
AOJS: Aspect-Oriented JavaScript Programming
Framework for Web Development

Hironori Washizaki,Atsuto Kubo,Tomohiko Mizumachi,Kazuki Eguchi,Yoshiaki Fukazawa
Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, Japan

washizaki@waseda.jp, {a.kubo, t.mizu, wirbelwind, fukazawa}@fuka.info.waseda.ac.jp

Nobukazu Yoshioka, Hideyuki Kanuka, Toshihiro Kodaka
National Institute of Infomatics, Hitachi, Ltd., Fujitsu Laboratories ltd.

nobukazu@nii.ac.jp, hideyuki.kanuka.dv@hitachi.com, tkodaka@jp.fujitsu.com

Nobuhide Sugimoto, Yoichi Nagai, Rieko Yamamoto
Toshiba Solutions Corporation, NEC Corporation, Fujitsu Laboratories ltd.

sugimoto.nobuhide@toshiba-sol.co.jp, y-nagai@bc.jp.nec.com, r.yamamoto@jp.fujitsu.com

ABSTRACT
JavaScript is a popular scripting language that is particu-
larly useful for client-side programming together with HTML
/XML on the Web. As JavaScript programs become more
complex and large, separation of concerns at the imple-
mentation level is a signi�cant challenge. Aspect orien-
tation has been a well known concept to realize improved
separation; however, existing mechanisms require modi�ca-
tions in the target modules for aspect weaving in JavaScript
(i.e., not "complete" separation). In this paper, we propose
an Aspect-Oriented JavaScript framework, named "AOJS",
which realizes the complete separation of aspects and other
core modules in JavaScript. AOJS can specify function
executions, variable assignments and �le initializations in
JavaScript programs as the joinpoints of aspects. More-
over, AOJS guarantees the complete separation of aspects
and core program modules by adopting a proxy-based ar-
chitecture for aspect weaving. By utilizing these features,
we con�rmed that AOJS o�ers improved modi�ability and
extendability for JavaScript programming.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design; D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms
Design, Languages

Keywords
Aspect-Oriented Programming, JavaScript, Web Develop-
ment, Separation of Concerns, AOJS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACP4IS’09,March 2, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-453-9/09/03 ...$5.00.

1. INTRODUCTION
Web servers and corresponding application servers are

the common infrastructures for business services, govern-
ment/public services and community services. To enhance
the usability of the service applications or realize the rich-
client applications mainly on the web, the client-side scripts
have been widely accepted because the scripts are processed
on each client (usually web browser) independently from the
corresponding web servers.
JavaScript (ECMAScript[1]) is a popular scripting lan-

guage that is particularly useful for client-side program-
ming together with HTML/XML on the Web. In JavaScript
programming, there are many concerns that cannot be en-
capsulated and separated into independent modules due to
the limitation of JavaScript's modularization mechanism.
Such crosscutting concerns in JavaScript include both of
conventional (language independent) concerns such as log-
ging, and language speci�c ones such as Ajax (asynchronous
JavaScript and XML)-based functions.
For example, when conducting a beta-test (informal ac-

ceptance test) of a typical web application with JavaScript
program, it might be necessary to log all value changes of
speci�c variables in script �les used on multiple web pages,
and send each log to remote sever at runtime by asynchronous
communications because of variety of web client environ-
ments such as browsers and OSs.
Embedding remote-logging function codes into each loca-

tion where variable assignments will take place is the tradi-
tional way for adding such logging to the original program.
However since such additional code scatters on many loca-
tions and tangle with other concerns' codes, the maintain-
ability of the program will decrease signi�cantly.
To solve the scattering and tangling problems in JavaScript

programming for the web client development, we propose an
Aspect-Oriented JavaScript programming framework, named
"AOJS", which realizes the complete separation of aspects
and other core modules in JavaScript. Below, we �rst intro-
duce several conventional frameworks and their problems.
Next we explain our new framework and how it solves these
problems. Finally, we report a result of experimental evalu-
ations and draw a conclusion from the result.

2. PROBLEMS IN CONVENTIONAL FRAME-
WORKS

To encapsulate and separate realizations of such crosscut-
ting concerns into independent modules, there are several
Aspect-Oriented Programming (AOP[2]) frameworks for JavaScript.
Conventional AOP frameworks for JavaScript can be di-

vided into two types: (a) weaving JavaScript codes as HTML
handlers to HTML elements that have speci�c id/name at-
tributes (such as Aspectjs[3] and Cerny.js[4]), and (b) weav-
ing JavaScript codes to JavaScript codes by using the JavaScript
language mechanism (such as Dojo[5], Ext JS[6], Yahoo! UI
library[7] and Google Ajaxpect[8]).
However there are several problems in conventional frame-

works:

• P1: Regarding all of conventional frameworks, it is
necessary to modify the target program to include ex-
tended library and/or describe aspects in itself. It
leads to incomplete separation between aspects (ad-
ditional codes and rules for weaving) and the target
programs.

• P2: None of conventional frameworks can ensure the
consistency between original programs and the ones
with aspects weaved. In other words, conventional
frameworks allow programmers to modify original JavaScript
programs after the programmers weave aspects into
the programs and deploy them on a Web server. Such
possibility of incompatibleness leads to the maintain-
ability and reliability problems.

• P3: None of conventional frameworks can specify the
location where variable assignments take place as join-
points for weaving JavaScript codes.

3. AOJS: ASPECT-ORIENTED JAVASCRIPT
PROGRAMMING FRAMEWORK

To solve the above-mentioned problems P1 ∼ P3 we pro-
pose AOJS in below. AOJS is based on the proxy architec-
ture for weaving aspects and the joinpoint model[9] for spec-
ifying program locations where the aspects will be weaved.

3.1 Proxy-based runtime weaving
AOJS realize the complete separation of aspects and tar-

get programs by the proxy-based runtime weaving. This de-
sign solves the problem P2 in addition to P1; AOJS always
ensures the consistency between programs and the ones with
aspects weaved by the proxy. Moreover the client does not
have to consider AOP nor the weaving process when request-
ing web pages with JavaScript programs; it is only necessary
to know the proxy's URL.
Figure 1 shows the architecture of AOJS. AOJS is realized

as a server that communicates with web clients that request
web pages via HTTP and web servers that store/provide
original web pages and JavaScript programs. AOJS server
consists of two parts: the reverse proxy for judging neces-
sity of weaving and redirecting requests/outputs, and the
weaver for weaving. We implemented the reverse proxy by
using Perl because of its simplicity for implementing such
proxy tool, and the weaver by using Java with JavaCC[10]
for parsing and modifying JavaScript programs.
Runtime behavior of AOJS is as follows:

1. The client requests web pages with JavaScript pro-
grams to the server via HTTP.

2. The reverse proxy fetches the target web pages with
JavaScript programs from the existing web server.

3. The reverse proxy passes the JavaScript programs to
the weaver. The weaver weaves JavaScript code frag-
ments (advices) into the appropriate locations (join-
points) in original JavaScript programs, and returns
the results to the reverse proxy. These advices and
joinpoints are speci�ed in the aspect �le in the XML
format.

4. The reverse proxy returns the web pages and the JavaScript
programs with aspects to the client.

5. The client runs the JavaScript programs in the web
pages.

Client Reverseproxy

Web server

Weaver

OriginalJavaScriptProgram Other files

Aspects including weaving rulesand advices (code fragments)
(1)

(2) (3)(5) (4)
AOJS server

Figure 1: Architecture of AOJS

3.2 Practical pointcuts
To solve the remaining problem P3, we design AOJS to

deal with the following pointcuts including the variable as-
signment:

• Variable assignments: AOJS allows programmers to
specify any variable assignment as a joinpoint by using
the pointcut <var>.

Figure 2 shows an example of the aspect �le using the
variable assignment pointcut targeting the Fibonacci
program shown in Figure 3. The fourth line (<var
varname="/�b_gen_1/ret">) in Figure 2 speci�es all
of assignment locations for the variable ret de�ned in
the function �b_gen_1 (the fourth line in Figure 3).
In AOJS, target variables can be speci�ed with their
scope hierarchies by using '/'. Since JavaScript is a
dynamic and weakly typed language, we designed the
variable assignment pointcut to specify target vari-
ables by variable names with the context hierarchy
(NOT using types).

• Function executions: AOJS allows programmers to
specify any function execution as a joinpoint by us-
ing the pointcut <function>.

For example, the 16th line in Figure 2 speci�es the
execution location of the function �b_gen_2 (the ex-
ecution raised by the 24th line in Figure 3).

� �
<?xml version="1.0" ?>
<aspectsetting>
<initializeFile>init.js</initializeFile>
<var varname="/�b_gen_1/ret">
<before><![CDATA[window.alert("/ret@before: " + ret
+ "
");]]></before>

<after><![CDATA[window.alert("/ret@after: " + ret
+ "
");]]></after>

</var>
<var varname= "/y">
<before><![CDATA[document.write("/y@before: " + y
+ "
");]]></before>

<after><![CDATA[document.write("/y@after: " + y
+ "
");]]></after>

</var>
<function functionname = "/�b_gen_2">
<before><![CDATA[var beg = (new Date()).getTime();]]>
</before>
<after><![CDATA[var end=(new Date()).getTime();
sendLog(__retvalue__ + ", " + (end - beg) + "ms");]]>
</after>
</function>
</aspectsetting>� �

Figure 2: Aspect �le in XML format

� �
var x = 0; var y = 1;
function �b_gen_1() {
var dummy, ret;
ret = x + y; x = y;
dummy = y = ret;
return ret;

}
var z = 1;
function �b_gen_2() {
function �b_2(x) {
if(x <= 0) { return 1; }
else if(x == 1) { return 1; }
else { return �b_2(x-1)+�b_2(x-2); }

}
return �b_2(z++);

}
function �b_1() {
var ret; ret = 100; y = 200;
for(var i = 0; i < 30; ++i)
document.form1.result.value = �b_gen_1();

}
function �b_2() {
for(var i = 0; i < 30; ++i)
document.form2.result.value = �b_gen_2();

}� �
Figure 3: Fibonacci calculation program in JavaScript (ex-
cerpt)

• Initializations: AOJS allows programmers to specify
the beginning part of the target JavaScript �le as a
joinpoint by using the pointcut <initializeFile>.

3.3 Aspects
AOJS allows programmers to write the before-advices (spec-

i�ed by <before> in Figure 2) and the after-advices (<af-
ter>) for any variable assignment and any function execu-
tion. Moreover, it is possible to weave any additional codes
into the location where the initialization pointcuts specify.

• The before-advice means the additional codes that will
run just before its corresponding joinpoint. For exam-
ple, the �fth line in Figure 2 speci�es that the follow-
ing statement ("window.alert(...)") will run before any
variable assignment of the variable ret.

• Similarly, the after-advice means the additional codes
that will run just after its corresponding joinpoint.

Finally, in AOJS, all of described pointcuts and advices
are encapsulated into an aspect �le in the form of XML, like
shown in Figure 2.

3.4 Weaving process
AOJS's weaver uses a code template (shown in Figure 4)

for code replacement. The template conducts the following
four steps:

1. Executes <before>

2. Executes <target>, and stores the return value of the
<target> expression into the temporal variable
__retvalue__

3. Executes <after>

4. Returns the value stored in __retvalue__

By using the code template, the weaving process consists
of the following two steps: Firstly, the weaver recognizes
all of program locations where the described pointcuts spec-
ify by parsing the target JavaScript program �les and aspect
�les. Secondly, for each location (joinpoint), the weaver gen-
erates the code for replacement based on the template, and
replaces the original code to the code for replacement.
Figure 5 shows the example of weaving when a variable

assignment has been speci�ed as a joinpoint, and Figure 6
shows that when a function execution has been speci�ed. In
each �gure, the code portion surrounded by the dashed line
will be replaced by the code for replacement based on the
template. These replacements add new behavior into the
target program while keeping the original functionality.� �

(function(){
<before>
var __retvalue__= <target>;
<after>
return __retvalue__;

}) ();� �
Figure 4: Code template

function fib_gen_1() {var dummy, ret;ret = x + y; x = y;dummy = y = ret;return ret;}
<var varname="/fib_gen_1/ret"><before><![CDATA[window.alert("/ret@before:"+ret+"
");]]></before><after><![CDATA[window.alert("/ret@after:"+ret+"
");]]></after></var>

Aspect

Target JavaScript program (function(){ window.alert("/ret@before: "+ ret + "
");var __retvalue__= ret = x + y;window.alert("/ret@after: "+ ret + "
");return __retvalue__;})();

Code for replacement based on the template

Joinpoint specification by using the pointcut

Figure 5: Weaving mechanism for variable assignment

document.form2.result.value = fib_gen_2();

<function functionname = "/fib_gen_2"><before><![CDATA[var beg = (new Date()).getTime();]]></before><after><![CDATA[var end = (new Date()).getTime();sendLog(__retvalue__ +", "+(end-beg)+ "ms");]]></after></function>

(function() {var beg=(new Date()).getTime();var __retvalue__ = fib_gen_2();var end=(new Date()).getTime();sendLog(__retvalue__ + ", "+ (end - beg) + "ms");return __retvalue__; })();Aspect

Target JavaScript program Code for replacement based on the template

Figure 6: Weaving mechanism for function execution

4. EXPERIMENTAL EVALUATIONS
We conducted some experimental evaluations regarding

the functionality and runtime performance of AOJS, under
the following environments:

• AOJS server: AMD Athlon 3500+，4GBMemory，De-
bian/GNU Linux 4.0r3，Apache 2.2.3，Squid 2.6

• Client: Intel Core2Duo U7500，2GBMemory，Ubuntu
Desktop 8.04

4.1 Functionality
To con�rm the functionality of AOJS, we conducted a sim-

ple experiment. We tried to add a remote logging function-
ality to the Fibonacci program (shown in Figure 3) without
any modi�cation on the original program.
This addition has been realized by only writing a small as-

pect shown in Figure 2, deploying the aspect on the AOJS
server and accessing to the AOJS server (instead of the orig-
inal web server). Figure 7 shows the time log �le obtained
remotely and asynchronously from a web client by accessing
to the AOJS server.
From this experiment, we con�rmed that AOJS enables

the complete separation between aspects and target origi-

nal JavaScript programs because the functionality addition
has been realized without any modi�cation on the target Fi-
bonacci program. Moreover, we con�rmed that AOJS has
enough ability to specify joinpoints including variable as-
signments.� �[Fri Jun 27 09:34:25 2008] [133.9.74.xx] 196418, 161ms[Fri Jun 27 09:34:25 2008] [133.9.74.xx] 317811, 266ms[Fri Jun 27 09:34:25 2008] [133.9.74.xx] 514229, 431ms[Fri Jun 27 09:34:26 2008] [133.9.74.xx] 832040, 694ms[Fri Jun 27 09:34:27 2008] [133.9.74.xx] 1346269, 1086ms� �
Figure 7: The time log �le obtained by executing the Fi-
bonacci calculation program with the logging aspect (ex-
cerpt)

4.2 Runtime performance and the revised ar-
chitecture

From the viewpoint of the practicality, the runtime per-
formance of the AOJS server is crucial because (a) good
response time is often required for typical web applications,
and (b) JavaScript programs are sometimes originally used
for improving the usability of the target applications; the
AOJS server should not decrease the runtime performance
signi�cantly.
To con�rm the runtime performance of AOJS, we mea-

sured the throughput and response time when obtaining
the web page containing the Fibonacci calculation program
with/without aspects. Table 1 shows the obtained perfor-
mance results when the Apache Benchmark Tool as the web
client requested the same page totally 105 times.
In Table 1, we con�rmed that the throughput and re-

sponse time of the case where the aspect has been weaved
decreased signi�cantly compared with the case where no as-
pect has been weaved. It is because the weaving process will
take place at each request time, and the process consumed
550ms for weaving the aspect to the Fibonacci program.
To solve this performance problem, we re-designed the ar-

chitecture of AOJS (shown in Figure 8) by adding a cache
proxy in front of the reverse proxy, and modifying the reverse
proxy to notify the recent update of aspects/pages/programs
to the cache proxy. We implemented the cache proxy by us-
ing Squid[11]. By using the cache proxy, the weaving process
takes place only at the �rst request time while the target web
pages, included JavaScript programs and aspects remain un-
changed.
As shown in Table 1, the runtime performance of AOJS

with the cache proxy improved signi�cantly; the through-
put and response time (median value) of the case where the
aspect has been weaved with the usage of the cache proxy
became almost the same values as those of the case where
no aspect has been weaved. Therefore it is con�rmed that
AOJS with the cache proxy can be used practically from the
viewpoint of the runtime performance. As our future work,
we will try to integrate the weaver to the web server and
compare its performance with the current proxy-based one.

5. RELATED WORK
Regarding JavaScript, there are several existing AOP frame-

works as mentioned in section 2, such as Aspectjs and Cerny.js.
However none of these frameworks can realize the complete

Table 1: Performance measurement results

Measurement No aspects and no cache proxy Aspect and no cashe proxy Aspect and the cash proxy
Throughput [times/sec] 1232 1.77 1327

Response time [median; msec] 0 560 1

Client Reverseproxy

Web serverOriginalJavaScriptProgram Other files

AOJS server
Cacheproxy WeaverAspects including weaving rulesand advices (code fragments)

Figure 8: Revised architecture with the cache proxy

separation, and specify the location where variable assign-
ments take place as joinpoints.
AjaxScope is a proxy-based approach for performing on-

the-�y instrumentation of JavaScript code[12]. It can rewrite
any JavaScript abstract syntax tree nodes by new instru-
mentation code such as the performance pro�ling. Its fun-
damental mechanism is very similar to our framework. How-
ever it is not an AOP framework; it is unclear how easy to
de�ne a new aspect (called "policy" in AjaxScope) corre-
sponding to programmers' concerns.
Regarding other languages for web development, Stamey

et al proposed an AOP environment for PHP language,
called AOPHP[13]. Although its mechanism of weaving as-
pect at the request time is similar to our framework, its
language target and possible joinpoints are di�erent from
our framework.

6. CONCLUSION AND FUTURE WORK
We built a new AOP framework for JavaScript program-

ming, called AOJS. AOJS are useful to modularize crosscut-
ting concerns in JavaScript programs, such as logging and
Ajax mechanisms. By adapting proxy-based architecture for
aspect weaving, AOJS guarantees the complete separation of
aspects and target programs; it leads to the consistency be-
tween programs and the ones with aspects weaved by AOJS.
It is also easy to weave/remove aspects at runtime by only
changing the URL for accessing. These features have not
been achieved by any conventional framework/research in
JavaScript.
As the result of experimental evaluations, we con�rmed

that AOJS enables the complete separation of aspects and
target programs, and has enough ability to specify joinpoints
including variable assignments. Moreover, it is possible to
improve runtime performance by adding the cash proxy.
As our future works, we have a plan to extend AOJS to

cover other joinpoints (such as function calls), and to deal
with the around advice[9]. Moreover we will evaluate the
usefulness of AOJS for larger-scale web-based applications.

Acknowledgement
This research is partially supported by Joint Forum for Strate-
gic Software Research (SSR) of International Information
Science Foundation (IISF) and GRACE Center of National
Institute of Informatics (NII). Our thanks go to the anony-
mous reviewers for their valuable comments.

7. REFERENCES
[1] ISO/IEC 16262:2002, Information technology -

ECMAScript language speci�cation, 2002.

[2] Gregor Kiczales, John Lamping, Anurag Menhdhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier and
John Irwin: Aspect-oriented programming, Proc.
European Conference on Object-Oriented Programming
(ECOOP), pp.220�242, 1997.

[3] LECACHEUR Sebastien: Aspectjs,
http://zer0.free.fr/aspectjs/

[4] Robert Cerny: Cerny.js,
http://www.cerny-online.com/cerny.js

[5] The Dojo Foundation: The Dojo Toolkit,
http://dojotoolkit.org/

[6] Ext, LLC: Ext JS: Cross-Browser Rich Internet
Application Framework, http://extjs.com/

[7] Yahoo! Inc.: The Yahoo! User Interface Library (YUI),
http://developer.yahoo.com/yui/

[8] Google: Ajaxpect: Aspect-Oriented Programming for
Ajax, http://code.google.com/p/ajaxpect/

[9] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Je�rey Palm and William G. Griswold: An
Overview of AspectJ, Proc. European Conference on
Object-Oriented Programming (ECOOP), pp.327�353,
2001.

[10] Java Compiler Compiler (JavaCC) - The Java Parser
Generator, https://javacc.dev.java.net/

[11] Squid: Optimising Web Delivery,
http://www.squid-cache.org/

[12] Emre Kiciman and Benjamin Livshits: AjaxScope: a
platform for remotely monitoring the client-side
behavior of web 2.0 applications, Proc. 21st ACM
SIGOPS Symposium on Operating Systems Principles,
pp.17�30, 2007.

[13] John Stamey, Bryan Saunders and Simon Blanchard:
The aspect-oriented web, Proc. 23rd Annual
International Conference on Design of Communication:
Documenting & Designing for Pervasive Information,
pp.89�95, 2005.

