
Estimate of the appropriate iteration length in agile development by conducting
simulation.

Ryushi Shiohama∗, Hironori Washizaki∗, Shin Kuboaki†, Kazunori Sakamoto∗, Yoshiaki Fukazawa∗
∗Information Technology Dept.

Waseda University
Tokyo. Japan

r.shiohama@fuji.waseda.jp
†Afrel co., ltd.
Tokyo. Japan

Abstract—Agile development refers to the group of soft-
ware development methodologies based on an iterative and
incremental process model. It divides the development period
into short time frames called iterations and uses a body
of knowledge obtained from past experience called practice
to ensure agile software development Although the iteration
length is an important factor in agile development however it
has so far been decided by the qualitatively and it has been
reported that projects with an inappropriate iteration length
tends to be failed. We thus propose a new methodology for
estimating an appropriate iteration length through the conduct
on of a simulation based on project constraints.

In this paper we first, propose a method of calculating an
appropriate iteration length for a particular project to promote
the easy use of agile development. Second, the relationship
between the iteration length and project constraints was inves-
tigated by varying the parameters to create diverse situations.

Keywords-Agile, Iteration, XP, Scrum, Iterative, Incremental,
Simulation

I. INTRODUCTION

Agile development refers to the group of software devel-
opment methodologies based on an iterative and incremental
process model[5]. It divides the development period into
short time frames called iterations and uses a body of
knowledge obtained from past experience called practice to
ensure agile software development.

Figure 1 shows the model used to extract common pro-
cesses from eXtreme Programming[8](XP) and Scrum[9]
which are the most frequently used agile development
processes[5]. In this common model, developers implement
various requirements and show the functions to the customer
in each iteration feedback from the customer is applied in
the next iteration.

Each iteration has the three phases, ”iteration plan-
ning”, ”implementation” and ”release and review”[3]. In
the iteration planning phase, picking the requirements from
unimplemented functionalities are selected to decide the
development scope of the iteration. The requirements to be
implemented original from the development scope in the

implementation phase and specifications are changed on the
basis of customer feedback in release and review phase.

In software development no project has the same con-
straints and no process model is suitable for all projects. To
increase productivity, some development parameters should
be changed to match the project constraints. In particular,
in agile development, there are numerous parameters that
should be changed such as the iteration length, the type
of practices and so forth. However most previous studies
only considered verifying the applicability of recent soft-
ware developments or performed comparisons with waterfall
development[2][4].

We thus propose a new methodology for estimating an
appropriate iteration length by conducting a simulation based
on project constraints. As the project constrains we use
five parameters to identify project features. Using our pro-
posed method of calculating an appropriate iteration length
for a particular project, the relationship between project
constraints and iteration length is investigated by varying
the parameters to create diverse situations. This method
is expected to promote the easy use of agile development
processes.

The reminder of the paper is organized as follow. Section
II describes the problem of deciding an appropriate iteration
length in agile development. Section III explains the proposed
methodology. Section IV gives the results of simulation and
their implication. Section V briefly discusses related work.
Section VI gives a summary of this paper along with the
future works.

II. PROBLEM OF DECIDING THE ITERATION LENGTH

In agile development, the iteration length affects the
success of a software development project since it influences
the scope of iteration[7], how changes are managed and
implemented and how the development cycle is generated.

However there have been few studies on the iteration
length and only qualitative values have been recommended
such as, a week for XP and a month for Scrum[5]. Therefore
managers must decide the iteration length exclusively from



Figure 1. common model of agile development

their own experience and an incorrect decision may lead
to project failure. Here, we explain how an inappropriate
iteration length may lead to project failure[6].

An excessively long iteration length reduces the oppor-
tunities for obtaining feedback from customer and makes
it difficult to deal with specification changes. Moreover,
it increases the scope of iteration and makes the project
more complex. In contrast, an excessively short iteration
length increases the numbers of iteration planning phases,
thus increasing overheads and leading to cost escalation. A
developer may be forced to make the requirements much
smaller to adjust the iteration length, thus increasing inte-
gration costs.

III. ESTIMATION OF ITERATION LENGTH BY
CONDUCTING SIMULATION

We provide a methodology for estimating an appropriate
iteration length for a project by conducting a simulation. Our
methodology uses a common model extracted from XP and
Scrum. This section describes the following points.

• The simulation methodology.
• The extraction of the common model.
• The flow of simulation in detail.

A. Simulation methodology

There are two main ways of investigating development
processes by observing real projects and finding general laws

or by creating a common model and using it to conduct
simulations to estimate the real phenomenas.

The former way requires the observation for enormous
amount of data because data may include artificial errors
and because no two projects have the same constraints. In
the latter way, one can compensate for a lack of data by
using a simulation model that is constructed from well-
known events. On the basis of these features, we considered
the latter way to be more suitable in the case of agile
development. However the results should only be applied
to situations within the scope of the model and must be
validated using some test cases. In this paper, we use two
case studies for validation in Section IV.

B. Method of extracting the common model
As we mentioned above, analysis of whole project re-

quires enormous data, however the part of the process can
be investigated much easier. We thus referred to existing
literatures of agile development and results of development
process researches and combined them to construct the simu-
lator model. Following shows the construction of simulator
model. Figure 2 shows a class diagram of the simulator.
Simulator creates the number of trials projects based on
given Constraints. Each Project involves a number of some
Iterations and has the Result of the project. Iterations are
created by Iteration planning, Implementation and Review
and it simulates the development processes using Developer,
Requirements, Tasks and some parameters from Constrains.



Table I
PARAMETERS USED IN SIMULATOR

Parameter name Values unit

Project Constraints
Development Term Integer greater than or equal to 1 days
Variety 0, 5, 10, 15, 20, 25, 30 %
Complexity 25, 50, 75 %

Developer Ability 0.25(Beginner), 1(Intermediate), 2.5(Advanced)

Requirement Required labor Integer greater than or equal 1 man-days
Importance 0-1 　

Figure 2. Class diagram of simulator

Table I shows the parameters used in the simulator.

Development Term　
This is the number of days from the beginning to
the deadline of the project excluding holidays. We
assume that the project starts at the beginning of
the first iteration because our method assumes that
the initial requirements have already been decided.

Variety　
The variety describes the probability that speci-
fications change in each iteration. We can add,
change and remove requirements as the specifica-
tion change. However, it is impossible to know the
exact amount of variety, so it should be estimated
by considering the novelty, area and concreteness
of the project on the basis of past experiences.
In our method, specification changes occur for two
reasons: customer feedback based on the artifacts
of each iteration and the volatility of the market
or advances in technology. For simplification, we
assume that variety results in both types of change,
The former is incorporated using the model dis-
cussed in [16] and latter is incorporated by con-
sidering the elapsed time from the beginning of
the project.

Complexity　

Figure 3. Relationship between complexity and volume of dependencies

Complexity indicates the probability that depen-
dences between requirements are generated. As
shown in Figure 3, we assume that a high complex-
ity corresponds to a large number of dependences
between requirements. Integrity costs are generated
when requirements that have been already released
depend on the requirement that is currently im-
plementing or changing. Integrity costs are added
as tasks as explained below. Similarly to variety,
the complexity cannot be determined before the
project starts, meaning that it should be estimated
by considering the area and size of the project on
the basis of past experiences.

Developer ability　
Developer ability indicates the ability of a devel-
oper in the specified project. To decide a basic
value for developer ability, we consider a previous
report on how developer ability affects produc-
tivity, [14] and [15] In the former study, it was
concluded that there is an approximately 28-fold
difference between the productivity of a beginner
and an advanced on developers.
However, in the latter study, an investigation of the
evolution of integrated development environment
(IDE), object oriented programing (OOP), web
frameworks and testing frameworks, a 10-fold dif-
ference between beginner and advanced developers
and a 2.5 times difference between intermediate
and advanced developers were concluded. We con-
sidered the latter to be more suitable for fitting
our model and used values of 0.25, 1, 2.5 for the
developer ability.

Required labor of a requirement　



This is the amount of labor required to develop the
requirement. using a developer intermediate ability
as the unit.

Importance of a requirement　
This indicates the relative importance of the re-
quirement as a value from 0 to 1. For example,
considering the contents availability management
system which has four requirements, ”searching for
contents”, ”registering contents”, ”sorting results”
and ”supporting input”, ”searching for contents”
and ”registering contents” are the essential parts of
the system and should have an importance of 0.8 -
1.0. Requirements that are not essential but impor-
tant, such as ” sorting results” should be marked
0.5 - 0.8. Moreover additional requirements such
as ”supporting input” should be marked 0.1 - 0.5.

The simulator uses the above parameters and calculates
the result as describing below.

Progress　
Progress is given by the sum of the relative impor-
tances of the implemented requirements.

Cost 　
Cost is the total number of man-hours of work
including the customer man-hours spent in iteration
planning. We do not focus on the material cost and
equipment cost because they are basically constant
even if the iteration length is changed.

As our method uses a comparable way to obtain an
appropriate iteration length, we can use relative values in
the results.

C. Flow of the simulation

On the basis of the flow of the simulation shown in Figure
4, we next explain the simulator model in detail.

1) There are three phases in iteration planning: require-
ment prioritization, deciding the scope and require-
ment splitting.

a) Requirements are prioritized in accordance with
their importance and the dependences between
them. Concretely requirements are sorted by
importance and then raise the priority of re-
quirement thats that are dependent on other re-
quirements are raised. This strategy originates
from practice of agile development: value-driven
development and develop the available function-
ality of each iteration.

b) To decide the development scope, a scope-box
method and a time-box method should be con-
sidered. The former is a means of deciding the
length of the iteration from the development
scope and the latter is a means of deciding the
development scope from the iteration length. In
our method, it is assumed that the iteration length

 Iteration Planning

During iteration term

During development term
Deadline

End of itearation

Figure 4. Flow of the simulation

is constant throughout the whole project, thus
we use the time-box method for deciding the
development scope.

c) In our method, requirements are defined in terms
of their functionality, regardless of whether they
are functional or non-functional. Thus, we as-
sumed that the requirements are divided into
smaller tasks in the requirement splitting phase
and that a developer is assigned to implement
each task for. To avoid a procedure error due
to requirement splitting, we fix the size of tasks
to 0.5-2 man-days, which was reported as an
appropriate value in [5].

The time spent on iteration planning depends on the
project, the customer and team decisions. However,
for modeling purpose we assumed that it depends on
the length of the iteration and size of the development
scope.

2) In the implementation phase, developers implement
the tasks that are selected in iteration planning. Figure
5 shows a state transition diagram of the implemen-
tation, developer has two states: empty and assigned.
Each task has three states: todo, doing and done. A
statement of both are updated every an hour, and the
rules of the state changes are as follows.

• A developer in the empty state:
– If there is at last a task which state is todo, the

developer is assigned to the task. It changes



the developer state to assigned and task state
to doing.

– if there is no task which state is todo, nothing
is happened.

• A developer in the assigned state:
– if the task still have the work to implement, the

developer implements the assigning task.
– if the task has been implemented, it enters the

done state and the developer returns to empty
state.

In our method, a developer works a fixed 8 hour per
day and never expand their working time. It comes
from the practice called 40 hours working per week
from XP. Moreover to simplify the calculation, simu-
lation should only consider variations of the iteration
length. The total implementation time is given by
Iteration length (days) * 8 (hours) - iteration planning
time (hour)

For example, in the case of 7 days per iteration and 6
hours of iteration planning, the total implementation
time is 50 hours. A task that is in the done state is con-
sidered as an implemented task, and the requirement
that all tasks are in the done state becomes an artifact
of the iteration. If a requirement includes a task in the
todo or doing state task, it must be implemented in
the next iteration[5].

3) In the review and release phase, specifications may
be changed or previously implemented requirements
may be released. The probability of this occurring
depends on the project complexity. Changed require-
ments are added tasks for specification changes or are
integrated and set to the todo state. After that, new
requirements are added that are related to the released
functionalities; thus these requirements have higher
importance and stronger dependences than the average
values for the initial requirements[5]. The number of
added requirements is limited by the initial number of
requirements and project variety [16].

4) The above iterations are repeated until the last day of
the project. At last there is final release phase. In this
phase sum of the implemented requirements and the
total number of man-hours of work are calculated and
outputted as the result.

D. Use of our method

Our method can be used to help apply the agile de-
velopment processes to actual project. The expected users
are project managers or product managers who decide the
iteration length. The results of the simulation can be used to
decide the iteration length before starting the project or used
to review the project after its completion by comparing the
project results and those can be obtained from simulator.

Moreover, it can be used in the middle part of a project,
particularly when an unexpected accident or delay to the
process occurs.

E. Threats to validity

In our model, we use only five parameters to iden-
tify a project feature. Hence it is the simulator model
for estimating appropriate iteration length, we eliminate
some parameters to avoid unnecessarily complexity. To
choose the parameters, we refer to paper of Information-
technology Promotion Agency, Japan which mention about
non-waterfall development[24]. However in the real project,
no parameters can be ignored for considering result. Thus it
should be recognized as threats to validity and need to be
examined for assuring validity of the model.

IV. RESULTS OF SIMULATION AND DISCUSSION

We select two projects which are published the detailed
project tracking and review of them as case study. We then
simulate these projects using our method and compare the
simulation results for the projects to with their review to
validate the simulator. After that, the parameters are varied
to create different situations, and analyze the relationship
between the project constraints and appropriate iteration
length. Each simulation is performed 1000 times using a
computer with the following specifications, and the results
given are average values.
　 OS: Mac OSX 10.6.7
　 Processor: 2.3GHz Intel Core-i5
　Memory: 8GB 1333 MHz DDR3

A. Case study 1

We uses the XP Practice Report from Eiwa System
Management, inc. for case study 1[18]. This report describes
a project that was launched to evaluate agile development,
which gives detailed project constrains and reviews about
the iteration length. In this project, a Web application for
patient management system is developed in XP using five
developers: a beginner programmer who joined the company
the previous year, two intermediate-level programmers who
have worked at the company for a few years and two
advanced level-programmers.

This project have a month for development and XP
normally adopts an iteration length of a week, so this
project involved four iterations. Init requirements are con-
structed from seven main stories and some requirements
are gradually fixed through the feedback from the customer.
From the above conditions we extract the given parameters
for the simulator, which are shown in Table II. Because
there are no exact details about variety and complexity, we
calculate the variety from the actual specification changes.
Moreover, we estimated the number of dependences between



Figure 5. State transition diagram of implementation

Table II
GIVEN PARAMETERS FOR CASE STUDY 1

Name Value
Development term 20

Variety 10%
Complexity 50%
Developers 0.25, 1, 1, 2.5, 2.5（five people）

Required man-day for requirements 10, 10, 15, 10, 10, 10, 5 man-days
Importance of requirements 0.3, 0.6, 1, 0.3, 0.6, 0.6, 1

Figure 6. Simulation results for case study 1. x: iteration length, y: progress

the requirements from the story names and determined the
complexity as its reciprocal.

Table III shows result values of the simulations and Figure
6 shows the progress of the simulations of case study 1, x-
axis shows the number of iterations and y-axis shows the
progress value. We can see progress value is the highest
the case in four iterations, meaning that five days for each
iterations. Normally progress should be higher when the
number of iterations are increased. However in this case, the
result involved five and seven iterations are lower than four
iterations. It indicates that small scope reduces productivity
in high complexity.

Figure 7 shows the cost of the simulations of case study
1, x-axis shows the number of iterations and y-axis shows
the progress value. Cost tend to be reduced by decreasing
the number of iterations though a case of five iterations is

Figure 7. Simulation results for case study 1. x: iteration length, y: cost

lower than an law of others. It implicates total labor times
for development are almost same except the case of five
iterations.

Figure 8 shows that unit cost and it tends to be higher
in the case of five iterations and the review of the project
commented that iteration length was slightly shorter than the
appropriate length though this project almost succeeded”.
This demonstrates that the simulator works well for this
project.

B. Case Study 2

As case study 2, we consider a project about a corre-
spondence education system carried out by Probizmo, Co.
LTD[17]. This project was reported in an IT development
plan of Shimane prefecture and the project title was ”Re-
search project for validating the business model of Ruby”.

In this project, the development term was 100 days and
developer was an intermediate level programmer who used
the scrum model. There were 16 initial requirements, and
as because a Scrum model was used, the iteration length
was a month, meaning that this project was completed in 4
iterations. Regarding the project features, it was reported that
the complexity was very low with few specification changes.
We thus extracted the parameters present them in Table IV.

Table V shows result values of the simulations and Figure



Table III
RESULT OF THE SIMULATION

Number of iterations Progress Cost Progress/Cost
7 73337 535373 0.136983
5 76089 471283 0.161450
4 79916 497689 0.160574
3 72345 458321 0.157847
2 68270 434585 0.157092

Table IV
GIVEN PARAMETERS FOR CASE STUDY 2

Name Value
Development term 100

Variety 25%
Complexity 25%
Developpers 2.5（a person）

Required man-day of Requirements 5, 5, 10, 10, 15, 10, 10, 10, 5, 10, 10, 15, 10, 10, 10, 10man-day
Importance of Requirements 0.3, 0.3, 0.6, 0.6, 1, 0.6, 0.6, 0.6, 0.3, 0.6, 0.6, 1, 0.6, 0.6, 0.6, 0.6

Figure 8. Simulation results for case study 1. x: iteration length, y:
progress/cost

9 shows the progress of the simulations of case study 2.
Progress increases extremely in the cases of less than 10
iterations except the case of two iterations. It indicates that
in the cases of more than 12 iterations are too short for
this project complexity and it also exceeds the amount of
specification change limit.

Figure 10 shows the cost of the simulations of case
study 2. Cost tends to be reduced by decreasing number of
iterations. Similar to progress, it can be separated boundary
of the 10 iterations. Progress per unit cost for the case
study 2 are shown in Figure 11. It tends to be higher in
the case of three or four iterations. Moreover, the review
of the project commented that the project was successfully
finished in four iterations and the iteration length fitted the
project”. Demonstrating that the simulator works reasonably
well for this project.

Figure 9. Simulation result of case study 2 x:iteration length, y: progress

Figure 10. Simulation result of case study 2 x:iteration length, y: cost

C. Relationship between project constraints and iteration
length

We next varied the parameters, particularly the variety and
the complexity, and used the simulation results to investigate
the relationship between project constraints and appropriate



Table V
RESULT OF THE SIMULATION

Number of iterations Progress Cost Progress/Cost
20 92688 569624 0.159915
17 97124 569341 0.170590
15 96591 546541 0.176731
13 93455 510257 0.183152
10 103807 535765 0.19375
7 103104 504808 0.204243
5 103201 491463 0.209998
4 102349 486195 0.210510
3 101626 471163 0.215691
2 92952 446110 0.2083611

Figure 11. Simulation result of case study 2 x:iteration length, y:
progress/cost

iteration length. Parameters were fixed as follows
　 Development term: 60 days
　 Developers: 0.25, 1, 1, 1, 2.5 (five people)
　 Number of requirements: 30 (Suitable size for develop-
ment in 60 days by five people)

Figure 12, 13, 14 shows the simulation results. Each graph
represents a certain complexity value and each line in the
graph represents a certain value of variety. Concretely all
figures have 4 legends representing: variety 0, 10, 20, 30 and
Figure 12 represents complexity: 25, Figure 13 represents
complexity: 50 and Figure 14 represents complexity: 75.
Moreover x-axis describes the length of iterations and y-
axis shows the progress per unit cost values.

We first focused on the variety. Regardless of the com-
plexity, a high variety tends to decrease the appropriate
iteration length and a low variety tends to increase it. This
may be because the specifications are changed frequently
meanings that dealing with changes sooner makes reduces
the integration cost and allows the preferred requirements to
be implemented first. On the other hand, when the variety
is low, wasteful planning may occur if the iteration length
is too short.

Then, focusing on the complexity.It can be seen that a high
complexity increases the appropriate iteration length. In the

Variety

Figure 12. Relationship between project constrains and iteration length

Variety

Figure 13. Relationship between project constrains and iteration length

case that there are many dependences between requirements,
a short iteration length reduces the development scope
regardless of requirement’s dependencies and increases in-
tegration cost.

Additionally, results are more variable in the cost of high
complexity. This is due to the method used to generate the
dependences, which are set randomly using the complexity
values; This may have reduced the accuracy of the results



Variety

Figure 14. Relationship between project constrains and iteration length

V. RELATED WORKS

To estimate the impact of processes before start of a
project, some software process simulation methods have
been proposed over the years. Barghouti and Rosenblum
[19] proposed methods for simulating and analyzing soft-
ware maintenance process. Otero et al. [22] use simulation
to optimize resource allocation and the training time re-
quired for engineers and other personnel. Joana Rus, James
Collofello and Peter Lakey helped apply the plan-based
development using system dynamics simulation model[13].
Researches above are focused on plan-based development
or part of the development process. As the research of agile
development process, Dan Port and Alexy Olkov[2] created
the original simulation model and used it to investigate re-
quirements prioritization strategies. Moreover they proposed
the new prioritization methodology that are combined agile
development and waterfall development ways. Melis et al.
[20][21] proposed an event-driven simulator for Extreme
Programming practices such as test-driven programming and
pair programming. David J. Anderson et al. [23], authors
presented an event-driven simulator of the Kanban process
and used it to study the dynamics of the process, and to
optimize its parameters. And they were also using simulation
to evaluate the Scrum and Kanban approaches on the basis
of actual software maintenance processes.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we simulated agile development while
focusing on the iteration length to help apply agile develop-
ment processes to actual projects. The main points of this
study are as follows.

• We proposed a way of calculating an appropriate itera-
tion length for a particular project to promote the easy
use of agile development.

• We investigated the relationship between iteration
length and project constraints by varying the parameters
to create diverse situations.

At least result of our research shows that appropriate iter-
ation length is changed by condition of project constraints
such as the increase variety reduce the term of appropriate
iteration length and high complexity situation suit longer
iteration length. However our model still has the threats to
validity and need to be validated more carefully to estimating
obvious appropriate iteration length for each project.

As the future work, use class diagram, activity diagram
and so on for applying our method to various of projects
easily and validating this model through much more cases.
Moreover, to make simulator more elaborate, we consider
taking in the common method for measuring and estimating
the development processes such like the function point
methodology.

REFERENCES

[1] Independent administrative corporation, information process-
ing promote organization, Software Engineering Center :
”Observation about non-waterfall development observation
report”, 2009 information property 0507

[2] Dan Port, Alexy Olkov :”Using Simulation to Investigate
Requirements Prioritization Strategies.”，2008 Proceedings
of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering

[3] Masaru Amano : How to proceeding the agile development,
http://www.slideshare.net/esmsec/ss-5656398

[4] Akira Hattori, Koichiro Ochimizu : Validating the organiza-
tion pattern using probability petri-net, Computer software
vol. 23 (2006) No.1

[5] Craig Larman : Agile and Iterative Development, Addison-
Wesley Professional; 1 edition (August 21, 2003)

[6] Toshiya Ikegami : Why is agile failed, Nikkei System 21th
December 2010
http://itpro.nikkeibp.co.jp/article/COLUMN/20101215/355245/

[7] Shusuke Shitara : Agile Transparency
http://gihyo.jp/dev/serial/01/agile-transparency/0002,
2009/11/10

[8] Pekka Abrahamsson, Michele Marchesi and Giancarlo Succi
: Extreme Programming and Agile Processes in Software
Engineering: 7th International Conference, XP 2006, Oulu,
Finland, June 17-22, 2006, Proceedings , Springer July 26,
2006

[9] Ken Schwabe and Mike Beedle : Agile Software Develop-
ment with Scrum, Prentice Hall October 21, 2001

[10] Boehm, B, and Papaccio, P. 1988 : ”Understanding and
Controlling Software Costs.”，IEEE Transactions on Software
Engineering, Oct. 1988.

[11] Jones, C. 2000. : ”Software Assessments, Benchmarks, and
Best Practices.”,Addison-Wesley.

[12] Tetsuo Tamai : Software Engineering, Iwanami shoten（2004）



[13] Joana Rus, James Collofello, Peter Lakey : ”Software process
simulation for reliability management”, Journal of Systems
and Software Volume 46 Issues 2-3, 15 April 1999, pages
173-182

[14] H. Sackman, W. J. Erikson, E. E. Grant :“ Exploratory ex-
perimental studies comparing online and offline programming
performance”,Communications of the ACM Volume 11 ,
Issue 1 1968

[15] Tom DeMarco, Timothy Lister : ”Peopleware”, 日経 BP 社
(2001)

[16] Takako Nakatani, et al. : A case study of requirements
elicitation process with changes, IEICE Transactions 93-D:
2182-2189, 2010

[17] IT development plan of Shimane 2010 : Validating the busi-
ness model of Ruby, http://www.pref.shimane.lg.jp/sangyo/it/

[18] Eiwa System Management, inc. : XP practice report
http://objectclub.jp/community/XP-
jp/xprelate/xppracticereport

[19] Barghouti, N. S., Rosenblum, D. S.. : A Case Study in
Modeling a Human-Intensive, Corporate Software Process.
Proc. 3rd Int. Conf. On the Software Process(ICSP-3). 1994,
IEEE CS Press.

[20] Melis M. Turnu I., Cau A. and Concas G. : Evaluating
the Impact of Test-First Programming and Pair programming
through Software Process Simulation. Software Process Im-
provement and Practice, vol. 11, 2006, pp. 345-360.

[21] Melis M., Turnu I., Cau A. and Concas G. : Modeling
and simulation of open source development using an agile
practice. Journal of Systems Architecture, vol. 52, 2006, pp.
610-618.

[22] Otero, L.D., Centeno, G., Ruiz-Torres, A.J., Otero, C.E.. :
A systematic approach for resource allocation in software
projects. Comput. Ind. Eng. 56(4)(2009) 1333-1339.

[23] Anderson, D.J.. Concas, G.. Lunesu, M.I., and Marchesi, M.,.
: Studying Lean-Kanban Approach Using Software Process
Simulation. Proc. Agile Processes in Software Engineering
and Extreme Programming 12th international Conference, XP
2011, Madrid, Spain, May 10-13 2011.

[24] Information-technology Promotion Agency, Japan Software
Engineering Center. : Investigation for non-waterfall develop-
ment, Information-technology Promotion Agency, Japan, 30th
March, 2010.


