
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

AOJS: Aspect-Oriented JavaScript
Programming Framework 1

Hironori Washizaki, Atsuto Kubo, Tomohiko Mizumachi,
Kazuki Eguchi, Yoshiaki Fukazawa2

Dept. Computer Science and Engineering, Waseda University
3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan

Nobukazu Yoshioka, Hideyuki Kanuka, Toshihiro Kodaka,
Nobuhide Sugimoto, Yoichi Nagai, and Rieko Yamamoto

National Institute of Infomatics, Hitachi, Ltd., Fujitsu Laboratories ltd.,
Toshiba Solutions Corporation, NEC Corporation, and Fujitsu Laboratories ltd.

JavaScript (ECMAScript[1]) is a popular scripting language that is particularly
useful for client-side programming together with HTML/XML on the Web. In
JavaScript programming, there are many concerns (such as logging and Ajax-based
functions) that cannot be encapsulated and separated into independent modules due
to the limitation of JavaScript’s modularization mechanism. For example, when
conducting a beta-test of a typical web application with JavaScript program, it
might be necessary to log all value changes of specific variables and send each log to
remote sever at runtime because of variety of web client environments. Embedding
remote-logging function codes into each location where variable substitutions will
take place is the traditional way for realizing such logging function; however since the
additional codes scatters and tangle with other concerns’ codes, the maintainability
of the program will decrease significantly.

To encapsulate and separate realizations of such crosscutting concerns into inde-
pendent modules, there are several Aspect-Oriented Programming (AOP[2]) frame-
works for JavaScript, such as Aspectjs[3] and Google Ajaxpect[4]. However, regard-
ing all of conventional frameworks, it is necessary to modify the target program to
include extended library and/or describe aspects in itself. Moreover none of conven-
tional frameworks can specify the location where variable substitutions take place
as joinpoints for weaving JavaScript codes.

1 This paper has been accepted for demonstration at AOSD 2009. The extended content is under review
for 8th AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software.
2 Contact to Hironori Washizaki, Email: washizaki@waseda.jp

c⃝2009 Published by Elsevier Science B. V.

Washizaki

To solves these problems, we propose an Aspect-Oriented JavaScript program-
ming framework, named ”AOJS”. AOJS is based on the proxy architecture for
weaving aspects and the joinpoint model[5] for specifying program locations where
the aspects will be weaved.

Firstly, AOJS realize the complete separation of aspects and target programs by
the proxy-based runtime weaving. This design leads to the fact that AOJS always
ensures the consistency between programs and the ones with aspects weaved by the
proxy. Moreover the client does not have to consider AOP nor the weaving process
when requesting web pages with JavaScript programs; it is only necessary to know
the proxy’s URL. Therefore it is easy to weave/remove aspects at runtime by only
changing the URL for accessing. Figure 1(a) shows the architecture of AOJS. AOJS
is realized as a server that communicates with web clients that request web pages
via HTTP and web servers that store/provide original web pages and JavaScript
programs. AOJS server consists of two parts: the reverse proxy for judging necessity
of weaving and redirecting requests/outputs, and the weaver for weaving.

Secondly, AOJS allows programmers to specify any variable substitution, func-
tion execution and file initilization as a joinpoint by using corresponding pointcuts:
<var>, <function> and <initializeFile> written in an aspect file in the form of
XML. For the specified joinpoints, AOJS can weave both of before and after advices
that will be performed before/after the target joinpoint’s execution. Figure 1(b)
shows the example of weaving when a variable substitution has been specified as
a joinpoint. In the figure, the code portion surrounded by the dashed line will be
replaced by the code for replacement based on the template. These replacements
add new behavior into the target program while keeping the original functionality.

We conducted some experimental evaluations regarding the functionality and
runtime performance of AOJS, and confirmed that AOJS has enough ability to
specify joinpoints including variable substitutions. Moreover, we also confirmed the
runtime performance can be improved to a practical level by adding a cash proxy
in front of the reverse proxy.

Client Reverseproxy

Web server

Weaver

OriginalJavaScirptPrograms Other files

Aspects including weaving rulesand advices (code fragments)
(1)

(2) (3)(5) (4)
AOJS server function fib_gen_1() {var dummy, ret;ret = x + y; x = y;dummy = y = ret;return ret;}

<var varname="/fib_gen_1/ret"><before><![CDATA[window.alert("/ret@before: "+ ret+"
");]]></before><after><![CDATA[window.alert("/ret@after: " + ret + "
");]]></after></var>
Aspect

Target JavaScirpt program (function(){ window.alert("/ret@before: "+ ret + "
");var __retvalue__= ret = x + y;window.alert("/ret@after: "+ ret + "
");return __retvalue__;})();
(function(){ window.alert("/ret@before: "+ ret + "
");var __retvalue__= ret = x + y;window.alert("/ret@after: "+ ret + "
");return __retvalue__;})();
Code for replacement based on the template

Joinpoint specification by using the pointcut

Fig. 1. (a) Architecture of AOJS (b) Weaving mechanism for variable substitution

References
[1] ISO/IEC 16262:2002, Information technology - ECMAScript language specification, 2002.
[2] Gregor Kiczales, et al.: Aspect-oriented programming, Proc. European Conference on Object-Oriented

Programming (ECOOP), pp.220–242, 1997.
[3] LECACHEUR Sebastien: Aspectjs, http://zer0.free.fr/aspectjs/
[4] Google: Ajaxpect: Aspect-Oriented Programming for Ajax, http://code.google.com/p/ajaxpect/
[5] Gregor Kiczales, et al.: An Overview of AspectJ, Proc. European Conference on Object-Oriented

Programming (ECOOP), pp.327–353, 2001.

2

