

as shown in Figure 3. UNICOEN also translates elements
that appear in particular languages such as Type and Class
into a common object. As a result, a UCM consists of the
union of a set of elements in programming languages. The
latest version of UNICOEN deals with seven programming
languages, C, Java, C#, JavaScript, Ruby, Python and Visual
Basic, and a UCM consists from these seven languages.
Developers are also able to implement new languages into
UNICOEN by writing mapping rules for the UCO in UCM.

5. Join point Model
In this section, we present an example of an aspect in Uni-
Aspect and explain its features.

5.1 Sample Program

Figure 4 shows an example of an aspect in UniAspect. A
grammar of UniAspect is designed to imitate that of AspectJ
so that a developer used to an existing system can understand
it easily. There is a problem that code fragments written in
advice and interType declarations depend on the program-
ming language of the weaving target. Since a UCO may
hold language specific features such as foreach statement,
this may become a source of error, for example, weaving ad-
vice written in C# into a source code written in Java. There-
fore, advice and InterType declarations need to be written
depending on the particular language. As a result, an aspect
in UniAspect has both a language-independent portion and
a language-dependent portion. A process that depends on a
particular language is called a language-dependent block and
is described as shown in lines 14 and 15 of Figure 4.

5.2 Pointcut

To weave an aspect into programs written in supported lan-
guage, UniAspect is designed to deal with only common el-
ements as join point in a UCO among multiple languages.
Table 1 shows the relationship between programming lan-
guages and the main elements in a UCO. ”Yes” means that

Table 2. List of specifiable join points
Join point Type Location in Source Code

call When a function is called
execution When a function is executed

get When a variable is referenced
set When a variable is assigned

the element appears in the corresponding programming lan-
guage, and ”No” means that the element does not appear.

Table 1 shows that function declarations, function calls
and variables appear in all programming languages adopted
by UNICOEN. Moreover, variable uses are categorized
into two types, assignment and reference variables. Table
2 shows specifiable join points in UniAspect.

A pointcut is declared using the ”pointcut” identifier
shown in lines 8 and 10 of Figure 4, and a developer writes
the pointcut name and the conditions for selecting join
points. In the conditions, developers can specify the type of
join point, the return type, the class name and the function/-
variable name. Because UniAspect weaves aspects through
a UCO, a pointcut specifies the join point from the UCO.
Therefore, the description of a pointcut is independent of the
programming language. For example, lines 10-11 of Figure
4 select function declarations whose name starts with ”init”
as a weaving point regardless of the language.

5.3 Advice

Developers can specify ”before” and ”after” as advice. Ad-
vice is declared to use a ”before” or ”after” identifier, as
shown in line 13 of Figure 4, and the developer writes the
declared pointcut and code fragments. Developers need to
write code fragments in language-dependent blocks in the
appropriate programming language.

For example, lines 14 and 15 of Figure 4 define language-
dependent blocks for Java and JavaScript. If a join point
selected from the corresponding pointcut is based on a Java
program, the code shown in line 14 of Figure 4 will be
woven, and if it is based on a JavaScript program, the code
shown in line 15 of Figure 4 will be woven.

5.4 InterType Declaration

Lines 2-6 of Figure 4 define an interType declaration by de-
scribing a language-dependent block. The developer spec-
ifies the class name by describing an identifier before the
language-dependent block in the case of a language with
classes such as Java, or specifies the file name in the case
of a language that does not have declarative classes such as
JavaScript. Then, the corresponding function or variable will
be woven into the specified class or file.

6. Weaving Process
The weaver identifies join points in a UCO according to
aspect description. Since a UCO uses a tree structure to

41



Table 1. Relationship between languages and main elements in the unified code object
C Java C# JavaScript Ruby Python VisualBasic

Function Declaration / Call Yes Yes Yes Yes Yes Yes Yes
Variable Yes Yes Yes Yes Yes Yes Yes

Exception No Yes Yes Yes Yes Yes Yes
Class No Yes Yes No Yes Yes Yes

Typed Variable Declaration Yes Yes Yes No No No Yes

Figure 5. Process of execution weaving

represent the source code, as shown in Figure 5, it is easy
to identify specific elements in the input source code by
checking the parent and child object (Figure 5-1). The object
which satisfies all given conditions will proceed to the next
step. Then, the weaver inserts the advice into the join point
specified in the previous step. Insertion of the advice is also
performed on the UCO. The advice is translated into a UCO
as a block, and the basic operation is to insert the advice into
a block so that it becomes a previous sibling in the case of
execution before (Figure 5-2).

On the other hand, there is a possibility that a conflict
arises between the names of the variable/function of an as-
pect and those of target program. This conflict arises because
the advice and interType declarations are woven directory
into specified join points. As a result, the scope of an aspect
depends on the join point used, and developers need to avoid
these conflicts between aspects and source code.

7. Case Study
In this section, we give an example of implementing logs
using UniAspect for JSUnit, which is a client-server-type
test framework. The client side of JSUnit is implemented
in JavaScript and the server side is implemented in Java.
JSUnit is a system that performs tests on web browsers and
displays the results on the server side. In this case study,
we implement log code for all functions of JSUnit. We
obtain the source code of JSUnit from its Github project
page. Then, we weave the aspect shown in Figure 6 into the
obtained source code. Finally, we compile the woven source
code using the supplied Ant build file and execute it.

Figures 7 and 8 show the result of execution. It shows logs
of the functions executed on both the server side and client
side. We can confirm that the log code has been woven using
UniAspect.

1 aspect Logger {

2 pointcut allMethods () :

3 execution (* *.*());

4
5 before : allMethods () {

6 @Java { System.out.println(

7 JOINPOINT_NAME +" is executed ."); }end

8 @JavaScript { console.log(

9 JOINPOINT_NAME +" is executed ."); }end

10 }

11 }

Figure 6. Aspect using in case study

Figure 7. Result of server side logs

Figure 8. Result of client side logs

Table 3 shows the number of methods, files and lines in
JSUnit. Using UniAspect, 786 log codes have been woven
into server-side programs and 43 log codes have been woven
into client-side programs. In addition, functions are scattered
in 137 files written in Java and JavaScript. Table 4 shows
the number of chunks of code for logs, and the number of
modified files. In the case of using UniAspect, developers
can summarize cross-cutting concerns scattered on multiple
files written in multiple languages as a single aspect.

The considerations obtained from the results are as fol-
lows. Cross-cutting concerns scattered on many modules im-
plemented in two or more languages can be summarized as a
single aspect, and this shows that UniAspect solve the prob-
lem mentioned as P1. On the other hand, in the case of using

42



Table 3. Numbers of woven aspect
Server side Client side

Language Java JavaScript
Lines of Code 7106 2856

Number of Methods 786 43
Number of Files 128 9

Table 4. Comparison of scattered log codes
Using Using Without

UniAspect Existing Using
Tools Aspect

Number of
chunks of code 1 2 829

Number of
modified files 1 2 137

existing AOP tools, developers must implement two aspects,
for AspectJ and AOJS for example. Therefore, the amount of
scattered log code is two as shown in Table 4, and developers
have to manage these aspects separately.

The description of the aspect in UniAspect is unified in
the form shown in Figure 4 or 6. Therefore, there is no cost
of introducing an AOP tool to a new language when using
UniAspect. On the other hand, for example AspectJ has a
similar syntax to Java, but AOJS has a syntax based on XML.
Therefore, the use of multiple AOP tools has a large cost
including a learning cost. This shows that UniAspect solve
the problem mentioned as P2.

8. Related Work
Several AOP tools for .NET Framework have been pro-
posed to support multiple languages. SourceWeave.NET[2]
is a weaver based on source code transformation through the
CodeDOM; .NET standard for representing source code as
abstract syntax tree. Weave.NET[3] weaves the aspect into
the CIL of the .NET Framework. Although these tools are
similar to UniAspect in terms of using a common representa-
tion for multiple languages, the languages that they support
depend on the .NET Framework. On the other hand, Uni-
Aspect does not depend on a particular platform, and it can
support more languages for weaving aspects.

Compose*[1] is a compilation and execution framework
for the Composition Filters model, which supports multi-
ple languages and platform: .NET platform, Java language
and platform and C language. Although Compose* is sim-
ilar to UniAspect in terms of creating a common structural
language model to specify where aspect behavior should be
applied, a weaver needs to be implemented for every specific
target language. On the other hand, the weaver of UniAspect
is also based on unified code object, which leads unified im-
plementation.

9. Conclusion And Future Work
In this paper, we proposed a language-independent AOP
framework, UniAspect. UniAspect achieves language inde-
pendence by translating programs written in various lan-
guages into a UCO then weaving aspects through the UCO.
As a case study, we gave an example of implementing logs
for a system written in Java and JavaScript. It shows develop-
ers can summarize cross-cutting concerns scattered on mod-
ules in multiple languages as a single aspect.

Finally, we describe some future works.
Advice in UniAspect is dependent on the language of the

join point. To achieve a language-independent description
of advice, we should provide common specification for de-
scribing advice. Moreover, UniAspect does not support sev-
eral pointcut adopted in existing tools; control flow pointcut,
composition of pointcuts and so forth. We plan to support
these pointcuts to make an aspect more expressive.

Acknowledgments
This research has been originally conducted as ”MITOH
youth 2010” project in Information-technology Promotion
Agency, Japan. After the end of the project, the research is
partially supported by the Japan Prize Foundation.

References
[1] A. de Roo, et al. Compose*: a Language- and Platform-

Independent Aspect Compiler for Composition Filters. In First
International Workshop on Advanced Software Development
Tools and Techniques (WASDeTT ’08), 2008.

[2] Andrew Jackson and Siobhan Clarke. SourceWeave.NET:
Cross-Language Aspect-Oriented Programming. In Proceed-
ings of the Generative Programming and Component Engineer-
ing(GPCE ’04), 2004, pages 369–393.

[3] Donal Lafferty and Vinny Cahill. Language-Independent
Aspect-Oriented Proggraming. In Proceedings of the 18th an-
nual ACM SIGPLAN conference on Object-Oriented Program-
ing, Systems, Languages, and Applications (OOPSLA’03), 2003,
pages 1–12.

[4] Gregor Kiczales, et al. An overview of AspectJ. In Proceedings
of the 15th European Conference on Object-Oriented Program-
ming (ECOOP’01), 2001, pages 327–353.

[5] Hironori Washizaki, et al. AOJS: aspect-oriented javascript
programming framework for web development. In Proceedings
of the 8th workshop on Aspects, components, and patterns for
infrastructure software (ACP4IS’09), 2009, pages 31–36.

[6] Rodolfo Toledo, Paul Leger, and Éric Tanter. AspectScript:
expressive aspect for the web, In Proceedings of the 9th
ACM International Conference on Aspect-Oriented Software
Development (AOSD’10), 2010, pages 13–24

[7] UniAspect website in UnicoenProject.
http://www.unicoen.net/application/uniaspect.html

[8] UNICOEN. A framework for developing code processing tools.
http://www.unicoen.net/

43




