
Design Pattern Detection using Software Metrics and Machine Learning 
 

Satoru Uchiyama 
Hironori Washizaki 
Yoshiaki Fukazawa 

Dept. Computer Science and Engineering 
Waseda University 

Tokyo, Japan 
s.uchiyama1104@toki.waseda.jp 

washizaki@waseda.jp 
fukazawa@waseda.jp 

Atsuto Kubo 
Aoyama Media Laboratory 

Tokyo, Japan 
kubo@nii.ac.jp 

 
 
 

 
 

Abstract—The understandability, maintainability, and 
reusability of object-oriented programs could be improved by 
automatically detecting well-know design patterns in programs. 
Many of the previous detection techniques are based on static 
analysis and use strict conditions composed of class structure 
information. Hence, it is difficult for them to detect design 
patterns in which the class structures are similar. Moreover, it 
is difficult for them to deal with diversity of design pattern 
applications. We propose a design pattern detection technique 
using metrics and machine learning. Our technique judges 
candidates for the roles that compose the design patterns by 
using machine learning and measurements of metrics, and it 
detects design patterns by analyzing the relations between 
candidates. It suppresses false negative and distinguishes 
patterns in which the class structures are similar. We 
conducted experiments comparing our technique with two 
previous techniques. These results showed that our technique 
was more accurate than the previous techniques. 

Keywords—component; Object-oriented software, Design 
pattern, Software metrics, Machine learning 

I. INTRODUCTION 
Design patterns (hereafter, patterns) are defined as 

descriptions of communicating classes that form a common 
solution to a common design problem. GoF patterns [1] are 
representative patterns for object-oriented software. Patterns 
are composed from classes that describe the roles and 
abilities of objects. For example, Figure 1 shows one GoF 
pattern, State pattern. State pattern is composed of roles 
named Context, State, and ConcreteState. The use 
of patterns enables software development with high 
maintainability, high reusability, and improved 
understandability, and it facilitates smooth communications 
between developers.  

Programs implemented by a third party and open source 
software may take a lot of time to understand, and patterns 
may be applied without having to describe class names, 
comments, or attached documents in existing programs. So 
pattern detection improves the understandability of programs. 
However, manual pattern detection from the existing 

programs is inefficient. Moreover, developers might 
overlook patterns during manual detection. 

Many studies on using automatic detection of patterns to 
solve the above problems have used static analysis. However, 
in static analysis, it is difficult to identify patterns to which 
class structures are similar and patterns with few features. In 
addition, there is still a possibility that software developers 
might overlook patterns if they use strict conditions like the 
class structure analysis, and applied patterns vary from the 
intended conditions even a little. 

We propose a pattern detection technique using software 
metrics (hereafter, metrics) and machine learning. Although 
our technique can be classified as a type of static analysis, 
unlike previous detection techniques, it detects patterns by 
using identifying elements derived by the machine learning 
using measurements of metrics without using strict condition 
descriptions (class structural information, etc.). Metrics mean 
a set of a quantitative standard "Metric" that can be used to 
evaluate the software development from various aspects. For 
example, one such metric, number of methods (NOM), 
means the number of methods in a class [2]. Moreover, by 
using machine learning, we can, in some cases, get 
previously unknown identifying elements from combinations 
of metrics. To cover a diversity of pattern applications, our 
method uses a variety of learning data because our technique 
result may depend on the kind and number of learning data 
used during the machine learning stage. Finally, we 
conducted experiments comparing our technique with two 
previous techniques. These results showed that our technique 
was more accurate than the previous techniques. 

II. PREVIOUS DESIGN PATTERN DETECTION TECHNIQUES 
AND THEIR PROBLEMS 

Many of the previous detection techniques use static 
analysis [3][4]. These techniques chiefly analyze information 
like class structures that satisfy certain conditions. If they 
vary from the intended strict conditions even a little, or two 
or more roles are assigned in a class, there is a possibility 
that developers might overlook something. 

There is the technique for detecting patterns from the 
degrees of similarity between graphs of pattern structure and 
graphs of programs to be detected [3]. However,  



 

             
Figure 1.  State pattern 

                   

Figure 2.  Strategy pattern 

distinguishing State pattern from Strategy pattern is 
difficult because their class structures are similar (see 
Figures 1 and 2). Unlike this method, we derive 
distinguishing elements and machine learning and detect 
patterns that are similar in terms of these metrics. In addition, 
this technique [3] is open to the public to the web as the tool. 

There is a technique for outputting pattern candidates 
from features of metric measurements [5]. However, it 
requires manual confirmation; this technique can roughly 
identify pattern candidates, but the final choice depends on 
the developer's skill. Our technique detects patterns without 
manual filtering by using not only distinguishing elements 
determined by metrics and machine learning but also by 
analyzing class structure information. 

There is a technique for improving precision by filtering 
the detection results by using machine learning. This 
technique inputs measurements on the classes and methods 
of each pattern [6]. However, it uses the existing static 
analytical technique, whereas our technique uses machine 
learning throughout the whole process without the existing 
technique. 

There is a technique that analyzes programs both before 
and after patterns are applied [7]. This technique requires a 
revision history of the programs used. Our technique detects 
patterns by analyzing only the current programs. 

There is a technique for detecting patterns from the class 
structure and behavior of a system after classifying its 
patterns [8][9]. It is difficult to use it when patterns are 
applied more than once and when there is a diversity of 
patterns application. In contrast, our technique can deal with 
patterns that are applied more than once and it can deal with 
a diversity of pattern application.   

There are also detection techniques using dynamic 
analysis. These methods identify patterns by referring to the 
execution route information, etc., of a program [10][11]. 

However, it is difficult to analyze the whole execution route 
and use fragmentary class sets in an analysis. Additionally, 
the result of dynamic analysis depends on the 
representativeness of the execution sequences. 

There are detection techniques by using multilayered 
(multiphase) approach [12][13]. [12] is two phases approach 
by static analysis. However it is difficult to detect creational 
patterns and behavioral patterns because this technique 
analyzes pattern structures and source code level constraints. 
[13] is three-layered approach "DeMIMA". This consists of 
three layers: two layers to recover an abstract model of the 
source code, including binary class relationships, and a third 
layer to identify patterns in the abstract model. However 
distinguishing the State pattern from the Strategy 
pattern is difficult because their structures are identical. Our 
technique can detect patterns of all categories and try 
distinction of State pattern and Strategy pattern by 
using metrics and machine learning. 

There is a technique for detecting patterns with formal 
definitions in OWL (Web Ontology Language) [14].  
However, false negative  occurs because this technique 
doesn't accommodate to the transformed pattern. In addition, 
this technique [14] is open to the public to the web as the 
Eclipse plug-in. 

We suppress false negative  by accommodating the 
diversity of pattern applications and distinguish patterns in 
which the class structures are similar with metrics and 
machine learning. Finally, only the previous techniques [3] 
[14] in the above-mentioned have been released as the tool. 

III. OUR TECHNIQUE 
Our technique is composed of a learning phase and a 

detection phase. The learning phase is composed of three 
processes, and the detection phase is composed of two 
processes, as shown in Figure 3. Each process is described, 
with pattern specialists and developers included as parties 
concerned, as follows. Our technique currently uses Java as 
the program language. 
[Learning Phase] 
P1. Define patterns 

Pattern specialists determine the detectable patterns and 
define the structures and roles composing these patterns. 
P2. Decide metrics 

Pattern specialists determine useful metrics to judge the 
roles defined in P1 by using the Goal Question Metric 
decision technique. 
P3. Machine learning 

Pattern specialists get measurements on each role in 
programs to which patterns have already been applied by 
using the metrics defined in P2 and input them to the 
machine learning system. They verify the role judgments 
after learning, and if the verification result is not good, they 
return to P2 and revise the metrics. 
[Detection Phase] 
P4. Role candidate judgment 

Developers get measurements for each class in the 
programs to be detected by using the metrics defined in P2. 
These are input to the machine learning system, which uses 
them to judge role candidates. 



 

 
Figure 3.  Entire image of our technique 

P5. Pattern detection 
Developers detect patterns by using the pattern structure 

definitions defined in P1 and the role candidates determined 
in P4. The structure definitions correspond to the letters P, R, 
and E of section III-ii. 

III-i Learning Phase 
P1. Define patterns 

Currently, our technique treats five GoF patterns 
(Singleton, TemplateMethod, Adapter, State, 
and Strategy) and 12 roles. The GoF patterns are grouped 
into creational patterns, structural patterns, and behavioral 
patterns. Our technique uses these patterns to cover these 
groups. 
P2. Decide metrics 

Pattern specialists decide useful metrics to judge roles by 
using the Goal Question Metric decision technique [14] 
(hereafter, GQM). GQM is a top-down approach to 
clarifying relations between goals and metrics. 

We experimented on judging roles by using general 
metrics without GQM. However, the machine learning result 
was not appropriate, since some metrics tended unstable. 
Consequently, we choose GQM so that the machine learning 
can function appropriately by distinguishing and stable 
metrics in each role. In our technique, the pattern specialists 
define the judgment of a role as a goal. Next, they define a 
set of questions that should be evaluated for achievement of 
goal. Finally, they decide useful metrics to help answer the 
questions. Moreover, we decide questions by paying 
attention to the attributes and operations of the roles. The 
pattern specialist figures out the attributes and the operations 
at each role necessary for the composition of the pattern by 
reading the description of the pattern definition. Next, they 
define whether those attributes and operations are defined as 
a question. 

For example, Figure 4 shows the goal of making a 
judgment about the AbstractClass role in the 

TemplateMethod pattern. AbstractClass roles have 
abstract methods or methods using written logic that use 
abstract methods like Figure 5. AbstractClass role can 
be distinguished by the ratio of the number of methods to the 
number of abstract methods because the number of methods 
exceeds the number of abstract methods. Therefore, number 
of abstract methods (NOAM) and number of methods 
(NOM) are useful metrics for judging this role. 

The lack of questions might occur because GQM is 
qualitative. Therefore, if the role candidate judgment is not a 
good one, the procedure loops back to P2 to attempt an 
improvement.  Moreover, it will be possible to apply GQM 
to roles with new patterns in the future. The appendix in this 
paper shows the results of applying GQM to the roles of all 
detection targets. 
P3. Machine learning 

The machine learning is a technology that analyzes 
sample data by computer and acquires useful rules to make 
forecasts about unknown data. We used the machine learning 
so that the patterns have a variety of application forms. The 
machine learning suppresses false negative and achieves 
gradual detection. 

Our technique uses a neural network [16] algorithm. On 
the other hand, support vector machine [16] could also be 
used to distinguish a pattern of two groups by using linear 
input elements. However, we chose a neural network 
because it outputs the values to all roles in consideration of 
the dependence of the different metrics. Therefore, it can 
deal with cases in which one class has two or more roles. 

A neural network is composed of an input layer, hidden 
layers, and an output layer, as shown in Figure 6, and each 
layer is composed of elements called units. Weights are 
given when a value moves from unit to unit, and a judgment 
rule is acquired by changing the weights. A typical algorithm 
for adjusting weights is back propagation. Back propagation 
calculates an error margin between output result y and the 
correct answer T, and it sequentially adjusts weights from the 



layer nearest the output to the input layer, as shown in Figure 
7. These weights are adjusted until the output error margin of 
the network reaches a certain value. 

Our technique uses a hierarchical neural network 
simulator [17]. This simulator uses back propagation. The 
hierarchy number in the neural network is set to three, the 
number of units of the input layer and the hidden layer are 
set as the number of chosen metrics, and the number of units 
of the output layer is set as the number of roles for the 
judgment. The input is the metric measurements of each role 
measured in a program to which patterns have already been 
applied, and the output is an expected role. The learning 
number of times is decided when the error margin curve of 
the simulator converges. The convergence of the error 
margin curve is manually determined at present. 

 

 

 
Figure 4.  Example of GQM（AbstractClass role） 

 

 
Figure 5.  Example of source code（AbstractClass role） 

 
Figure 6.  Neural network 

Figure 7.  Back propagation  

III-ii Detection Phase 
P4. Role candidate judgment 

Metric measurements are measured on each class in the 
programs. These measurements are input to the machine 
learning simulator, and values between 0–1 are output to all 
roles to be judged. The output values are normalized such 
that the sum of all values becomes 1. These output values are 
called role agreement values. A larger role agreement value 
means that the role candidate is more likely correct. The 
reciprocal of the number of roles to be detected is set as a 
threshold, and the role agreement values that are higher than 
the threshold are taken to be role candidates. The threshold is 
1/12=0.0834 because we treat 12 roles at present. 

Let us consider the class that assumes 
AbstractClass NOM of 3 and NOAM of 2 and other 
metrics of 0. Figure 8 shows the role candidate judgment 
results with these measurements; the output value of 
AbstractClass is the highest value. The roles are judged 
to be AbstractClass and Target by regularizing the 
values of Figure 8. 
P5. Pattern Detection 

Patterns are detected by searching for relations between 
role candidates with the pattern structure. The search goes 
sequentially from the role candidate with the highest 
agreement value to the one with the lowest value. All 
combinations of the role candidates that accord with the 
pattern structures are searched. Patterns are detected when 
the directions of relations between role candidates accord 
with the pattern structure and when the role candidates 
accord with roles at both ends of the relations. Moreover, the 
relation agreement values reflect the kind of relation. 
Currently, our method deals with inheritance, interface 
implementation, and aggregation relations.   These kind will 
increase as more patterns get added in the future. The 
relation agreement value is 1.0 when the kind agrees with the 
relation of the pattern, and it is 0.5 when the kind does not 
agree. If the relation agreement value is 0 when the kind of 
relation does not agree, the pattern agreement value might 
become 0, and these classes will not be detected as the 
pattern. In that case, a problem similar to those of the 
previous detection techniques will occur because the 
difference of the kind of the relation is not recognized.   

 



 
Figure 8.  Example of machine learning output 

 
Figure 9.  Example of pattern detection (TemplateMethod pattern) 

The pattern agreement value is calculated from the role 
agreement values and the relation agreement values. The 
pattern to be detected is denoted as P, the role set that 
composes the pattern is denoted as R, and the relation set is 
denoted as E. Moreover, the program that is the target of 
detection is defined as P’, the set of classes judged role 
candidates is R’, the set of relations between elements of R' 
is denoted as E’. The role agreement value is denoted as Role, 
and the relation agreement is denoted as Rel. The product of 
the average of two roles at both ends of the relation and Rel 
is denoted as Com, and the average of Com is denoted as Pat. 
Moreover, the average of two Roles is calculated when Com 
is calculated, and the average value of Com is calculated to 
adjust Pat and Role to values from 0 to 1 when Pat is 
calculated. If the directions of the relations do not agree, Rel 
is assumed to be 0. 
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Figure 9 shows an example of detecting the 
TemplateMethod pattern. In this example, it is assumed 
that class SampleA has the highest role agreement value for 
an AbstractClass. The pattern agreement value between 
the program Samples and the TemplateMethod pattern is 
calculated with the following algorithm. 
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In the program shown in Figure 9, the pattern agreement 
value of the TemplateMethod pattern was calculated to 
be 0.492. Pattern agreement values are normalized from 0 to 
1, just like the role agreement values. The classes having 
pattern agreement value that exceeds threshold are output as 
the detection result.  The reciprocal of the number of roles 
for detection is taken to be the threshold (0.0834), similar to 
the case of role candidate judgment, and pattern agreement 
values that are higher than the threshold are output as the 
detection result. 

above-mentioned. We used NMGI when the program to be 
detected is obviously similar to small-scale codes of patterns, 
and it should not be used when the program is large-scale 
codes used by a third party. 

We focused our attention on the recall because the 
purpose of our technique is detection covering diverse 
pattern applications. Recall shows how free of leakage the 
detection result is, whereas precision shows how free of 
disagreement the detection result is. Table II is used to 
calculate the recall. wr, xr, yr, and zr are numbers of roles, 
and wp, xp, yp, and zp are numbers of patterns. Recall is 
calculated from the data in Table II by the following 
expressions. 

In Figure 9, SampleA, SampleB, and SampleC were 
detected as TemplateMethod patterns. Moreover, 
SampleA and SampleB, SampleA and SampleC can 
also be considered to be the TemplateMethod. In this 
case, the relation of “SampleA SampleB” is more 
similar to a TemplateMethod pattern than the relation of 
“SampleA SampleC”  is because its agreement value is 
0.635, whereas that of the relation of “SampleA 

−<

◇←

◇←  
SampleC” is only 0.348. 
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Table III shows the average recall for each role. Role 
candidates must be judged accurately, because the State 
pattern and Strategy pattern have the same class structure. 
Therefore, roles other than the State and Strategy 
patterns are assumed to have been judged accurately when 
the role agreement value is more than the threshold, whereas 
the roles of the State pattern and Strategy patterns are 
assumed to be have been judged accurately when the role 
agreement value is more than the threshold and both are 
distinguished.  

IV. EVALUATION AND DISCUSSION 
We determined whether the machine learning simulator 

derived identifying elements of the roles after learning. 
Moreover, we compared our technique with two previous 
techniques to verify the precision and recall of our technique 
and to confirm whether it could match its detected patterns 
with similar structures and diverse patterns. 

The recalls for the large-scale codes are lower than those 
for the small-scale codes in Table III. The accurate 
judgments on the large-scale codes were more difficult 
because those codes possessed unnecessary attributes and 
operations for the composition of the patterns. Therefore, it 
will be necessary to collect a lot of learning data to cover a 
variety of large-scale codes. 

IV-i Verification of Role Candidate Judgement 
We used cross validation to verify the role candidate 

judgment. In cross validation, data are divided into n groups, 
and a test to verify a candidate judgment is executed such 
that the testing data are one data group and the learning data 
are n-1 data groups. We executed the test five times by 
dividing the data into five groups. In this paper, programs 
like codes in the reference [18], etc., are called small-scale, 
whereas programs in practical use are called large-scale. The 
parts where patterns are applied in small-scale codes (50 
places in total) 1 [18][19] and large-scale codes (158 places 
in total from the Java library 1.6.0_13 [20], JUnit 4.5 [21], 
and Spring Framework 2.5 RC2 [22]) were used as 
experimental data. The parts where patterns were applied in 
real codes were manually 

Table III’s results are for when the State pattern and 
Strategy pattern could be distinguished. The Context 
role had high recall, but State and ConcreteState 
roles had especially low recalls for large-scale codes. 
However, the candidates for the State role were output 
with high recall when the threshold was exceeded. Therefore, 
the State pattern can be distinguished by starting searching 
from the Context role in P5, and this improves recall. 

TABLE I.  CHOSEN METRICS 

collected. 

                                                          

Abbreviation Content 
NOF Number of fields 
NSF Number of static fields 

NOM Number of methods 
NSM Number of static methods 
NOI Number of interfaces 

NOAM Number of abstract methods 
NORM Number of overridden methods 
NOPC Number of private constructors 

NOTC Number of constructors with argument 
of object type 

NOOF Number of object fields 

NCOF Number of other classes with field of 
own type 

NMGI Number of methods to generate 
instances 

Table I shows the metrics that were chosen for the small-
scale and large-scale codes. We used different metrics by the 
sizes of the codes. For instance, we chose the metric called 
number of methods generating instance (NMGI) for the 
small-scale codes because the method for transit states in the 
ConcreteState role in the State pattern generates 
other ConcreteState roles in the small-scale codes. We 
didn’t use NMGI as a metrics of the large-scale codes 
because there were unnecessary attributes and operations in 
the composition of patterns and there are little 
implementation specialized in State pattern such as the 

 
1 All small-scale codes : 

http://www.washi.cs.waseda.ac.jp/ja/paper/uchiyama/dp.html 



TABLE II.  INTERSECTION PROCESSION Recall was 90 percent or more on the small-scale codes, 
but it dropped as low as 60 percent on the large-scale codes. 

 Number detected Number not 
detected 

Number of 
agreement wr, wp xr, xp 

Number of 
non-agreement yr, yp zr, zp 

TABLE III.  RECALL OF ROLE CANDIDATE JUDGMENT (AVERAGE) 

 Average of recall (%) 

Pattern Role Small-scale 
codes 

Large-scale 
codes 

Singleton Singleton 100.0 84.7 
Template 
Method 

AbstractClass 100.0 88.6 
ConcreteClass 100.0 58.5 

Adapter 
Target 90.0 75.2 

Adapter 100.0 66.7 
Adaptee 90.0 60.9 

State 
Context 60.0 70.0 

State 60.0 46.7 
ConcreteState 82.0 46.6 

Strategy 
Context 80.0 55.3 
Strategy 100.0 76.7 

ConcreteStrategy 100.0 72.4 

The large-scale codes gave especially low recall for the 
Adapter pattern. Table III shows the cause: the recall of 
the role candidate judgment for the Adapter pattern was 
not high enough. It is necessary to show that agreement 
values of all roles that compose patterns are above the 
threshold so that patterns will be detected. There were many 
cases in which neither of the roles that composed patterns 
was judged as a role candidate in the Adapter pattern. It 
will be necessary to return to P2 and choose new metrics. 
The State pattern was distinguished by searching from the 
Context role, as in the State pattern detection in the 
large-scale codes, and the recall of the pattern detection was 
higher than the recall of role candidate judgment. 

IV-iii Experiment Comparing Previous Detection 
Technique 

We experimentally compared our technique with 
previous detection techniques [3][14]. These previous 
techniques have been publicly released, and they treat three 
or more patterns that our technique treats. These techniques 
target Java program as well as our technique. The  technique 
proposed by Tsantails [3] (hereafter, TSAN) has four 
patterns in common with ours (Singleton, 
TemplateMethod, Adapter and State/Strategy). 
Because this technique cannot distinguish the State pattern 
from the Strategy pattern, these are detected as one 
pattern. Dietrich’s technique [14] (hereafter, DIET) has three 
patterns in common (Singleton, TemplateMethod, 
Adapter). TSAN detects patterns from the degree of 
similarity between the graphs of the pattern structure and 
graphs of the programs to be detected, whereas DIET detects 
patterns by using formal definitions in OWL (Web Ontology 
Language). Patterns were detected and evaluated with the 
small-scale and large-scale test data. Moreover, the test data 
and learning data were different. 

IV-ii Pattern Detection Results 
Patterns are detected by our technique with pattern 

application parts as test data in both the small-scale codes 
and large-scale codes, and this result is evaluated. Table IV 
shows precision and recall of the detected patterns. Precision 
and recall are calculated from the data in Table II by the 
following expressions. 
                                                                   

pp

p
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 Recall of pattern detection  : 
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The small-scale and large-scale codes shared a common 
point in that they both had recalls that were higher than 
precisions. This agrees with the purpose of suppressing 
achieves gradual detection. However, there were many non-
agreements about the State patterns and Strategy 
patterns in the large-scale codes. To avoid this problem, we 
will have to find the best threshold. 

p
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w
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 Precision of pattern detection  : 

TABLE IV.  PRECISION AND RECALL RATIO OF PATTERN DETECTION 

 Number of  
test data Precision (%) Recall (%) 

Pattern 
Small-
scale 
codes 

Large-
scale 
codes 

Small-
scale 
codes 

Large-
scale 
codes 

Small-
scale 
codes 

Large-
scale 
codes 

Singleton 6 6 60.0 63.6 100.0 100.0 
Template 
Method 6 7 85.7 71.4 100.0 83.3 

Adapter 4 7 100.0 100.0 90.0 60.0 
State 2 6 50.0 40.0 100.0 66.6 

Strategy 2 6 66.7 30.8 100.0 80.0 

Figure 10 shows the recall-precision graphs of our 
technique and TSAN, and Figure 11 shows the recall-
precision graphs of our technique and DIET. We ranked the 
detection results of our technique with the pattern agreement 
values. Next, we calculated recall and precision according to 
the ranking and plotted them. Recall and precision were 
calculated from the data in Table II by using the expressions 
of paragraph IV-ii. In TSAN and DIET, we ranked 
alternately agreement results and non-agreement results 
because results of the previous detection techniques were no 
value to rank. In recall-precision graph, higher plots are 
better. 

Figures 10 and 11 show particularly good results in the 
case used small-scale codes for all techniques. This reason is 
that small-scale codes don’t include unnecessary attributes 
and operations in the composition of patterns. 

Our technique distinguished State pattern Strategy 
pattern. Table V is an excerpt of the metrics measurements 
for the Context role in State pattern and Strategy 
pattern that were distinguished by the experiment on the 
large-scale codes.  State pattern treats the states in State  

 



 

 
Figure 10.  Recall-precision graph of the detection result (vs. TSAN) 

 
Figure 11.  Recall-precision graph of the detection result (vs. DIET) 

TABLE V.  EXAMPLE MEASUREMENTS OF THE CONTEXT ROLE’S 
METRICS 

Pattern - Role Number of fields Number of methods

State - Context 
12 58 
45 204 
11 72 

Strategy - Context 
18 31 
3 16 
3 5 

 
role and treats the actions of the states in the Context role. 
Strategy pattern encapsulates the processing of each 
algorithm into a Strategy role, and Context processing 
becomes simpler compared with that of State pattern. 
Table V shows 45 fields and 204 methods as the largest in 
Context role in State pattern (18 and 31 respectively in 
Context role of Strategy pattern). Therefore, the 
complexity of Context role of both patterns appears in the 
number of fields and the number of methods, and these are 
distinguishing elements. Figure 10 shows that our technique 
is especially good because State pattern and Strategy 
pattern could not be distinguished with TSAN.  

Figure 11 shows that the recall of DIET is low in the case 
of large-scale codes because this technique doesn't 
accommodate the diversity of pattern applications. 
Additionally, large-scale codes not only contain many 

attributes and operations in the composition of patterns but 
also subspecies of patterns. 

Therefore, our technique is superior to previous one 
because the curve of our technique is above the previous in 
Figures 10 and 11. 

Table VI and VII show the average F measure for each 
plot of Figure 10 and 11. The F measure is calculated with 
recall and precision calculated by the above-mentioned 
expression as follows. 

pp
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A large F measure means higher accuracy, and these tables 
show that our technique had a larger F measure than the 
previous techniques had. 

Our technique detected subspecies of patterns. For 
example, our technique detected the source code of the 
Singleton pattern that used the boolean variable as shown 
in Figure 12. This Singleton pattern was not detected in 
TSAN or DIET. However, unlike the previous techniques, 
our technique is affected by false positives because it is a 
gradual detection using metrics and machine learning instead 
of strict conditions. False positives of the Singleton 
pattern especially stood out because Singleton pattern is 
composed of only one role. It will be necessary to use 
metrics that are specialized to one or a few roles to make 
judgments about patterns composed of one role like the 
Singleton pattern (P4). 

The overall evaluation is that our technique is superior to 
previous one because of the above-mentioned graphs and the 
F measure. 

TABLE VI.  THE AVERAGE OF F MEASURE (VS. TSAN) 

Small-scale codes Large-scale codes
Our technique 0.67 0.56
Previous technique
(TSAN) 0.39 0.36 

TABLE VII.  THE AVERAGE OF F MEASURE (VS. DIET) 

Small-scale codes Large-scale codes
Our technique 0.69 0.55
Previous technique
(DIET) 0.50 0.35 

 

 
Figure 12.  Example of diversity of pattern application (Singleton pattern) 



V. CONCLUSION AND FUTURE WORK 
We devised a pattern detection technique using metrics 

and machine learning. Role candidates are judged by using 
machine learning that uses measured metrics, and patterns 
are detected from the relations between classes. We worked 
on the problems associated with overlooking patterns and 
distinguishing patterns in which the class structures are 
similar.  

We demonstrated that our technique was better than the 
previous detection technique by experimentally 
distinguishing patterns to which the class structures are 
similar. Moreover, subspecies of patterns were detected, so 
we could deal with the large diversity of patterns 
applications. However, our technique was more susceptible 
to false positives because it doesn't use strict conditions such 
as the previous technique. In our future work we will do the 
following. 

First, we plan to add more patterns to be detected. Our 
technique deals with five patterns currently. However we 
predict it is possible to detect other patterns if metrics to 
identify others are decided. And it is necessary to collect 
more learning data to cover the diversity of pattern 
applications. Moreover, we plan to specialize the metrics to 
each role by returning P2 because the result might depend on 
data. These lead to the enhancement of recall and precision. 

Second, we currently qualitatively and manually judge 
whether to return to P2 and to apply GQM again; hence, in 
the future, we should find an appropriate automatic judgment 
method. 

Third, we plan to prove the validity of the expressions 
and the parameters of agreement values and thresholds, etc. 
We consider that it is possible to reduce the false positive by 
deciding best thresholds of role agreement values and pattern 
agreement values. 

Finally, we plan to determine the learning number of 
times automatically and examine the correlation of the 
learning number of times and precision. 
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APPENDIX 
Figures 13 shows the results of applying GQM to the 

roles of all detection targets. 



 
Figure 13.  Results of applying GQM 
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