
Validating Security Design Pattern Applications
Using Model Testing

Takanori Kobashi
 Waseda University

Computer Science and Engineer Department
Tokyo Japan

kobashi@akane.waseda.jp

Nobukazu Yoshioka
GRACE Center

National Institute of informatics
Tokyo Japan

nobukazu@nii.ac.jp

Takao Okubo
Information Security Division

Institute of Information Security
Yokohama Japan

okubo@iisec.ac.jp

Haruhiko Kaiya
 Architecture Research Division

National Institute of Informatics
Tokyo Japan

kaiya@nii.ac.jp

Hironori Washizaki
Waseda University

Computer Science and Engineering
Tokyo Japan

washizaki@waseda.jp

Yoshiaki Fukazawa
Waseda University

Computer Science and Engineering
Tokyo Japan

fukazawa@waseda.jp

Abstract— Software developers are not necessarily security
specialists, security patterns provide developers with the
knowledge of security specialists. Although security patterns are
reusable and include security knowledge, it is possible to
inappropriately apply a security pattern or that a properly
applied pattern does not mitigate threats and vulnerabilities.
Herein we propose a method to validate security pattern
applications. Our method provides extended security patterns,
which include requirement- and design-level patterns as well as a
new model testing process using these patterns. Developers
specify the threats and vulnerabilities in the target system during
an early stage of development, and then our method validates
whether the security patterns are properly applied and assesses
whether these vulnerabilities are resolved.

Keywords-component; Security Patterns; Model Testing; Test-
Driven Development; UML;

I. INTRODUCTION
Due to the increased number of business services on open

networks and distributed platforms, security has become a
critical issue. Developers must support software with security
measures [1]. However, security concerns must inform every
phase of software development from requirements engineering
to design, implementation, testing, and deployment. Due to the
vast number of security concerns and the fact that not all
software engineers are security specialists, creating software
with adequate security measures is extremely difficult.

Patterns are reusable packages that incorporate expert
knowledge. Specifically, a pattern represents a frequently
recurring structure, behavior, activity, process, or “thing”
during the software development process. To resolve security
issues, many security design patterns have been proposed [2],
[3]. For example, reference [2] shows 25 design-level security
patterns.

Currently, threats and vulnerabilities within a system are
insufficiently identified during the early development stage.
Although UML-based models are widely used for design, in
model-driven software development, the appropriateness of the
security patterns or whether the model for the applied patterns
satisfies the security requirements is often not validated [1]. It

is possible to apply a security pattern inappropriately.
Additionally, properly applying a security pattern does not
guarantee that threats and vulnerabilities are mitigated. These
issues may cause security damage. Thus, our research aims to
answer two Research Questions (RQs).

• RQ1: Can an appropriate application of the security
design pattern in a design model be validated?

• RQ2: In a design model, can the existence of
vulnerabilities identified at the requirement stage be validated
before and after pattern application?

Herein we answer these two questions. Because the
Security Pattern alone does not provide systematic guidelines
with respect to applications, we propose validating security
design pattern applications using model testing in an UML [4]
model simulation environment. The method consists of two
validations in the design phase: one validates whether the
security patterns are appropriately applied and the other
validates whether the design model–applied patterns are
vulnerable to the threats identified in the requirement stage.
Our method provides two major contributions:

• New extended security patterns, which include
requirement- and design-level patterns

• A new model-testing process using these extended
patterns

This paper is organized as follows. Section II describes the
background and problems with security software development.
Section III details our new method, which integrates the
security patterns. Section IV applies our pattern to a case study.
Section V describes potential weaknesses of our method.
Finally, Section VI summarizes this paper.

II. BACKGROUND AND PROBLEMS
A. UML extension for modeling security constraints

UML-based models have been recently used for design. In
particular, UMLsec [5] and SecureUML [6] have been

proposed to address security concerns. UMLsec is defined in
the form of a UML profile using standard UML extension
mechanisms. Stereotypes with tagged values are used to
formulate the security requirements, and then the constraints
are used to verify whether the security requirements hold
during specific types of attacks. However, developers who are
not security specialists have difficulty in employing UMLsec
and must receive special training, which involves both time and
money.

B. Security Requirement Patterns
The security requirement pattern is an existing technique to

identify assets, threats, and countermeasures [7]. A security
pattern is reusable as a security package and includes security
knowledge, allowing software developers to design secure
systems like a security expert. Various types of security
patterns exist. For example, the security requirement pattern
(SRP) is used at the requirement level, while the security
design pattern, which is described in Section C, is applied at
the design stage level.

The “Structure” of SRP uses the Misuse case with the
Assets and Security Goal (MASG) model [8], which is an
extension of the misuse case [9] that provides the structure of
assets, threats, and countermeasures at the requirement level.
This enables developers to model attackers, attacks, and
countermeasures as well as normal users and their requirements.
In addition to the elements of misuse case diagrams, the MASG
model consists of the following elements:

• Data assets: Assets to be protected
• Use case assets: Functions related to assets
• Security goals: Reasons to protect assets

Identifying assets improves threat recognition, while
identifying security goals determines what security measures
are important in the target system. The MASG model also
contains a security requirement analysis process. First, the
assets of the system are identified, and the security goals are
defined. Next, threats that may violate the goals are defined,
and security countermeasures against these threats are
determined [7]. Finally, the security countermeasures that
satisfy the security goals are confirmed.

Figure 1. Sample MASG model for a shopping website

Figure 1 shows a typical example of a MASG model: a
partially modeled shopping website. The function “make a
payment” has several assets, which could be threatened. In the
model, "Disclosure" is a threat for "make a payment", while
"personal information" is an asset. "Spoofing", "Elevation of
privilege", and “SQL Injection” enable Disclosure. In addition,
each countermeasure, such as “Identification and
Authentication (I&A)”, “Access Control”, or “Input and Data
Validation”, effectively mitigate these threats. Although the
MASG model comprehensively explores security issues at the
requirement level, it does not determine whether the identified
threats actually exist in the design model.

C. Security Design Patterns
To satisfy security specifications, the use of Security

Design Patterns (SDPs) is an established technique. The SDP
includes “Name”, “Context”, “Problem”, “Solution”,
“Structure”, “Consequences”, and “See Also”. The pattern
descriptions can be reused in multiple systems.

Figure 2. Structure of SDP (Password Design and Use pattern)

Figure 3. Structure of SDP (RBAC pattern)

Figures 2 and 3 show examples of the SDP structure. The
Password Design and Use pattern describes the best security
practice to design, create, manage, and use password
components to support the I&A requirements. In addition to
configuring or managing passwords, engineers and
administrators use password constraints to build or select
password systems. The RBAC pattern, which is a
representative pattern for access control, describes how to
assign precise access rights to roles in an environment where
access to computing resources must be controlled to preserve
confidentiality and the availability requirements.

D. Motivating example
As an example of a pattern application, Fig. 4 shows a

portion (“make a payment”) of a UML class diagram to realize
a payment process on the Web. A SDP alone is insufficient to

<<asset>>
make a

payment

<<misuse>>

Disclosure

<<misuse>>
Elevation of
privilege

<<misuse>>

Spoofing

<<misuse>>

SQL
Injection

enables

enables

enables
<<countermeasure>>

Input and Data
Validation

prevents

<<countermeasure>>

Access Control

<<countermeasure>>

I&A

prevents

prevents

include

include

include

User

Attacker

Attacker

Attacker

<<asset>>
personal info

<<goal>>
keep personal info

secret

<<goal>>

confidentiality

op
era

tio
nal

ize
s

operat
ionalize

s

operationalizes

cycle, it is the task of the designer to ensure that all required
security requirements are included in the specifications and
that adequate protection mechanisms are implemented to
refer those specifications. In the following sections we will
review several approaches which refer to this demand.

A. Specification Techniques
Several specification techniques for representing

different security policies in a model-driven software
development process have been proposed. SecureUML [20]
is a modeling language based on RBAC, used to formalize
access control requirements and integrate them into
application models. It is basically a RBAC language with
authorization constraints that are expressed in Object
Constraint Language (OCL).

UMLSec [17] is an UML extension that enables
specifying security concerns in the functional model. It uses
standard UML extension mechanisms; stereotypes with
tagged values are used to formulate the security
requirements, and the constraints are used to check whether
the security requirements hold in the presence of particular
types of attacks.

B. Access Control Patterns
An alternative to refer security policies is by using

security patterns. Security patterns accumulate extensive
security knowledge and provide guidelines for secure
system development and evaluation.

Access control is one of the core issues in systems and
database security. In an environment with resources whose
access has to be controlled, authorization patterns can be
used to describe, for each entity, the resources it may have
access to, and which access privileges it has. Figure 1
describes the authorization pattern as defined in [19]. The
Authorization_rule association, together with the Right
association class, defines the access privileges of the Subject
to the related ProtectionObject. The Right association class
includes the type of access allowed (e.g. read, write,
execute), a predicate representing a condition that must be
true for the authorization to hold, and a copy flag signifying
a condition that indicates whether the right can be
transferred or not. An operation checkRights can be used in
the Subject or Object to check the validity of a request.

The Role-Based Access Control (RBAC) pattern [19] is
a specialization of the authorization pattern that has become
the most commonly used for access control since it reduces
the cost of administering access control policies and the
amount of errors in the process. RBAC is derived from the
notion that in organizations, users have different roles that
require different skills and responsibilities, and therefore
they should have different rights of access to data, which are
based on their role. Consequently, the RBAC
mechanism [3] describes for each user which privileges they
can acquire based on their roles or their assigned tasks. To
support the RBAC mechanism at the analysis and design
stages of the development lifecycle, a corresponding pattern
was developed [19]. The RBAC pattern is shown in Figure
2. Users are assigned to Roles, while Roles are given Rights
that are permitted to Users in that Role. As in the

authorization pattern, the association class Right defines the
access types that a user within a Role is authorized to apply
on the ProtectionObject. Correct implementation of the
RBAC pattern will ensure effective and secure access
control to the database.

C. Secure Software Development with Security Patterns
Security patterns alone are not sufficient for supporting

the development lifecycle, since they do not provide
systematic guidelines regarding to their application
throughout the entire software lifecycle. In order to provide
such information to the designers, several methodologies for
developing secure software were proposed in the literature.
Fernandez et al. [6] proposed a methodology for integrating
security patterns into each one of the software development
stages. Other methodologies present the use of the aspect-
oriented software design approach to model security
patterns as aspects and weave them into the functional
model [9] [12], or the use of agent oriented security pattern
language together with the Tropos methodology to develop
secure information systems [10] [11].

D. Patterns Validation
Although some of the methods mentioned above provide

tools for checking some aspects of the model, they do not
have the ability to validate the correct application of the
patterns, which will ensure generation of a secure
application or a database scheme. Without systematic
validation of the involved patterns, we risk in having design
problems that will propagate throughout the development
process.

To the best of our knowledge, the only work in this area
is of Peng, Dong, and Zhao [21], which presents a formal
verification method to analyze the behavioral correctness of
a design pattern implementation. Their method exploits the
partial order relationship between the sequence diagram of a
general design pattern and that of its implementation.
However, this method does not verify the structural
correctness of the implementation. Therefore, there is a need
to develop an approach to automatically and fully validate
the implementation of patterns.

-id
Subject

-id
ProtectionObject*

*

-access_type
-predicate
-copy_flag
+checkRights()

Right

Authorization_rule *

*

Figure 1. The general Authorization pattern (adopted

from [19]).

-id
-name

Role
-id
-name

ProtectionObject

-access_type
-predicate
-copy_flag
+checkRights()

Right

*
*-id

-name

User
*

*

Authorization_rule *
*

MemberOf*

*

Figure 2. The basic RBAC pattern (adopted from [19]).

support the development lifecycle because it lacks systematic
guidelines with respect to applications in the entire lifecycle
[10]. Consequently, formally describing what rules must be
verified is difficult [11]. In addition, most SDPs do not
specifically mention the systematic guidelines until the
relations with the Security Requirement are defined [1]. Under
the present conditions, it is possible that a developer may
inappropriately apply a security measure to an identified threat.
Additionally, the appropriateness of the applied pattern to the
model and the pattern’s ability to resolve vulnerabilities are
inadequately verified.

Figure 4. “Make a payment” portion of a class diagram for payment

processing

For example, even if a developer intends to apply an
RBAC to the model in Fig. 4, the functionality of the access
control cannot be determined until the design model is tested.
Thus, the measure may not mitigate or resolve the threats and
vulnerabilities. Arnon et al. have suggested using a stereotype
for a database application to validate security patterns [10].
Although this method will validate pattern applications
structurally, it will not validate whether the pattern behavior in
the model resolves vulnerabilities to threats. Figure 5 shows the
conventional process for pattern applications.

Figure 5. Conventional process

E. Test-Driven Development (TDD)
Test-driven development (TDD) is a software development

technique that uses short development iterations based on
prewritten test cases that define desired improvements or new
functions. Here we use TDD for our testing process. TDD
requires that developers generate automated unit tests to define
code requirements prior to writing the actual code [12]. The
test case represents a requirement that the program must satisfy
[13].

Our method employs USE [14], which is a tool in the
UML-based simulation environment that runs tests to specify
and validate information systems based on a subset of the UML
and the Object Constraint Language (OCL) [15]. OCL is a
semiformal language that can be used to express constraints for
a variety of software artifacts, and can specify constraints and
other expressions in UML and other modeling languages. USE
was initially implemented in Java at Bremen University
(Germany), to evaluate OCL expressions via simulations. To
check the OCL constraints, a developer can create an instance
of a class in USE, and input a value as a test case. In this paper,
we use OCL constraints as a requirement.

 Our method initially executes tests in a design model that
does not consider security in USE (Test First). Then our
method detects vulnerabilities to threats identified in the
requirement stage. Next, security patterns are applied, and the
tests are re-executed to confirm that the vulnerabilities are
resolved.

Figure 6. Proess of our metho

+ make_a_payment

<<control>>
Payment_Controller

<<boundary>>
Payment_UI

User

<<entity>>
user

<<entity>>
product

<<entity>>
payment_info

User

purchasing system

Administrator

make a
payment

confirm purchase
products

post a profit

register
products

part of Class Diagram

SDP

SRP

UML
Diagrams

Identify
assets ,threats and
countermeasures in

the system

Design
 analysis

Select
SDP

Security
Requirement

Context

problem

Solution

・・

Apply
SDP

Functional
Requirements UML

Diagrams

apply pattern
appropriately ?

Threat and
vulnerabilities are

mitigated ?

(not considering security)

Figure 6. Process of our method

Ex SDP

Ex SRP

UML
Diagrams

UML
Diagrams

Design
analysis

Test Cases
as Security Requirement

Security Test Template

Execute tests to
validate an input
model satisfies

security requirements

USE

Apply
Ex SDP

Execute tests to
validate patterns are
applied appropriately

USE

Select Ex SDP
Test Cases

as Security Design Requirement

Security Design Test Template

END

Context problem Solution ・・

[Result == T]

[Result == F]Functional
Requirements

Test Result

Identify what types of
assets, threats, and

countermeasures are
present in the

developing software

(not considering security)

(considering security)

(1)

(3)

(2)
(4)

(5)(6)

III. OUR VALIDATION METHOD
A. Process of Our Validation Method

Figure 6 shows the process of our method. We prepare
extended SRP (Ex-SRP) and extended SDP (Ex-SDP)
beforehand. These new SRP and SDP are expanded from
existing SRP and SDP. A developer can execute tests and
validations using these new SRP and SDP. Figure 7 shows the
overall structure of Ex-SRP and Ex-SDP.

Figure 7. Overall structure of Ex-SRP and Ex-SDP

Below we briefly describe Ex-SRP and Ex-SDP, while
section III B provides a concrete example.

 Ex-SRP
• Security Requirement: Each “countermeasure” must

satisfy the requirement. If a model does not satisfy the
Security Requirement, then the measures do not remove
vulnerabilities, and threats may exist in the system. Herein
we assume that there are nine types of countermeasures:
“Input and Data Validation”, “Identification and
Authentication”, “Authorization”, “Configuration
Management”, ”Sensitive Data”, ”Session Management”,
“Cryptography”, “Exception Management”, and
“Auditing and Logging”. Each Security Requirement is
prepared beforehand, assuming that these
countermeasures can be referenced in the Security Frame
Category [16] [17], which is Microsoft’s systematic
categorization of threats and vulnerabilities. In TDD,
these requirements represent test cases that must be
satisfied.

• Security Test Template: This template executes tests to
validate whether a design model satisfies the Security
Requirement related to each countermeasure.

 Ex-SDP
• Category: Each Ex-SDP belongs to a unique category.

For example, the “Password Design and Use” pattern
belongs to “I&A”, while the “RBAC” pattern belongs to
“Authorization”.

• Context: In addition to the existing “Context”, we add the
structure and behavior to a potential “Problem”, which
occurs when a situation does not satisfy the Security
Requirement.

• Structure: The structure and behavior must constantly
satisfy the Security Requirement related to the category.

• Security Design Requirement: To meet a requirement
(constraint), the structure should be satisfied when a
pattern is applied. If a model does not satisfy the Security
Design Requirement, then the pattern is applied
inappropriately.

• Security Design Test Template: This template executes
tests to determine whether the design model satisfies the
Security Design Requirement.

Our method involves six steps (Fig. 6).

１.	
 In consideration of the functional requirements, Ex-SRPs
are used to identify the types of assets, threats, and
countermeasures present in the developing software.
Additionally, Ex-SRPs determine their associations at the
requirement level. Then test cases are set as Security
Requirements for the target process based on the
countermeasures.

２.	
 As an input model, a design class diagram, which does not
consider security, is used to execute tests on USE via the
Security Test Template that prepared each Ex-SRP
"countermeasure". At this point, it must be confirmed that
the input model does not satisfy the Security Requirement;
that is, the vulnerabilities to the threat identified at the
requirement stage can be detected.

３.	
 Ex-SDPs related to the “countermeasures” of Ex-SRP are
selected.

４.	
 Then Ex-SDPs are applied. Specifically, the "Structure" of
Ex-SDPs is applied to the input model that does not
consider security.

５.	
 Tests are executed in USE using the Security Design Test
Template to validate the appropriateness of each Ex-SDP;
that is, whether the Security Design Requirements are
satisfied is confirmed.

６.	
 Finally, tests are re-executed using the Security Test
Template to validate whether the applied patterns satisfy
the Security Requirement; that is, whether the
vulnerabilities to the threats identified at the requirement
stage are resolved is determined. If the results of security
test returns true, the process is complete.

B. Examples of Ex-SRP and Ex-SDP
In addition to explaining Ex-SRP and Ex-SDP concretely,

we describe how the model uses these extended patterns to
satisfy the Security Requirement and the Security Design
Requirement. Expansion details are described as examples of

Extended SDP

・Security Design Test Template

・Context
・Problem
・Solution
・Structure
・Security Design Requirement

Extended SRP
・Context
・Problem
・Solution
・Structure

MASG model
・Asset
・Threat
・Countermeasure

・Consequences

- Security Requirement

１

＊

Ex SRP

Ex SDP

- Security Test Template

the “I&A” and “Password Design and Use” countermeasures
for Ex-SRP and Ex-SDP, respectively.

1) I&A

TABLE I. Security Requirement of I&A

Figure 8. Security Requirement of I&A (OCL)

Table I and Fig. 8 show the Security Requirement of I&A,
which is only actors who are regular users can execute
processes that require I&A. Table I is in list form, while Fig. 8
is an OCL statement of this concept. Figure 9 shows an
example of the Security Test Template for model testing. In
USE, a developer can create an instance of a class, and input a
value as a test case. This template allows input models, which
do not consider security, to be tested and the OCL statement in
Fig. 8 to be evaluated.

Figure 9. Example of a Security Test Template

 In the I&A security test, two conditions (“regular user”
and “non-regular user”) are used to validate whether an actor
can execute a process. If a model does not satisfy this Security
Requirement, then the I&A measure for the vulnerabilities is

improperly considered, and the system may be vulnerable to
threats.

2) Password Design and Use pattern

Figure 10 shows the structure and behavior for a potential
“Problem”. Although “subject_function” of
“Subject_Controller” is a required I&A function, illegal
situations where a non-regular user can access assets without
the certification process exist. Thus, the structure and behavior
in Fig. 10 do not satisfy the Security Requirement in Table I
and Fig. 8.

Figure 10. Structure and behavior (not satisfying the I&A Security Requirement)

Figure 11. Structure of Password Design and Use

Figure 12. Behavior of Password Design and Use

1 2
Conditions regular user Yes No

Actions

execute process that
requires I&A ×

Actions
not execute process that
requires I&A ×

context subject_controller
 inv Security Requirement :
 if self.UI.actor.regular_user = true then
 self.subject_function = true
 else
 self.subject_function = false
 endif

----------Create instances
!create Actor_1 : Actor
!create UI : UI
!create Subject_function : Subject_function
!create entity_1 : entity

--------- Insert associations
!insert (Actor_1, UI) into assignedTo

--------- Set Test Case
!set Actor_1.name := ‘XXXX’
!set Actor_1.regular_user := true
!set entity_1.attribute := y

--------- Execute Method
!openter Subject_function subject_function()

・
・

・
・

・
・

part of security test template

subject_function

<<control>>
Subject_Controller

<<boundary>>
UI

<<entity>>
asset_1

<<entity>>
asset_3

<<entity>>
asset_2

Actor
reqular_user = true

reqular_user = false

<<boundary>>

UI

check_identification

<<password_design_and_use>>
password_design_and_use

<<UserData>>
UserData

<<entity>>
entity_3<<entity>>

entity_1
<<entity>>
entity_2

<<Login_UI>>

Login UI

entity

control

boundary

<<control>>
Subject_Control

subject_function

use

Actor

Figures 11 and 12 satisfy the Security Requirement in Table
I and Fig. 8. In the Password Design and Use pattern,
stereotypes, such as <<Login_UI>>, <<Password_Design_
And_Use>>, and <<UserData>>, are elements of the pattern.
Thus, “Subject Controller” employs <<Password_Design
_And_Use>>, which is part of the I&A function. In this
scenario, if an actor is a non-regular user, USE outputs an error,
and the actor is unable to execute processes requiring I&A.
This security capability is realized because the model applies
patterns that satisfy the Security Design Requirement (SDR).

TABLE II. SDR of Password Design and Use pattern

Figure 13. SDR of Password Design and Use pattern (OCL)

Table II and Fig. 13 show the Security Design Requirement
of the Password Design and Use pattern in list and OCL
statement form, respectively., The Password Design and Use
pattern stipulates that the ID and password inputted in
<<Login_UI>> must exist in <<User_Data>> in order for an
actor to be considered a regular user, who can execute
processes requiring I&A. This condition of the Security Design
Requirement satisfies the Security Requirement of I&A in
Table I and Fig. 8. In other words, if patterns are applied
appropriately, then the output model will simultaneously satisfy
the Security Design Requirement and the Security Requirement.

Figure 14 shows the Security Design Test Template, which
was prepared in USE, used to evaluate whether the output
model satisfies the Security Design Requirement shown in Fig.
13. Using an OCL statement to describe the Security
Requirement and the Security Design Requirement can
simultaneously validate both requirements. The former
confirms the pattern is appropriately applied, while the latter
determines the presence of vulnerabilities.

Figure 14. Example of the Security Design Test Template

C. Example of the Validation Process
Here we apply our method to a purchasing system on the

Web as an example validation process. We initially identified
and modeled the assets, threats, and countermeasures in the
system by referring to the Ex-SRPs of the requirement called
"the commercial transaction on the Web". Next we executed
tests of the input model in USE to validate whether
vulnerabilities to threats identified by Ex-SRPs are detected.
After confirming that these vulnerabilities really exist in the
input model, we applied Ex-SDPs. Finally, we re-executed the
tests to confirm that the vulnerabilities are resolved due to an
appropriate pattern application.

Step 1: The example validation process assumed that the
MASG model in Fig. 1 is used and the task of security measure
for the “make a payment” process in Fig. 4 is performed.
“I&A”, “Input Data and Validation”, and “Access Control” are
countermeasures for “Spoofing”, “Privilege Exploitation”, and
“SQL Injection” in the “make a payment” process, respectively.
Then by referencing the Security Requirement used for each
Ex-SRP countermeasure, the set for the Security Requirement
should be satisfied in the “make a payment” process. Table III
and Fig. 15 show the Security Requirement for the “make a
payment” process.

For the “make a payment” process, valid data must be
inputted for a regular user to have permission to execute the
“make a payment process”, which is a combination of multiple
Security Requirements: “I&A”, “Input Data and Validation”,
and “Access Control”. These requirements represent test cases
in the TDD process.

1 2

Conditions
the same ID and Password that are
inputted into “Login_UI” exist in
"User_Data”,

Yes No

Actions

consider regular user ×

Actions
consider non-regular user ×

Actions
execute process that requires I&A ×

Actions

not execute process that requires I&A ×

context subject_controller
 inv check_id_and_pass:
 if self.password_design_and_use.User_Data->exists(p |
 p.id = self. password_design_and_use.Login_UI.id and
 p.pass = self. password_design_and_use.Login_UI.pass)
 then
 self.UI.actor.regular_user = true and self.subject_function = true
 else
 self.UI.actor.regular_user = false and self.subject_function = false
 endif

----------Create instances
!create Actor_1 : Actor
!create UI : UI
!create Subject_function : Subject_function

!create Login_UI : Login_UI
!create password_design_and_use : password_design_and_use
!create User_Data : User_Data

--------- Insert associations
!insert (Actor_1, UI) into assignedTo

--------- Set Test Case
!set Actor_1.name := XXXX

!set Login_UI.id := z
!set Login_UI.pass := ‘xxxxxx’

!set User_Data.id := z
!set User_Data.pass := ‘xxxxxx’
!set User_Data.name := ‘XXXX’

--------- Execute Method
!openter password_design_and_use check_identification()
!openter Subject_function subject_function()

・

・
・

・
・

part of security design test template

・
・

TABLE III. Security Requirements for the “make a payment” process

Figure 15. Security Requirements for the “make a payment” process (OCL)

Step 2: We executed a model test on USE using the
Security Test Template to determine whether the input model
that does not consider security satisfies the Security
Requirements in Fig. 15. If the Security Requirement is not
satisfied, then the appropriate countermeasures are not taken,
and the threats identified using Ex-SRP are possible. Table IV
shows the results.

Figure 16. Conditions of the Security Test in USE

TABLE IV. Results of the Security Test

Figure 16 shows a case where “regular user”, “have access

permission”, and “use valid input data” are all false (test case 8,
Table IV). Because the input model lacks object constraints, an
actor may carry out “make_a_payment = true”; that is, an actor
can execute the “make a payment” process without being a
regular user or permission. Hence, the input model not
considering security does not satisfy the Security Requirement
of the “make a payment” process, and the evaluation of OCL
on USE becomes "false" in Fig. 16. Table IV shows the results
of the eight test cases where only case 1 satisfies the Security
Requirements in Table III and Fig. 15. In this way,
countermeasures “I&A”, “Input Data and Validation”, and
“Access Control” are confirmed necessary.

Step 3: We selected Ex-SDP related to the countermeasures
of Ex-SRP to add the structure and behavior with security
capabilities. In this example, we used the Ex-SDPs shown in
Fig. 17.

Figure 17. Selected Ex-SDPs

Step 4: We apply these Ex-SDPs, i.e. “Password Design
and Use", "RBAC”, and "Prevent SQL Injection". Figure 18
shows the structure after applying the pattern to an input model.
During pattern application, we bind the pattern elements with a
stereotype similar to that shown in Fig. 18.

Figure 18. Structure used to apply patterns

 Step 5: To validate whether patterns are applied
appropriately to the “make a payment” process, the Security
Design Requirement of the “make a payment” process must be
validated. Table V and Fig. 19 show the Security Design
Requirements of the “make a payment” process.

1 2 3 4 5 6 7 8

Conditions

regular user Yes Yes Yes Yes No No No No
Conditions have access permission Yes Yes No No Yes Yes No NoConditions

use valid input data Yes No Yes No Yes No Yes No

Actions

execute “make a
payment” process ×

Actions
not execute “make a
payment” process × × × × × × ×

context payment_controller
 inv SecurityRequirement :
 if self.payment_UI.User.regular_user = true and
 self.payment_UI.User.right = true and
 self.payment_UI.valid_input_data = true then
 self.make_a_payment = true
 else
 self.make_a_payment = false
 endif! !

1 2 3 4 5 6 7 8

Conditions

regular user Yes Yes Yes Yes No No No No
Conditions have access permission Yes Yes No No Yes Yes No NoConditions

use valid input data Yes No Yes No Yes No Yes No

Actions

execute “make a
payment” process × × × × × × × ×

Actions
not execute “make a
payment” process

Countermeasure Ex SDP
I&A Password Design and Use

Access Control RBAC (Role-Based Access Control)

Input and Data Validation Prevent SQL Injection

make_a_payment

<<control>>
Payment_Control

<<boundary>>

payment_UI

check_identification

<<Password_Design_And_Use>>

password_design_and_use

<UserData>

User_Data
<<entity>>

Payment_info

<<entity>>
Product

<<Login_UI>>

Login UI

access_control

<<RBAC>>

RBAC

<Role>

Role

<Right>

Right

boundary

control

entity

<<Prevent_SQL_Injection>>
prevent_SQL_Injection

sanitize_input_data
use

use

use

Actor

TABLE V. Security Design Requirements for the “make a payment”
process

Figure 19. Security Design Requirements of “make a payment” (OCL)

To validate whether the model shown in Fig. 18 satisfies
the Security Design Requirements in Fig. 19, we executed
model tests in USE using the Security Design Test Template.

Figure 20 shows the conditions of the Security Design Test in
USE.

Figure 20. Conditions of the Security Design Test in USE

Figure 20 shows a case where the inputted ID and Password
into <<Login_UI>> exists in <<User_Data>>, but access
permission is not given for the “Role” of the actor and the
system does not sanitize the “UI” input data (case 4, Table V).
Prior to applying patterns, an actor can execute the “make a
payment” process, even if the actor does not have permission
or inputs invalid data because USE outputs “make_a_payment
= true”. After patterns are applied, USE outputs "make a
payment = false" and the actor cannot execute the
“make_a_payment” process because access permission is not
specified in “Role” and the system assumes invalid data is used
in “UI”. By executing all the test cases, we confirm that the
output model after a pattern application satisfies the Security
Design Requirements for the “make a payment” process.

 Step 6: Finally we re-executed the Security Test to validate
that the output model with a pattern application satisfies both
the Security Design Requirement and the Security
Requirement. If it satisfies the Security Requirement, then the
countermeasures appropriately resolve vulnerabilities in the
“make a payment” process.

To summarize, we applied Ex-SDPs for the
“make_a_payment” process that required “I&A”, “Input Data
and Validation”, and “Access Control”, and executed a model
test in USE. The Security Test confirmed that the initial input
model did not satisfy the Security Requirement of the “make a
payment” process. Then the Security Design Test evaluated
whether the output model applied patterns to satisfy the
Security Design Requirement of the “make a payment” process.
Finally, the Security Test was re-executed to verify that the
revised model applied patterns to satisfy the Security
Requirement. In this manner, the appropriate application of
security design patterns and the existence of vulnerabilities to
threats identified at a requirements stage before and after
pattern application could be validated.

D. Limitations
Our method has a few limitations. Because tests are

executed based on threats and countermeasures identified in the
requirement stage, the presence of threats not identified in the

1 2 3 4 5 6 7 8

Conditions

the same ID and Password that are
inputted into “Login_UI” exist in
"User_Data”,

Yes Yes Yes Yes No No No No

Conditions access permission is given in “Role” to
which an actor belongs Yes Yes No No Yes Yes No No

Conditions

sanitize input data in UI Yes No Yes No Yes No Yes No

Actions

consider regular user � � � �

Actions

consider non-regular user � � � �

Actions

considers that an actor have access
permission � � � �

Actions
consider that an actor does not have
access permission � � � �

Actions

consider that valid input data is used � � � �
Actions

consider that invalid input data is used � � � �

Actions

execute “make a payment” process �

Actions

not execute “make a payment” process � � � � � � �

context payment_controller
 inv check_id_and_pass:
 if self.password_design_and_use.User_Data->exists(p |
 p.id = self.password_design_and_use.Login_UI.id and
 p.pass = self.password_design_and_use.Login_UI.pass)
 then
! self.Payment_UI.actor.regular_user = true
 else
! self.Payment_UI.actor.regular_user = false
 endif

context payment_controller
 inv access_control:
 if self.RBAC.Right->exists(p |
 p.right = true and
 p.role_id = p.Role.id and
 p.role_id = p.Role.User_Data.role_id)
 then
! self.Payment_UI.actor.right = true
 else
! self.Payment_UI.actor.right = false
 endif

context payment_controller
 inv sanitize_input_data_payment_UI:
 if self.Payment_UI.Prevent_SQL_Injection.sanitize_input_data = true
 then
 self.Payment_UI.valid_input_data = true
 else
! self.Payment_UI.valid_input_data = false
 endif

context payment_controller
 inv sanitize_input_data_login_UI:
 if self.password_design_and_use.Login_UI.Prevent_SQL_Injection.sanitize_input_data = true
 then
 self.password_design_and_use.Login_UI.valid_input_data = true
 else
! self.password_design_and_use.Login_UI.valid_input_data = false
 endif

context payment_controller
 inv security design requirement:
 if self.Payment_UI.actor.regular_user = true and
 self.Payment_UI.actor.right = true and
 self.Payment_UI.valid_input_data = true and
 self.password_design_and_use.Login_UI.valid_input_data = true
 then
 self.make_a_payment = true
 else
! self.make_a_payment = false
 endif

+makeReservation(StaingDate : Date) boolean

<<control>>
Reservation_Process

<<boundary>>

Reservation_UI

+checkin(roomNumber : String) :boolean

<<control>>
check_in_Process

<<entity>>
Room

<<boundary>>

check_in_UI

Actor

+inputStaingDate(StingDate: Date):void
+show reservation number ():void

+inputReservationNumber(resevationNum: String):void
+show room number():void()

+ createReservation(StaingDate : Date) String
+ deleteReservation(roomNumber : String) : void

<<control>>
Reservation_Management

+ updateRoomAvailableQty(Date : Date) : String
+ assignCustomer() : String
+ removeCustomer(roomNumber : String) : void

<<control>>
Room_Management

- roomAvailableQty : int
- roomNumber: String
- status : int

<<entity>>
Reservation

- statingDate : Date
- Reservation: String
- status : int
- identification_num; int

<<Login_UI>>

Login UI

use

<<User_Data>>
User

- name : Date
- email: String

sanitize_input_data

<< prevent_SQL_Injection >>
prevent_SQL_Injection

 - email
 - identification_num

<< password_design_and_use >>
password_design_and_use

check_identification
use

requirement stage cannot be verified. In addition, the criterion
for Ex-SDP, which belongs to the countermeasures (e.g., to
realize the I&A function, we considered which patterns to
employ, such as “Password Design and Use”, “Biometrics”, or
“PKI”), may be out of range because the range is influenced by
the security policy, platform, and risk analysis.

IV. CASE STUDY AND DISCUSSION
Here we apply our method to a check-in system for a hotel

as a case study and to evaluate RQ1 and RQ2. This system is
treated with the NII/TopSE project "aspect oriented lecture"
[18]. After referencing the Ex-SRP, we identified the threats to
the check-in process (“Spoofing” and “SQL Injection”) and
assumed that “I&A” and “Input and Data Validation” are
effective countermeasures. In other words, when an actor
check-ins from the check-in screen, the system does not have a
function to determine whether an actor previously reserved a
room or if the inputted data is valid. Figure 21 shows the
design class diagram that does not consider security as the
input model, while Fig. 22 shows the Security Requirements
that should be satisfied during the check-in process, which are
a combination of “I&A” and “Input Data and Validation”.

Figure 21. Class Diagram for a hotel check-in process (not considering security)

Figure 22. Security Requirement of for the check-in process (OCL)

We then validated whether the input model satisfies the
Security Requirements of the check-in function and whether
the vulnerabilities are resolved upon applying patterns in USE.
After confirming that the input model does not satisfy the
Security Requirement, we applied "Password Design and Use"
and "Prevent SQL Injection" as Ex-SDPs. Figure 23 shows the
structure of the applied patterns in this input model.

Figure 23. Structure that applied patterns

The applied patterns in this model realize an “I&A”
function, allowing the actor to input <<email>> and
<<identification_num>> in <<Login_UI>>. In addition, this
model realizes an "Input Data and Validation" function via a
sanitizing process, <<Check_in_UI>> and <<Login_UI>>. To
confirm whether the structure and behavior of the applied
patterns operate appropriately, we validated the Security
Design Requirement of the check-in process using model tests.
Table VI shows the Security Design Requirements of the
check-in process.

TABLE VI. Security Design Requirements of the check-in process

We executed model tests (Security Design Test) for the four
test cases in Table VI. The model after the pattern application
satisfies the Security Design Requirement in Fig. 22, validating
the appropriateness of the pattern application. Thus, the
proposed method answers RQ1.

+makeReservation(StaingDate : Date) boolean

<<control>>
Reservation_Process

<<boundary>>

Reservation_UI

+checkin(roomNumber : String) :boolean

<<control>>
check_in_Process

<<entity>>
Room

<<boundary>>

check_in_UI

Actor

+inputStaingDate(StingDate: Date):void
+show reservation number ():void

+inputReservationNumber(resevationNum: String):void
+show room number():void()

+ createReservation(StaingDate : Date) String
+ deleteReservation(roomNumber : String) : void

<<control>>
Reservation_Management

+ updateRoomAvailableQty(Date : Date) : String
+ assignCustomer() : String
+ removeCustomer(roomNumber : String) : void

<<control>>
Room_Management

- roomAvailableQty : int
- roomNumber: String
- status : int

<<entity>>
Reservation

- statingDate : Date
- Reservation: String
- status : int

<<entity>>
User

- name : Date
- email: String

context check_in_Process
 inv SecurityRequirement :
 if self.payment_UI.User.regular_user = true and
 self.payment_UI.valid_input_data = true then
 self.chckIn = true
 else
 self.chckIn = false
 endif! !

1 2 3 4

Conditions

“email” and “����
����
�	�����
 that
are inputed into “Login UI” exist in “User
Data” and “Reservation”

Yes Yes No No
Conditions

sanitize input data in UI Yes No Yes No

Actions

consider regular user � �

Actions

consider non-regular user � �

Actions
consider that valid input data is used � �

Actions
consider that invalid input data is used � �

Actions

execute “check-in” process �

Actions

not execute “check-in” process � � �

Finally we validated whether the model after pattern
application satisfies the Security Requirements of the check-in
process via model testing (Security Test). The retest confirmed
that the application is successful because the Security Design
Requirement and the Security Requirement are simultaneously
satisfied. Consequently, the Security Test validated the
existence of vulnerabilities identified in the requirement stage
before and after pattern application. Thus, the proposed method
answers RQ2.

V. THREATS TO VALIDITY
A. Threats to internal validity

Herein patterns were prepared and then subsequently
applied to the model. Although a test template may eliminate
human dependency, the effectiveness of the template should be
confirmed when employed by a developer unfamiliar with our
method.

B. Threats to external validity
We did not verify whether our method is applicable to any

type of model. Although we used representative patterns and a
typical model for software development, we should confirm
that our method applies patterns to more general examples.

VI. CONCLUSION AND FUTURE WORK
If a software developer is not a security expert, patterns

may be inappropriately applied. Even if patterns are properly
applied, threats and vulnerabilities may not be mitigated or
resolved. Herein we propose a validation method for a security
design pattern using a model test in the UML model simulation
environment. Specifically, assets, threats, and countermeasures
are identified in the target system during an early stage of
development. We validated the appropriate application of the
pattern and the existence of vulnerabilities that are identified in
the first stage of the design model.

This method offers two significant contributions. First, Ex-
SRP and Ex-SDP, which are new extended security patterns
that include both requirement- and design-level patterns, are
combined to realize validation via model tests. Second, a new
model testing process using these extended patterns is proposed.
In the future, we intend to develop a test execution that is
independent of the USE model description language. Although
we prepared the test execution templates to handle USE,
automatic transformation from a model would realize a
smoother test.

REFERENCES
[1] N.Yoshioka, H.Washizaki, K.Maruyama “ A Survey on Security

Patterns”, Progress in Informatics, No.5, pp. 35-47. 2008

[2] M.Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson, Frank
Buschmann, Peter Sommerlad. “SECURITY PATTERNS”. Wikey.
2006

[3] T. Heyman, K. Yskout, R. Scandariato, and W. Joosen, “An analysis of

the security patterns landscape,” in Proceedings of the Third
International Workshop on Software Engineering for Secure Systems,
ser. SESS ’07. IEEE Computer Society, 2007, pp. 3–.

[4] OMG,	
 Unified Modeling Language (UML).	
 http://www.uml.org/

[5] Jan Jurijens “Secure Systems Development with UML” 2004,Springer.

[6] Y.Torsten Lodderstedt David A. Basin Jürgen Doser “SecureUML: A

UML-Based Modeling Language for Model-Driven Security” 2002

[7] T.Okubo, H.Kaiya, N.Yoshikawa Effective Security Impact

Analysis with Patterns for SoftwareEnhancement 	
 IJSSE
3(1): 37-61 (2012)

[8] T.Okubo, K.taguch, N.Yoshioka Misuse Cases + Assets + Security

Goals International Conference on Computational Science and
Engineering 2009.

[9] Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements

by misuse cases. In TOOLS (37), pages 120–131. IEEE Computer
Society, 2000.

[10] T. Peng, J. Dong, and Y. Zhao, “Verifying Behavioral Correctness of

Design Pattern Implementation,” Proceedings of the Twentieth
International Conference on Software Engineering & Knowledge
Engineering (SEKE'2008)

[11] Arnon Sturm, Jenny Abramov, Peretz Shoval Validating and

Implementing Security Patterns for Database Applications SPAQu ’09
2009

[12] Heejin Kim, Byoungju Choi, Seokjin Yoon “Performance

testing based on test-driven development for mobile
applications” ICUIMC '09:

[13] Steven Fraser, Dave Astels, Kent Beck, Barry Boehm, John

McGregor, James Newkirk, Charlie Poole”Discipline and
practices of TDD (test driven development)” OOPSLA '03:

[14] USE http://www.db.informatik.uni-bremen.de/projects/USE/index.html

[15] Jos. Warmer, Annke Kleppe "The Object Constraint Language - Precise

Modeling with UML" Addison-Wesley, 1999

[16] M. Howard and S. Lipner, The Security Development Lifecy-cle.

Microsoft, 2006.

[17] Web Application Security Frame

http://msdn.microsoft.com/en-us/library/ms978518

[18] NII/TopSE project "aspect oriented lecture" http://topse.jp

