
Design Pattern Detection using Software Metrics and Machine Learning

Satoru Uchiyama
Hironori Washizaki
Yoshiaki Fukazawa

Dept. Computer Science and Engineering
Waseda University

Tokyo, Japan
s.uchiyama1104@toki.waseda.jp

washizaki@waseda.jp
fukazawa@waseda.jp

Atsuto Kubo
Aoyama Media Laboratory

Tokyo, Japan
kubo@nii.ac.jp

Abstract—The understandability, maintainability, and
reusability of object-oriented programs could be improved by
automatically detecting well-know design patterns in programs.
Many of the previous detection techniques are based on static
analysis and use strict conditions composed of class structure
information. Hence, it is difficult for them to detect design
patterns in which the class structures are similar. Moreover, it
is difficult for them to deal with diversity of design pattern
applications. We propose a design pattern detection technique
using metrics and machine learning. Our technique judges
candidates for the roles that compose the design patterns by
using machine learning and measurements of metrics, and it
detects design patterns by analyzing the relations between
candidates. It suppresses false negative and distinguishes
patterns in which the class structures are similar. We
conducted experiments comparing our technique with two
previous techniques. These results showed that our technique
was more accurate than the previous techniques.

Keywords—component; Object-oriented software, Design
pattern, Software metrics, Machine learning

I. INTRODUCTION
Design patterns (hereafter, patterns) are defined as

descriptions of communicating classes that form a common
solution to a common design problem. GoF patterns [1] are
representative patterns for object-oriented software. Patterns
are composed from classes that describe the roles and
abilities of objects. For example, Figure 1 shows one GoF
pattern, State pattern. State pattern is composed of roles
named Context, State, and ConcreteState. The use
of patterns enables software development with high
maintainability, high reusability, and improved
understandability, and it facilitates smooth communications
between developers.

Programs implemented by a third party and open source
software may take a lot of time to understand, and patterns
may be applied without having to describe class names,
comments, or attached documents in existing programs. So
pattern detection improves the understandability of programs.
However, manual pattern detection from the existing

programs is inefficient. Moreover, developers might
overlook patterns during manual detection.

Many studies on using automatic detection of patterns to
solve the above problems have used static analysis. However,
in static analysis, it is difficult to identify patterns to which
class structures are similar and patterns with few features. In
addition, there is still a possibility that software developers
might overlook patterns if they use strict conditions like the
class structure analysis, and applied patterns vary from the
intended conditions even a little.

We propose a pattern detection technique using software
metrics (hereafter, metrics) and machine learning. Although
our technique can be classified as a type of static analysis,
unlike previous detection techniques, it detects patterns by
using identifying elements derived by the machine learning
using measurements of metrics without using strict condition
descriptions (class structural information, etc.). Metrics mean
a set of a quantitative standard "Metric" that can be used to
evaluate the software development from various aspects. For
example, one such metric, number of methods (NOM),
means the number of methods in a class [2]. Moreover, by
using machine learning, we can, in some cases, get
previously unknown identifying elements from combinations
of metrics. To cover a diversity of pattern applications, our
method uses a variety of learning data because our technique
result may depend on the kind and number of learning data
used during the machine learning stage. Finally, we
conducted experiments comparing our technique with two
previous techniques. These results showed that our technique
was more accurate than the previous techniques.

II. PREVIOUS DESIGN PATTERN DETECTION TECHNIQUES
AND THEIR PROBLEMS

Many of the previous detection techniques use static
analysis [3][4]. These techniques chiefly analyze information
like class structures that satisfy certain conditions. If they
vary from the intended strict conditions even a little, or two
or more roles are assigned in a class, there is a possibility
that developers might overlook something.

There is the technique for detecting patterns from the
degrees of similarity between graphs of pattern structure and
graphs of programs to be detected [3]. However,

Figure 1. State pattern

Figure 2. Strategy pattern

distinguishing State pattern from Strategy pattern is
difficult because their class structures are similar (see
Figures 1 and 2). Unlike this method, we derive
distinguishing elements and machine learning and detect
patterns that are similar in terms of these metrics. In addition,
this technique [3] is open to the public to the web as the tool.

There is a technique for outputting pattern candidates
from features of metric measurements [5]. However, it
requires manual confirmation; this technique can roughly
identify pattern candidates, but the final choice depends on
the developer's skill. Our technique detects patterns without
manual filtering by using not only distinguishing elements
determined by metrics and machine learning but also by
analyzing class structure information.

There is a technique for improving precision by filtering
the detection results by using machine learning. This
technique inputs measurements on the classes and methods
of each pattern [6]. However, it uses the existing static
analytical technique, whereas our technique uses machine
learning throughout the whole process without the existing
technique.

There is a technique that analyzes programs both before
and after patterns are applied [7]. This technique requires a
revision history of the programs used. Our technique detects
patterns by analyzing only the current programs.

There is a technique for detecting patterns from the class
structure and behavior of a system after classifying its
patterns [8][9]. It is difficult to use it when patterns are
applied more than once and when there is a diversity of
patterns application. In contrast, our technique can deal with
patterns that are applied more than once and it can deal with
a diversity of pattern application.

There are also detection techniques using dynamic
analysis. These methods identify patterns by referring to the
execution route information, etc., of a program [10][11].

However, it is difficult to analyze the whole execution route
and use fragmentary class sets in an analysis. Additionally,
the result of dynamic analysis depends on the
representativeness of the execution sequences.

There are detection techniques by using multilayered
(multiphase) approach [12][13]. [12] is two phases approach
by static analysis. However it is difficult to detect creational
patterns and behavioral patterns because this technique
analyzes pattern structures and source code level constraints.
[13] is three-layered approach "DeMIMA". This consists of
three layers: two layers to recover an abstract model of the
source code, including binary class relationships, and a third
layer to identify patterns in the abstract model. However
distinguishing the State pattern from the Strategy
pattern is difficult because their structures are identical. Our
technique can detect patterns of all categories and try
distinction of State pattern and Strategy pattern by
using metrics and machine learning.

There is a technique for detecting patterns with formal
definitions in OWL (Web Ontology Language) [14].
However, false negative occurs because this technique
doesn't accommodate to the transformed pattern. In addition,
this technique [14] is open to the public to the web as the
Eclipse plug-in.

We suppress false negative by accommodating the
diversity of pattern applications and distinguish patterns in
which the class structures are similar with metrics and
machine learning. Finally, only the previous techniques [3]
[14] in the above-mentioned have been released as the tool.

III. OUR TECHNIQUE
Our technique is composed of a learning phase and a

detection phase. The learning phase is composed of three
processes, and the detection phase is composed of two
processes, as shown in Figure 3. Each process is described,
with pattern specialists and developers included as parties
concerned, as follows. Our technique currently uses Java as
the program language.
[Learning Phase]
P1. Define patterns

Pattern specialists determine the detectable patterns and
define the structures and roles composing these patterns.
P2. Decide metrics

Pattern specialists determine useful metrics to judge the
roles defined in P1 by using the Goal Question Metric
decision technique.
P3. Machine learning

Pattern specialists get measurements on each role in
programs to which patterns have already been applied by
using the metrics defined in P2 and input them to the
machine learning system. They verify the role judgments
after learning, and if the verification result is not good, they
return to P2 and revise the metrics.
[Detection Phase]
P4. Role candidate judgment

Developers get measurements for each class in the
programs to be detected by using the metrics defined in P2.
These are input to the machine learning system, which uses
them to judge role candidates.

Figure 3. Entire image of our technique

P5. Pattern detection
Developers detect patterns by using the pattern structure

definitions defined in P1 and the role candidates determined
in P4. The structure definitions correspond to the letters P, R,
and E of section III-ii.

III-i Learning Phase
P1. Define patterns

Currently, our technique treats five GoF patterns
(Singleton, TemplateMethod, Adapter, State,
and Strategy) and 12 roles. The GoF patterns are grouped
into creational patterns, structural patterns, and behavioral
patterns. Our technique uses these patterns to cover these
groups.
P2. Decide metrics

Pattern specialists decide useful metrics to judge roles by
using the Goal Question Metric decision technique [14]
(hereafter, GQM). GQM is a top-down approach to
clarifying relations between goals and metrics.

We experimented on judging roles by using general
metrics without GQM. However, the machine learning result
was not appropriate, since some metrics tended unstable.
Consequently, we choose GQM so that the machine learning
can function appropriately by distinguishing and stable
metrics in each role. In our technique, the pattern specialists
define the judgment of a role as a goal. Next, they define a
set of questions that should be evaluated for achievement of
goal. Finally, they decide useful metrics to help answer the
questions. Moreover, we decide questions by paying
attention to the attributes and operations of the roles. The
pattern specialist figures out the attributes and the operations
at each role necessary for the composition of the pattern by
reading the description of the pattern definition. Next, they
define whether those attributes and operations are defined as
a question.

For example, Figure 4 shows the goal of making a
judgment about the AbstractClass role in the

TemplateMethod pattern. AbstractClass roles have
abstract methods or methods using written logic that use
abstract methods like Figure 5. AbstractClass role can
be distinguished by the ratio of the number of methods to the
number of abstract methods because the number of methods
exceeds the number of abstract methods. Therefore, number
of abstract methods (NOAM) and number of methods
(NOM) are useful metrics for judging this role.

The lack of questions might occur because GQM is
qualitative. Therefore, if the role candidate judgment is not a
good one, the procedure loops back to P2 to attempt an
improvement. Moreover, it will be possible to apply GQM
to roles with new patterns in the future. The appendix in this
paper shows the results of applying GQM to the roles of all
detection targets.
P3. Machine learning

The machine learning is a technology that analyzes
sample data by computer and acquires useful rules to make
forecasts about unknown data. We used the machine learning
so that the patterns have a variety of application forms. The
machine learning suppresses false negative and achieves
gradual detection.

Our technique uses a neural network [16] algorithm. On
the other hand, support vector machine [16] could also be
used to distinguish a pattern of two groups by using linear
input elements. However, we chose a neural network
because it outputs the values to all roles in consideration of
the dependence of the different metrics. Therefore, it can
deal with cases in which one class has two or more roles.

A neural network is composed of an input layer, hidden
layers, and an output layer, as shown in Figure 6, and each
layer is composed of elements called units. Weights are
given when a value moves from unit to unit, and a judgment
rule is acquired by changing the weights. A typical algorithm
for adjusting weights is back propagation. Back propagation
calculates an error margin between output result y and the
correct answer T, and it sequentially adjusts weights from the

layer nearest the output to the input layer, as shown in Figure
7. These weights are adjusted until the output error margin of
the network reaches a certain value.

Our technique uses a hierarchical neural network
simulator [17]. This simulator uses back propagation. The
hierarchy number in the neural network is set to three, the
number of units of the input layer and the hidden layer are
set as the number of chosen metrics, and the number of units
of the output layer is set as the number of roles for the
judgment. The input is the metric measurements of each role
measured in a program to which patterns have already been
applied, and the output is an expected role. The learning
number of times is decided when the error margin curve of
the simulator converges. The convergence of the error
margin curve is manually determined at present.

Figure 4. Example of GQM（AbstractClass role）

Figure 5. Example of source code（AbstractClass role）

Figure 6. Neural network

Figure 7. Back propagation

III-ii Detection Phase
P4. Role candidate judgment

Metric measurements are measured on each class in the
programs. These measurements are input to the machine
learning simulator, and values between 0–1 are output to all
roles to be judged. The output values are normalized such
that the sum of all values becomes 1. These output values are
called role agreement values. A larger role agreement value
means that the role candidate is more likely correct. The
reciprocal of the number of roles to be detected is set as a
threshold, and the role agreement values that are higher than
the threshold are taken to be role candidates. The threshold is
1/12=0.0834 because we treat 12 roles at present.

Let us consider the class that assumes
AbstractClass NOM of 3 and NOAM of 2 and other
metrics of 0. Figure 8 shows the role candidate judgment
results with these measurements; the output value of
AbstractClass is the highest value. The roles are judged
to be AbstractClass and Target by regularizing the
values of Figure 8.
P5. Pattern Detection

Patterns are detected by searching for relations between
role candidates with the pattern structure. The search goes
sequentially from the role candidate with the highest
agreement value to the one with the lowest value. All
combinations of the role candidates that accord with the
pattern structures are searched. Patterns are detected when
the directions of relations between role candidates accord
with the pattern structure and when the role candidates
accord with roles at both ends of the relations. Moreover, the
relation agreement values reflect the kind of relation.
Currently, our method deals with inheritance, interface
implementation, and aggregation relations. These kind will
increase as more patterns get added in the future. The
relation agreement value is 1.0 when the kind agrees with the
relation of the pattern, and it is 0.5 when the kind does not
agree. If the relation agreement value is 0 when the kind of
relation does not agree, the pattern agreement value might
become 0, and these classes will not be detected as the
pattern. In that case, a problem similar to those of the
previous detection techniques will occur because the
difference of the kind of the relation is not recognized.

Figure 8. Example of machine learning output

Figure 9. Example of pattern detection (TemplateMethod pattern)

The pattern agreement value is calculated from the role
agreement values and the relation agreement values. The
pattern to be detected is denoted as P, the role set that
composes the pattern is denoted as R, and the relation set is
denoted as E. Moreover, the program that is the target of
detection is defined as P’, the set of classes judged role
candidates is R’, the set of relations between elements of R'
is denoted as E’. The role agreement value is denoted as Role,
and the relation agreement is denoted as Rel. The product of
the average of two roles at both ends of the relation and Rel
is denoted as Com, and the average of Com is denoted as Pat.
Moreover, the average of two Roles is calculated when Com
is calculated, and the average value of Com is calculated to
adjust Pat and Role to values from 0 to 1 when Pat is
calculated. If the directions of the relations do not agree, Rel
is assumed to be 0.

∑ ′∈′∈
′

⎭
⎬
⎫

⎩
⎨
⎧ >′′×∈′

=′
EeEe qp

qpqp

qp
eeCom

eeelREEee
PPPat

,
),(

0),(),(

1),(

Figure 9 shows an example of detecting the
TemplateMethod pattern. In this example, it is assumed
that class SampleA has the highest role agreement value for
an AbstractClass. The pattern agreement value between
the program Samples and the TemplateMethod pattern is
calculated with the following algorithm.

}{
},{

),(

assConcreteClassAbstractClE
assConcreteClassAbstractClR

ERthodTemplateMe

−=
=

=

<　

　

　

},{
},,{

),(

SampleCSampleASampleBSampleAE
SampleCSampleBSampleAR

ERSamples

◇←−=′
=′

′′=

<

RReeeERReeeE
rrrRrrrR

ERPERP

lj

ki

′×′⊆′′′=′×⊆=

′…′′=′…=

′′=′=

},,,{},,,{
},,,{},,,{

),(),(

2121

2121

KK 　　　

　　　　

　　　　　　　
(−< : inheritance, ◇← : aggregation)

5.0),(0.1),(
57.0),(45.0),(82.0),(

2111

322211

=′=′
=′=′=′

eeelReeelR
rrRolerrRolerrRole

　　

　　
=′),(nm rrRole The output of machine learning RrRr nm ′∈′∈ ,

=′),(qp eeelR The relation agreement value EeEe qp ′∈′∈ ,

),(), dbpc rrer ′′=′
348.05.0

2
57.082.0),(

635.00.1
2

45.082.0),(

21

11

=×
+

=′

=×
+

=′

eeCom

eeCom

,(,,,,

),(
2

),(),(

apdbca

qp
dcba

reRrrRrr

eeelR
rrRolerrRole

=′∈′′∈

′×
′+′

),(qp eeCom =′

　　　　　　　　　　

() 492.0348.0635.0
2
1),(=+×=′PPPat

In the program shown in Figure 9, the pattern agreement
value of the TemplateMethod pattern was calculated to
be 0.492. Pattern agreement values are normalized from 0 to
1, just like the role agreement values. The classes having
pattern agreement value that exceeds threshold are output as
the detection result. The reciprocal of the number of roles
for detection is taken to be the threshold (0.0834), similar to
the case of role candidate judgment, and pattern agreement
values that are higher than the threshold are output as the
detection result.

above-mentioned. We used NMGI when the program to be
detected is obviously similar to small-scale codes of patterns,
and it should not be used when the program is large-scale
codes used by a third party.

We focused our attention on the recall because the
purpose of our technique is detection covering diverse
pattern applications. Recall shows how free of leakage the
detection result is, whereas precision shows how free of
disagreement the detection result is. Table II is used to
calculate the recall. wr, xr, yr, and zr are numbers of roles,
and wp, xp, yp, and zp are numbers of patterns. Recall is
calculated from the data in Table II by the following
expressions.

In Figure 9, SampleA, SampleB, and SampleC were
detected as TemplateMethod patterns. Moreover,
SampleA and SampleB, SampleA and SampleC can
also be considered to be the TemplateMethod. In this
case, the relation of “SampleA SampleB” is more
similar to a TemplateMethod pattern than the relation of
“SampleA SampleC” is because its agreement value is
0.635, whereas that of the relation of “SampleA

−<

◇←

◇←
SampleC” is only 0.348.

rr

r
r xw

w
+

=Re Recall of role candidate judgment :

Table III shows the average recall for each role. Role
candidates must be judged accurately, because the State
pattern and Strategy pattern have the same class structure.
Therefore, roles other than the State and Strategy
patterns are assumed to have been judged accurately when
the role agreement value is more than the threshold, whereas
the roles of the State pattern and Strategy patterns are
assumed to be have been judged accurately when the role
agreement value is more than the threshold and both are
distinguished.

IV. EVALUATION AND DISCUSSION
We determined whether the machine learning simulator

derived identifying elements of the roles after learning.
Moreover, we compared our technique with two previous
techniques to verify the precision and recall of our technique
and to confirm whether it could match its detected patterns
with similar structures and diverse patterns.

The recalls for the large-scale codes are lower than those
for the small-scale codes in Table III. The accurate
judgments on the large-scale codes were more difficult
because those codes possessed unnecessary attributes and
operations for the composition of the patterns. Therefore, it
will be necessary to collect a lot of learning data to cover a
variety of large-scale codes.

IV-i Verification of Role Candidate Judgement
We used cross validation to verify the role candidate

judgment. In cross validation, data are divided into n groups,
and a test to verify a candidate judgment is executed such
that the testing data are one data group and the learning data
are n-1 data groups. We executed the test five times by
dividing the data into five groups. In this paper, programs
like codes in the reference [18], etc., are called small-scale,
whereas programs in practical use are called large-scale. The
parts where patterns are applied in small-scale codes (50
places in total) 1 [18][19] and large-scale codes (158 places
in total from the Java library 1.6.0_13 [20], JUnit 4.5 [21],
and Spring Framework 2.5 RC2 [22]) were used as
experimental data. The parts where patterns were applied in
real codes were manually

Table III’s results are for when the State pattern and
Strategy pattern could be distinguished. The Context
role had high recall, but State and ConcreteState
roles had especially low recalls for large-scale codes.
However, the candidates for the State role were output
with high recall when the threshold was exceeded. Therefore,
the State pattern can be distinguished by starting searching
from the Context role in P5, and this improves recall.

TABLE I. CHOSEN METRICS

collected.

Abbreviation Content
NOF Number of fields
NSF Number of static fields

NOM Number of methods
NSM Number of static methods
NOI Number of interfaces

NOAM Number of abstract methods
NORM Number of overridden methods
NOPC Number of private constructors

NOTC Number of constructors with argument
of object type

NOOF Number of object fields

NCOF Number of other classes with field of
own type

NMGI Number of methods to generate
instances

Table I shows the metrics that were chosen for the small-
scale and large-scale codes. We used different metrics by the
sizes of the codes. For instance, we chose the metric called
number of methods generating instance (NMGI) for the
small-scale codes because the method for transit states in the
ConcreteState role in the State pattern generates
other ConcreteState roles in the small-scale codes. We
didn’t use NMGI as a metrics of the large-scale codes
because there were unnecessary attributes and operations in
the composition of patterns and there are little
implementation specialized in State pattern such as the

1 All small-scale codes :

http://www.washi.cs.waseda.ac.jp/ja/paper/uchiyama/dp.html

TABLE II. INTERSECTION PROCESSION Recall was 90 percent or more on the small-scale codes,
but it dropped as low as 60 percent on the large-scale codes.

 Number detected Number not
detected

Number of
agreement wr, wp xr, xp

Number of
non-agreement yr, yp zr, zp

TABLE III. RECALL OF ROLE CANDIDATE JUDGMENT (AVERAGE)

 Average of recall (%)

Pattern Role Small-scale
codes

Large-scale
codes

Singleton Singleton 100.0 84.7
Template
Method

AbstractClass 100.0 88.6
ConcreteClass 100.0 58.5

Adapter
Target 90.0 75.2

Adapter 100.0 66.7
Adaptee 90.0 60.9

State
Context 60.0 70.0

State 60.0 46.7
ConcreteState 82.0 46.6

Strategy
Context 80.0 55.3
Strategy 100.0 76.7

ConcreteStrategy 100.0 72.4

The large-scale codes gave especially low recall for the
Adapter pattern. Table III shows the cause: the recall of
the role candidate judgment for the Adapter pattern was
not high enough. It is necessary to show that agreement
values of all roles that compose patterns are above the
threshold so that patterns will be detected. There were many
cases in which neither of the roles that composed patterns
was judged as a role candidate in the Adapter pattern. It
will be necessary to return to P2 and choose new metrics.
The State pattern was distinguished by searching from the
Context role, as in the State pattern detection in the
large-scale codes, and the recall of the pattern detection was
higher than the recall of role candidate judgment.

IV-iii Experiment Comparing Previous Detection
Technique

We experimentally compared our technique with
previous detection techniques [3][14]. These previous
techniques have been publicly released, and they treat three
or more patterns that our technique treats. These techniques
target Java program as well as our technique. The technique
proposed by Tsantails [3] (hereafter, TSAN) has four
patterns in common with ours (Singleton,
TemplateMethod, Adapter and State/Strategy).
Because this technique cannot distinguish the State pattern
from the Strategy pattern, these are detected as one
pattern. Dietrich’s technique [14] (hereafter, DIET) has three
patterns in common (Singleton, TemplateMethod,
Adapter). TSAN detects patterns from the degree of
similarity between the graphs of the pattern structure and
graphs of the programs to be detected, whereas DIET detects
patterns by using formal definitions in OWL (Web Ontology
Language). Patterns were detected and evaluated with the
small-scale and large-scale test data. Moreover, the test data
and learning data were different.

IV-ii Pattern Detection Results
Patterns are detected by our technique with pattern

application parts as test data in both the small-scale codes
and large-scale codes, and this result is evaluated. Table IV
shows precision and recall of the detected patterns. Precision
and recall are calculated from the data in Table II by the
following expressions.

pp

p
p xw +
=

w
Re

 Recall of pattern detection :

pp

The small-scale and large-scale codes shared a common
point in that they both had recalls that were higher than
precisions. This agrees with the purpose of suppressing
achieves gradual detection. However, there were many non-
agreements about the State patterns and Strategy
patterns in the large-scale codes. To avoid this problem, we
will have to find the best threshold.

p
p yw

w
+

=Pr
 Precision of pattern detection :

TABLE IV. PRECISION AND RECALL RATIO OF PATTERN DETECTION

 Number of
test data Precision (%) Recall (%)

Pattern
Small-
scale
codes

Large-
scale
codes

Small-
scale
codes

Large-
scale
codes

Small-
scale
codes

Large-
scale
codes

Singleton 6 6 60.0 63.6 100.0 100.0
Template
Method 6 7 85.7 71.4 100.0 83.3

Adapter 4 7 100.0 100.0 90.0 60.0
State 2 6 50.0 40.0 100.0 66.6

Strategy 2 6 66.7 30.8 100.0 80.0

Figure 10 shows the recall-precision graphs of our
technique and TSAN, and Figure 11 shows the recall-
precision graphs of our technique and DIET. We ranked the
detection results of our technique with the pattern agreement
values. Next, we calculated recall and precision according to
the ranking and plotted them. Recall and precision were
calculated from the data in Table II by using the expressions
of paragraph IV-ii. In TSAN and DIET, we ranked
alternately agreement results and non-agreement results
because results of the previous detection techniques were no
value to rank. In recall-precision graph, higher plots are
better.

Figures 10 and 11 show particularly good results in the
case used small-scale codes for all techniques. This reason is
that small-scale codes don’t include unnecessary attributes
and operations in the composition of patterns.

Our technique distinguished State pattern Strategy
pattern. Table V is an excerpt of the metrics measurements
for the Context role in State pattern and Strategy
pattern that were distinguished by the experiment on the
large-scale codes. State pattern treats the states in State

Figure 10. Recall-precision graph of the detection result (vs. TSAN)

Figure 11. Recall-precision graph of the detection result (vs. DIET)

TABLE V. EXAMPLE MEASUREMENTS OF THE CONTEXT ROLE’S
METRICS

Pattern - Role Number of fields Number of methods

State - Context
12 58
45 204
11 72

Strategy - Context
18 31
3 16
3 5

role and treats the actions of the states in the Context role.
Strategy pattern encapsulates the processing of each
algorithm into a Strategy role, and Context processing
becomes simpler compared with that of State pattern.
Table V shows 45 fields and 204 methods as the largest in
Context role in State pattern (18 and 31 respectively in
Context role of Strategy pattern). Therefore, the
complexity of Context role of both patterns appears in the
number of fields and the number of methods, and these are
distinguishing elements. Figure 10 shows that our technique
is especially good because State pattern and Strategy
pattern could not be distinguished with TSAN.

Figure 11 shows that the recall of DIET is low in the case
of large-scale codes because this technique doesn't
accommodate the diversity of pattern applications.
Additionally, large-scale codes not only contain many

attributes and operations in the composition of patterns but
also subspecies of patterns.

Therefore, our technique is superior to previous one
because the curve of our technique is above the previous in
Figures 10 and 11.

Table VI and VII show the average F measure for each
plot of Figure 10 and 11. The F measure is calculated with
recall and precision calculated by the above-mentioned
expression as follows.

pp

F

Re2
1

Pr2
1

1

+
=

A large F measure means higher accuracy, and these tables
show that our technique had a larger F measure than the
previous techniques had.

Our technique detected subspecies of patterns. For
example, our technique detected the source code of the
Singleton pattern that used the boolean variable as shown
in Figure 12. This Singleton pattern was not detected in
TSAN or DIET. However, unlike the previous techniques,
our technique is affected by false positives because it is a
gradual detection using metrics and machine learning instead
of strict conditions. False positives of the Singleton
pattern especially stood out because Singleton pattern is
composed of only one role. It will be necessary to use
metrics that are specialized to one or a few roles to make
judgments about patterns composed of one role like the
Singleton pattern (P4).

The overall evaluation is that our technique is superior to
previous one because of the above-mentioned graphs and the
F measure.

TABLE VI. THE AVERAGE OF F MEASURE (VS. TSAN)

Small-scale codes Large-scale codes
Our technique 0.67 0.56
Previous technique
(TSAN) 0.39 0.36

TABLE VII. THE AVERAGE OF F MEASURE (VS. DIET)

Small-scale codes Large-scale codes
Our technique 0.69 0.55
Previous technique
(DIET) 0.50 0.35

Figure 12. Example of diversity of pattern application (Singleton pattern)

V. CONCLUSION AND FUTURE WORK
We devised a pattern detection technique using metrics

and machine learning. Role candidates are judged by using
machine learning that uses measured metrics, and patterns
are detected from the relations between classes. We worked
on the problems associated with overlooking patterns and
distinguishing patterns in which the class structures are
similar.

We demonstrated that our technique was better than the
previous detection technique by experimentally
distinguishing patterns to which the class structures are
similar. Moreover, subspecies of patterns were detected, so
we could deal with the large diversity of patterns
applications. However, our technique was more susceptible
to false positives because it doesn't use strict conditions such
as the previous technique. In our future work we will do the
following.

First, we plan to add more patterns to be detected. Our
technique deals with five patterns currently. However we
predict it is possible to detect other patterns if metrics to
identify others are decided. And it is necessary to collect
more learning data to cover the diversity of pattern
applications. Moreover, we plan to specialize the metrics to
each role by returning P2 because the result might depend on
data. These lead to the enhancement of recall and precision.

Second, we currently qualitatively and manually judge
whether to return to P2 and to apply GQM again; hence, in
the future, we should find an appropriate automatic judgment
method.

Third, we plan to prove the validity of the expressions
and the parameters of agreement values and thresholds, etc.
We consider that it is possible to reduce the false positive by
deciding best thresholds of role agreement values and pattern
agreement values.

Finally, we plan to determine the learning number of
times automatically and examine the correlation of the
learning number of times and precision.

REFERENCES
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[2] M. Lorenz and J. Kidd Object-Oriented Software Metrics.
Prentice Hall, 1994.

[3] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.
Halkidis. Design Pattern Detection Using Similarity Scoring.
IEEE Trans. Software Engineering, Vol.32, No.11, pp. 896-
909 2006.

[4] A. Blewitt, A. Bundy, and L. Stark. Automatic Verification of
Design Patterns in Java. In Proceedings of the 20th
International Conference on Automated Software Engineering,
pp. 224–232, 2005.

[5] H. Kim and C. Boldyreff. A Method to Recover Design
Patterns Using Software Product Metrics. In Proceedings of
the 6th International Conference on Software Reuse:
Advances in Software Reusability, pp. 318-335, 2000.

[6] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele. Design Pattern
Mining Enhanced by Machine Learning. 21st IEEE
International Conference on Software Maintenance, pp. 295-
304 2005.

[7] H. Washizaki, K. Fukaya, A. Kubo, and Y. Fukazawa.
Detecting Design Patterns Using Source Code of Before
Applying Design Patterns. 8th IEEE/ACIS International
Conference on Computer and Information Science, pp. 933-
938, 2009.

[8] N. Shi and R.A. Olsson. Reverse Engineering of Design
Patterns from Java Source Code. 21st IEEE/ACM
International Conference on Automated Software Engineering,
pp. 123-134, 2006.

[9] H. Lee, H. Youn, and E. Lee. Automatic Detection of Design
Pattern for Reverse Engineering. 5th ACIS International
Conference on Software Engineering Research, Management
and Applications, pp. 577-583, 2007.

[10] L. Wendehals and A. Orso. Recognizing Behavioral Patterns
at Runtime Using Finite Automata. In 4th ICSE 2006
Workshop on Dynamic Analysis, pp. 33–40, 2006.

[11] S. Hayashi, J. Katada, R. Sakamoto, T. Kobayashi, and M.
Saeki. Design Pattern Detection by Using Meta Patterns.
IEICE Transactions, Vol. 91-D, No. 4, pp. 933–944, 2008.

[12] A. Lucia, V. Deufemia, C. Gravino and M. Risi. Design
pattern recovery through visual language parsing and source
code analysis. Journal of Systems and Software, Vol.82 (7),
pp. 1177-1193, 2009.

[13] Y. Guéhéneuc and G. Antoniol. DeMIMA: A Multilayered
Approach for Design Pattern Identification. IEEE Trans.
Software Engineering. Vol.34, No. 5, pp. 667–684, 2008.

[14] J. Dietrich, C. Elgar. Towards a Web of Patterns. In
Proceedings of First International Workshop Semantic Web
Enabled Software Engineering, pp. 117-132, 2005.

[15] V. R. Basili and D.M. Weiss. A Methodology for Collecting
Valid Software Engineering Data. IEEE Transactions on
Software Engineering, Vol. 10, No. 6, pp. 728–738, 1984.

[16] T. Segaran. Programming Collective Intelligence. O’Reilly.
2007.

[17] H. Hirano. Neural network implemented with C++ and Java
in Japanese. Personal Media. 2008.

[18] H. Yuki. An introduction to design pattern to study by Java.
http://www.hyuki.com/dp/

[19] H. Tanaka. Hello World with Java!
http://www.hellohiro.com/pattern/

[20] Sun Microsystems. Sun Developer Network.
http://developers.sun.com/

[21] JUnit.org. Resources for Test Driven Development.
http://www.junit.org/

[22] SpringSource.org. Spring Source.
http://www.springsource.org/

APPENDIX
Figures 13 shows the results of applying GQM to the

roles of all detection targets.

Figure 13. Results of applying GQM

	I. Introduction
	II. Previous Design Pattern Detection Techniques and Their Problems
	III. Our Technique
	III-i Learning Phase
	III-ii Detection Phase

	IV. Evaluation and Discussion
	IV-i Verification of Role Candidate Judgement
	IV-ii Pattern Detection Results
	IV-iii Experiment Comparing Previous Detection Technique

	V. Conclusion and Future Work
	References
	Appendix

