Extracting Interaction-Based Stateful Behavior in Rich Internet Applications

Yuta Maezawa
The University of Tokyo

Hironori Washizaki
Waseda University

Shinichi Honiden
The University of Tokyo

Tokyo, Japan Tokyo, Japan National Institute of Informatics
maezawa@nii.ac.jp washizaki@waseda.jp Tokyo, Japan
honiden@nii.ac.jp

Abstract—Although asynchronous technologies such as Ajax
make Rich Internet Applications (RIAs) responsive, they
can result in unexpected behavior due to nondeterministic
client-side processing and asynchronous communication. One
difficulty in understanding such erroneous behavior lies in
the unpredictable contexts of the running system. Dynamic
behavior analysis techniques do not help to verify the cor-
rectness of certain “blind spots” in the execution path. In
this work, we present a static approach for extracting all
possible state transitions described in source code from the
RIAs. Our approach is based on the assumption that user,
server and self interactions with the RIAs can change the states
of the application. Our method consists of four steps: 1) using
given specifications of Ajax relevant to interactions as rules,
2) creating a call graph, annotating interactions on it and
extracting interaction controls, 3) abstracting the call graph
to extract relationships among the interactions, and 4) refining
the relationships with the interaction controls. By extracting
the state machines of test scenarios of the correct and wrong
behavior, it can help developers to pinpoint the statements
in the source code that lead to the erroneous behavior. Our
approach has been evaluated against a few experimental cases
and we conclude that it can extract comprehensible state
machines in a reasonable time.

Keywords-Rich Internet Applications; Ajax; Reverse Engi-
neering; Program Comprehension;

I. INTRODUCTION

Rich Internet Applications (RIAs) are a new generation
of web applications by introducing client-side processing
and asynchronous communications, achieving high usabil-
ity and rendering attractive contents [4], [13]. Although
asynchronous technologies such as Asynchronous JavaScript
and XML (Ajax) make RIAs responsive, they can result in
unexpected behavior due to nondeterministic user events and
server responses. Therefore, it is important to control how
RIAs behave according to their interactive state changes.

When developers incrementally implement functions in
RIAs, they initially determine what kind of interactions,
as shown in Figure 1, RIAs can handle, and then how
RIAs should behave during run-time. We assume that user,
server, and self interactions can change the states of the
applications. At this prototyping phase, developers inten-
tionally make RIAs enable and disable some interactions
in certain states. For example, some survey applications
might initially disable a submit button unless users input in a

Server Interaction

(Server responses)

User Interaction

(Mouse clicks and keyboard typings)

RIAs

User Client
Se[f'lnteractianv
“ (A page load and timeouts)

Figure 1. Interactions that have potential to change states in RIAs.

form. Developers want to ensure that RIAs correctly control
the interactions according to their intentions. However, one
difficulty in understanding correct or erroneous behavior
lies in the unpredictable context of the running system.
Therefore, to support the development of such complex
applications, application models, such as state machines, are
helpful for understanding the source code [14].

Successful extraction is possible by regarding the doc-
ument object model (DOM) as the state of web appli-
cations [11]. Considering the interactive aspect of RIAs,
some researchers have leveraged the DOMs as the states
and extracted state machines from Ajax-based RIAs by
using dynamic analysis [8], [1], [10]. These approaches can
leverage heuristic knowledge to extract state machines by
preparing execution scenarios and executing RIAs on their
environments. However, extracted state machines depend on
the scenarios and environments, i.e., the model might not
contain erroneous behavior such as communication failures,
if the analysis was done in reliable network conditions.

Therefore, we propose a static approach for extracting
state machines from Ajax-based RIAs. In our approach,
we assume that inferactions have the potential to change
states in RIAs as shown in Figure 1. We deal with the
interactions as state transitions, because extracting DOMs
as states inevitably leads to a state space explosion due to
interactive DOM manipulations. Our approach is devided
into four main steps: 1) using given specifications of Ajax
relevant to interactions as rules to distinguish them, 2)
creating a call graph, annotating them on it and extracting
statements to control the interactions as interaction controls
(rule-based annotation of interaction: RBAI), 3) leveraging
a call graph to extract relationships among the interactions
(annotation-based abstraction of call graph: ABAC), and
4) refining these relationships by analyzing the interaction
controls (interaction control-based refinement: ICBR). By

B LN =

new Ajax.Request (url, {
onSuccess:
function(request) { setData(request);};});
useData () ;

Figure 2. Example of asynchronous commnucation fault.

extracting the state machines of test scenarios of the correct
and wrong behavior, it can help developers to pinpoint the
statements in the source code that lead to the erroneous
behavior.

Our contributions in this paper are as follows: 1) A static
analysis approach for extracting state machines from Ajax-
based RIAs (consisting of RBAI, ABAC and ICBR), based
on the assumptions that user, server and self interactions
with the RIAs can change the states of the application. 2)
The JSModeler tool, an implementation of our approach.
3) An evaluation of our approach against some use cases.
Results show that our approach can extract state machines
from web pages containing Ajax code within a reasonable
time.4) User experiments, which showed that the extracted
state machines were comprehensible in terms of scale, label
and state divisions to participants. Our approach helped them
to find out erroneous behavior due to faults of interaction
controls.

The remainder of this paper is organized as follows. First,
we discuss issues with development and maintenance of
RIAs and present our motivating example in Section II. In
Section III, we introduce our static analysis approach for
extracting state machines from RIAs. We then discuss our
evaluation in Section IV and show related work in Section
V. Finally, we conclude in Section VI.

II. BACKGROUND

In this section, we explain how RIAs provide a rich user
experience and show issues in developing and maintaining
RIAs. We then give a motivating example that illustrate the
issues of complex RIAs.

A. Rich Internet Applications

Rich Internet Applications introduce client-side process-
ing and asynchronous communications in web applications.
With these functions, RIAs can continuously process the
business-logic on the client-side and asynchronously receive
the necessary data to update web pages. Hence, RIAs can
provide a rich user experience.

Although asynchronous technologies such as Ajax make
RIAs responsive, they can result in unexpected behavior
due to nondeterministic elements such as user events and
server responses. We give an example of asynchronous
communicationi by using a frequently used library: proto-
type.js (prototypejs.org), as shown in Figure 2. In this case,
a RIA sends an asynchronous message (line 1), evaluates
a successful communication event, sets the response data
(lines 2-3), and uses the data (line 4). If this RIA does not

immediately receive a response, it might run the use process
(useData) before evaluating the event. This would cause
unexpected behavior in certain scenarios and environments.

To avoid this issue, developers must ensure that RIAs
run the use process after the set process (setData). Thus,
it is important to control to make sure that RIAs behave
in any state according to the intentions of the developers.
However, developers have difficulties in understanding such
erroneous behavior, because they cannot predict all possible
contexts of the running system, and because debugging
of such complex applications is difficult only using the
source code. Although developers can make use of models,
web applications rarely provide sufficient documentations
due to early releases and frequently specification updates
[6]. Therefore, support tools are important to automatically
extract models from web applications in a reasonable time
to aid developers understanding the source code [14].

B. Motivating Example

We show the source code of an Ajax-based RIA as a
motivating example in Figure 3. This is a typical example
of a file downloader web service. We explain two faults
(lines 23 and 46). The former is caused by a communication
control fault and the latter comes from a user event control
fault.

(i) Countdown: When users access this web page, the
web browser first evaluates an event handler: onload (line
6), and then calls a callback function: countDown set
to the event handler (lines 7-13). In this function, if the
count is greater than zero, the application updates the
progress (line 9) and calls back countDown after 1000
msec (line 10). Otherwise, it proceeds in getPwd (lines 12,
15-24) then sends an asynchronous message (lines 16-26) by
using an included library (prototypejs.org) (lines 2-3). After
evaluating an onSuccess event, it sets the response data
to pwd.

We argue that these event handling processes, which we
call interactions in this paper, can change RIA states. For
example, an onload event makes this application start to
countdown, set Timeout makes it continue to countdown,
and onSuccess makes it set a password string.

(ii) Setting an input form: Though developers intend this
application to accept user inputs after it securely sets a
password string, it deploys an input form regardless of the
communication result (line 23). In case of a communication
failure, this application might not behave as developers
expected. As just described, developers must deal with error-
prone complexities due to indeterministic elements such
as communication results and timing of evaluating event
handlers.

(iii) Input password and submit: In the function setForm
(lines 29-36), the application creates and appends input
widgets for accepting and submitting a user input then
sets inputFormText and doSubmit on onkeyup and

O 00NN BN —

<html><head> 29| function setForm () {
<script type="text/javascript” 30 var ftext = document.createElement(”input”);
src="./js/prototype.js”></script> 31 ftext.onkeyup = inputFormText;
<script type="text/javascript”><!——// 32 var fsubmit = document.createElement(”input”);
var count = 5; 33 fsubmit.disabled = true;
window . onload = countDown; 34 fsubmit.onclick = doSubmit;
function countDown() { 35 /xx* append input—form and submit—button xxx/
if (count > 0) { 36| };
updateProgress (count——); 37| function inputFormText() {
setTimeout (countDown, 1000); 38 var len = $(”ftext”).value.length;
} else { 39 if (0 < len) $(”fsubmit”).disabled = false;
getPwd () ; 40 else $(” fsubmit”).disabled = true;
bk 41}
var pwd; 42| function doSubmit() {
function getPwd() { 43 var val = $(” ftext”).value;
new Ajax.Request(”randomPwd.php”, { 44| if(val == pwd) {
onSuccess: function(request) { 45 /*%x% control fault xxx/
pwd = request.responseText; 46 /xxx $(” ftext”).disabled = true; xx*x/
updateProgress (pwd);}, 47 $(” fsubmit”).disabled = true;
onFailure: function(Request) { 48 enableDownload () ;
alert (" Fail to get password”);} 49| } else {
1DE 50 alert ("Input password is invalid”);
setForm () ; /*** control fault s*x/ 51| };}; //——></script ></head>
H 52| <body>
function enableDownload () { 53] <div id="progress”></div>
/xxx create a link to a download file %%/ }; 54 <div id="form”></div>
function updateProgress(str) { 55| <div id="download”></div>
/*%% set string inm a progress field sxx/ }; 56| </body></html>
Figure 3. Motivating example code of Ajax-based RIAs.

onclick event handlers of the widgets (lines 31 and 34). In
terms of developers’ intentions, this form does not initially
have any user input; hence, this should disable submit (line
33). Additionally, if that users submit a valid password, they
no longer need that input. However, developers can disable
the submit button, but might not be able to disable the
input form (line 46). In this case, this application might be
confusing to users. Thus, developers can increase usability
of this application by controlling widget activations, i.e.,
RIAs also change due to these activations as well as the
indeterministic elements.

In this example, we show two types of control faults.
The former causes unexpected behavior in certain scenarios
and environments and the latter makes a user confuses.
Although these faults lead to decreased robustness and
usability of RIAs, it is hard for developers to find out such
complex behavior which depends on an unpredictable run-
time context.

III. APPROACH AND IMPLEMENTATION

We propose JSModeler, which statically analyzes a web
page of Ajax-based RIAs for extracting state machines. We
focus on interactions that have the potential to change states
in RIAs, as shown in Figure 1. In this section, we illustrate
rules to distinguish interactions. We then note four analysis
steps in JSModeler: Preparation, RBAI, ABAC and ICBR,
as show in Figure 4. By extracting the state machines of
test scenarios of the correct and wrong behavior, it can help
developers to pinpoint the statements in the source code that

Do —

of Interaction (RBAI)

Web
page
Trigger [A H
rule ! [NekoHTML | ™ DOM | —> !
. i — I
Potential H| Xerces | IS code _ Preparation |
rule ek T ____________ .
[T - S S -omEEEEEEEEEEEEEEEEs = 5
C‘ml‘“’l ! [Rules | [AST i !
i)
e : [——— Rule-Based Annotation |
i
i
i

[Interaction-annotated 1

: |
! 1
| call %agh) !
! 1
! Annotation-Based Annotation 1
! 1
! Abstracter of Call graph (ABAC) '

i

e s

Function call-based
interaction relationships
!

T

Interaction “ Widgets]I
controls |

AN

]

]
]
i
]
HAN
i
H Interaction Control-Based

Refinement (ICBR)

State machines
Figure 4. System overview of JSModeler.
lead to the erroneous behavior.

A. Input rules to distinguish interactions

Developers describe interactions by using an event handler
and a callback function. For example, we show one user
interaction, keyboard typing as follows.

type="text” maxlength=20
disabled=true></input>

<input
onkeyup="inputText ();”

Developers set an onkeyup and inputText as an event
handler and a callback function at an input widget (line

2). However, we cannot distinguish event handlers by other
attributes (e.g., maxlength). Therefore, we input event
handlers as a Trigger rule as follows.

l‘<Trigger event="onkeyup” />

W N =

Developers also implement interactions by using built-in
and frequently used library functions such as prototype.js,
which handle an event. We call these functions potential
functions. For example, we show a timeout description,
which is a self interaction as follows.

function func() {
updateProgress (” waiting ...”) ;
setTimeout(cb, 1000);};

This function handles the event, 1000 msec elapsed, and sets
a callback function, cb. However, we also cannot distinguish
this potential function from other function calls such as
updateProgress. Therefore, we input potential func-
tions and their arguments, which identify an event handler
and a callback function, as a Potential rule as follows.

<Potential function="setTimeout”
event="after (arg_2)” callback="arg_1" />

We also extract interaction control statements which are
widget managements and activations. Developers describe
the controls by setting widget attributes and corresponding
functions as well as interactions. If users input any text,
this application enables users to submit (line 39 in Figure
3); otherwise, submit is disabled (line 40 in Figure 3)
using the attribute di sabled. Therefore, to distinguish and
extract these statements as interaction controls, we input
these attributes, properties and functions as a Control rule
as follows.

I|<Control type="attr” keyword="disabled” />

Thus, we can distinguish interactions and their controls.
To list event handlers, we refer HTML specification! pro-
vided by W3C. We also refer DOM specification® provided
by Mozilla, and list the build-in functions relevant to user in-
teractions and timeout. On the subject of interaction controls,
we refer these specifications, and list control attributes (also
W3C) and widget manipulation functions (also Mozilla). We
define these application-independent specifications as rules
in our tool. In addition, developers can define rules for fre-
quently used libraries such as an onSucess event handler
of prototype. js in Figure 2. They can describe such
user-defined rules by refering the libraries’ specifications and
these rules are reusable.

B. Interaction-based analysis

Our analysis is divided into four steps shown in Figure 4.

Uhttp://www.w3.org/TR/html5/webappapis.html#event-handler-attributes
Zhttps://developer.mozilla.org/en/DOM/window

1) Preparation: We input a URL of a web page and
XML files describing rules to the JSModeler. The tool
parses a source code of the page and creates DOM tree,
and extracts JavaScript code. Additionally, it extracts
widgets which have tag name, id value, activation and
display. Finally, it generates Rules and AST (abstract
syntax tree) of the code.

2) Rule-based annotation of interaction (RBAI): The JS-
Modeler creates a call graph by parsing the AST, which has
functions and relationships between function calls as vertices
and edges. We can deal with interactions as callback function
calls due to event fires. Therefore, the tool annotates the
interactions in the call graph with the rules and outputs it
as an Interaction—-annotated call graph.

3) Annotation-based abstraction of call graph (ABAC):
We abstract the annotated call graph focusing on inter-
actions at an abstraction step. In this abstraction, we re-
move edges which have no event and do not relate to
potential functions. However, it might occur improper ab-
stractions due to certain function which are called at mul-
tiple places. For example, the motivating example calls
updateProgress at countDown and a callback func-
tion of onSuccess (lines 11 and 21). Though countDown
and the callback function should be divided due to an
onSuccess event, these function calls are abstracted to
one vertex due to updateProgress. Therefore, we re-
move such function calls before the abstraction. Finally, we
generate an function call-based interaction
relationships, which express relationships among in-
teractions in terms of function calls.

4) Interaction control-based refinement (ICBR): Since
RIAs actually control such function calls by setting control
attributes such as disabled, we refine interaction rela-
tionships based-on function calls by analyzing interaction
controls. These controls have the following properties.

o A target widget that an application controls

« A vertex on which it sets the control statement

« The condition of it reaching the control statement
For example, in Figure 3 (line 39), we can extract an
interaction control that controls a widget with an id of
fsubmit (widgef) on inputFormText (verfex) under
0 < len (condition).

We determine whether the interactions are controlled
by widget activations and displays. For example, a user
cannot input if a form is disabled by a disabled attribute
(activation) or the form is not displayed (display).

In this step, we input the interaction relationships as a
graph, interaction controls, and widgets. We then search
from an initial vertex of the graph. By reaching a vertex
that has interaction controls, we manipulate activations and
displays of corresponding widgets according to the controls
and refine the graph as follows:

« Divide a state: We create new vertices for each con-

dition of the controls, if activations and displays of

after(1000 msec)
[sleepTime <= 0]

onkeyupl/fsubmit. disabled = true
[1(0 < len)] /fsubmit.disabled = true
/[inputFnrmrext,s]

[inputFnrmText]/

onSuccess
onkeyup

onkeyup [0 < lefNfsubmit.disabled = false

User Click

inputFormText 2| onkeyup

[i(val == pwdstr)]

val
doSubmit |

onclick
== pwdStr] /document,

|lBy1d(”fsunm|l..qdns”bmk ‘J

Figure 5. State machines extracted with JSModeler from our motivating
example that contained control faults.

widgets are changed. We then create edges from the
vertex to new ones and describe the conditions and
control statements as guard conditions and actions on
the edges.

« Remove a transition: We find edges coming from the
vertex and remove edges having disabled events.

e Add a transition: We add edges that have enabled
events, if the vertex does not have them already.

Finally, the JSModeler outputs state machines from Ajax-

based RIAs.

C. JSModeler

Our JSModeler[7] tool implements our approach. This
tool consists of four components: 1) Extractor ex-
tracts JavaScript code and widget data with DOM tree.
2) Annotator distinguishes interactions with rules and
generates a call graph annotated at interaction elements. In
addition, it extracts interaction controls. 3) Abstractor
abstracts the call graph by focusing on the annotations, and
4) Refiner refines the abstracted graph with the controls
and outputs state machines.

The extracted state machines from our motivating exam-
ples with JSModeler are shown in Figure 5. Developers can
find that the application displays an input form (setForm)
in which users input a password without waiting for a server
response (onSuccess) that contains a password string.
They can also guess that it continues to accept user inputs
(inputFormText) despite the fact that users input a valid
password (doSubmit_4). Thus, the JSModeler tool can
help developers to find out interaction control faults with
extracted state machines.

IV. EVALUATION

We have derived the following research hypotheses. Can
we automatically extract 1) how comprehensible state ma-
chines 2) in a reasonable time? To address these questions,
we conducted case studies and evaluated our approach.

A. Case studies

We use an sForm (chains.ch) which is an Ajax appli-
cation for form validation, for our first study. We also

extracted state machines from Waseda University’s home
page (www.waseda.jp/top/index-e.html), because it has a
fading menu widget for selecting languages.

B. Evaluation methodology

In our evaluation experiments, we measured the analysis
time (7,) to extract state machines from the case studies.
Additionally, we also counted the number of interactions
(N;) in the source code and states (Ng) and transitions
(V) in the state machines. Moreover, if we construct state
machines by combining distinguished interactions, we will
obtain N!(= N; +1) states and N/(= N? + N;) transitions.

To address how comprehensible the state machines are, we
conducted user experiments with two software engineering
students (pl and p2). In the experiment, we asked the
participants to score comprehensibility in the terms of scale,
labels and state divisions [2].

C. Results and Discussion

We show results of our case studies in Table 1.

Table 1
RESULTS OF EXTRACTION OF STATE MACHINES IN CASE STUDIES.

HTML JS
LOC LOC | N; | Ns | N¢ Te N/, | N/

sForm 52 236 9 10 19 77 ms 10 90

Waseda 299 959 14 10 44 | 309 ms 15 210

Comprehensible state machines: Compared with com-
bining state machines, the number of model elements (N +
N,) of extracted state machines is 71 % and 76 % smaller.
Additionally, extracted state machines were compact enough
for the participants to comprehend the behavior of the case
studies. Labels in the models were also comprehensible.
In addition, we focused on interactions as transitions; still
the participants noted that our approach was sufficient for
correctly dividing states in the case studies. Thus, we can
state that our approach is useful for comprehending the
behavior of Ajax-based RIAs.

Reasonable analysis time: Table I shows that our ap-
proach could extract state machines from the case studies
within 1 second. Therefore, we assume that our approach is
also applicable for real-time use.

Comments from participants: We collected the follow-
ing comments from the questionnaire.

o Extracted state machines helped them to understand
page behavior and to find control faults. For example,
in sForm, users can initially submit without any inputs.

o They could determine pre-conditions for firing interac-
tions by extracting guard conditions.

o They could determine behavior that does not appear the
interface, and so on.

Ajax-based RIAs have interactions that are not obvious
from the source code and oblivious behavior in their inter-
faces. Hence, we can help developers understand behavior
of the RIAs and find control faults by using extracted state
machines.

D. Limitations

Widgets manipulations with strings: Our approach iden-
tifies target widgets of interaction controls. Developers can
manipulate widgets with strings by using an innerHTML
attribute of widgets. However, we limit the applications
which manage widgets only through built-in functions such
as getElementById and createElement. To solve
this limitation, we consider to apply a symbolic execution
technique to the JSModeler.

Data flow analysis: In addition, developers can manipu-
late DOM elements through variables. To identify the target
widgets of the manipulations, we must analyze the data flow
of variables. However, we currently ignore the data flow and
analyze only variable declaration statements.

V. RELATED WORK

Our approach is a reverse engineering technique[S] which
can provide alternative views from software artifacts for re-
documentation and design recover [3]. Such techniques are
mainly divided into static and dynamic approaches.

Somé et al. proposed a static analysis of state machines
from C programs [12]. To extract state machines, they
regarded certain variables as state variables and statically
analyze data flow of them. Though they found the state
variables by regular expression matching, this approach
depends on how developers describe the application states.

In page-based web applications, Ricca et al. introduced
model-based analysis and testing [11]. For them, HTML web
pages are the central entities. They extract page transition
models by analyzing hyperlinks and frames. Thus, dynamic
analysis of RIAs can also deal with DOMs as state variables.
However, it might cause a state space explosion due to
interactive DOM manipulations.

Marchetto et al. presented state-based testing of Ajax
applications [8]. They extracted finite state machines by
using a dynamic approach. To avoid a state space explosion,
they marked functions in which the applications process user
events, asynchronous communications, and DOM manipu-
lations, and then trace the DOM snapshots only when the
applications call the functions.

In addition, Amalfitano et al. proposed state change cri-
teria to abstract traced DOMs [1]. They prepared execution
scenarios and traced DOMs by executing them. Then, they
abstracted the traced data with the criteria. Finally, they
extracted finite state machines.

Mesbah et al. implemented CRAWLJAX, which simulates
user inputs by analyzing fireable DOM elements and gen-
erates finite state machines by comparing before and after
DOMs [9]. They applied this technique into crawling Ajax
applications in multiple environments [10].

The dynamic approaches mentioned above depend on ex-
ecution scenarios and environments, prepared by developers.
For example, they might not extract communication failures

if working with a reliable network. Our static approach can
extract all possible state machines in the source code.

VI. CONCLUSION AND FUTURE WORK

We proposed a static approach for extracting state ma-
chines from Ajax-based RIAs. Our aim is to reveal control
faults by focusing on interactions. We implemented the
JSModeler[7] tool and conducted case studies and user
experiments. We conclude that our approach can help de-
velopers to comprehend behavior of Ajax-based RIAs.

As our future work, we intend to conduct additional
case studies and user experiments with large-scale Ajax
applications. Additionally, we plan to establish a method
to generate test cases based on the extracted state machines.
End-users could input correct and wrong execution paths
to automatically test control faults of RIAs. Then, we can
localize erroneous statements in the source code by adding
traceability between extracted model elements and source
code fragments. Moreover, we want to determine what
behavior of RIAs is correct or wrong, and devise how
developers can recover from specified problems with our
approach.

REFERENCES

[1] D. Amalfitano et al., “An Iterative Approach for the
Reverse Engineering of Rich Internet Application User
Interfaces”, In Proc. of Int’l Conf. on Internet and Web
Applications and Services , pp. 401-410, 2010.

[2] S. W. Ambler, “The Elements of UML 2.0 Style”, In
Cambridge University Press, 2002.

[3] G. Canfora et al., “New Frontiers of Reverse Engineer-
ing”, In Proc. of Future of Software Engineering , pp.
326-341, 2007.

[4] M. Driver et al., “Rich Internet Application Are the Next
Evolution of the Web”, In Tech. report , Gartner, 2005.

[5] IEEE Std 1219-1998, “IEEE Standard for Software
Maintenance”, 1998.

[6] M. Jazayeri, “Some Trends in Web Application Devel-
opment”, In Proc. of Future of Software Engineering ,
pp-199-213, 2007.

[7] JSModeler, www.honiden.nii.ac.jp/"maezawa/JSModeler/.

[8] A. Marchetto et al., “State-Based Testing of Ajax Web
Applications”, In Proc. of Int’l Conf. on Software Test-
ing, Verification and Validation , pp.121-130, 2008.

[9] A. Mesbah et al., “Crawling AJAX by Inferring User
Interface State Changes”, In Proc. of Int’l Conf. on
Web Engineering , pp. 122-134, 2008.

[10] A. Mesbah et al., “Automated Cross-Browser Com-
patibility Testing”, In Proc. of Int’l Conf. on Software
Engineering , pp.561-570, 2011.

[11] F. Ricca et al., “Analysis and Testing of Web Applica-
tions”, In Proc. of Int’l Conf. on Software Engineering
, Ep. 25-34, 2001.

[12] S. S. Somé et al., “Enhancing Program Comprehension
with Recevered State Models”, In Proc. of Int’l Work-
shop on Program Comprehension , pp.85-93, 2002.

[13] B. Stearn, “XULRunner: A New Approach for Devel-
oping Rich Internet Applications”, In [EEE Internet
Computing , vol. 11, pp.67-73, 2007.

[14] P. Tonelﬁt, “Reverse Engineering of Object Oriented
Code”, In Proc. of Int’l Conf. on Software Engineering
, pp-724-725, 2005.

