
TRACEABILITY MEASUREMENT BETWEEN A DESIGN MODELAND ITS SOURCE CODEHiroki Itohy, Hiroyuki Tanabez, Rieko Namikiz, Hironori Washizakiy and Yoshiaki Fukazawayy Department of Computer S
ien
e and EngineeringWaseda UniversityTokyo, Japanemail: hitoh�fuka.info.waseda.a
.jp, fwashizaki, fukazawag�waseda.jpz Osaka Gas Information System Resear
h Institute CO., LTD.Tokyo, Japanemail: fTanabe Hiroyuki, Namiki Riekog�ogis-ri.
o.jpABSTRACTAlthough resear
hers have re
ently investigated howto use and preserve tra
eability be
ause it is an impor-tant issue for software maintainability, the degree oftra
eability is diÆ
ult to re
ognize obje
tively and pre-
isely even if tra
eability links are re
overed. Hereinwe propose a semi-automati
 approa
h to measure thetra
eability between a design model and its sour
e
ode via the Goal-Question-Metri
 approa
h. Theoriginal algorithm whi
h maps the elements of designand implementation is also proposed for a

urate mea-surements. We dis
uss performan
e of the mapping al-gorithm and usage of measurement results. The resultssuggest that our approa
h may elu
idate the
onditionfor tra
eability and aid in tra
eability maintenan
e.KEY WORDStra
eability, GQM approa
h, metri
s, mapping, soft-ware maintenan
e1 Introdu
tionTra
eability, whi
h is the degree a relationship
anbe established between two or more produ
ts of thedevelopment pro
ess [1℄, is
ru
ial for software main-tainability. Resear
hers have investigated utility oftra
eability in model driven development. One ben-e�t of tra
eability is
hange impa
t analysis; Hammadet al. have presented a system to dete
t
hanges in thesour
e
ode and to translate them into design
hanges[2℄. Olsen et al. have proposed
overage and orphananalyses, whi
h
an e�e
tively verify the adequa
y ofdo
uments [3℄. Furthermore, other usages of tra
eabil-ity have been reported in the survey of Winkler et al.[4℄ (e.g. supporting design de
isions, understandingartifa
ts, and reusing software).To take advantage of the bene�ts des
ribedabove, tra
eability must be identi�ed. Although thereare several te
hniques to visualize tra
eability links, itremains diÆ
ult to obje
tively
omprehend the levelof tra
eability. Due to this hurdle, tra
eability may

not be re
ognized
orre
tly, leading to problems withmaintenan
e su
h as inadequate modi�
ation of soft-ware artifa
ts and determination of reusing design
omponents. Hen
e, both visualization and an indi-
ator are required to properly understand it.We propose a semi-automati
 approa
h to mea-sure tra
eability between a design model des
ribed inUML and its sour
e
ode written in an obje
t-orientedprogram language. Our numeral results enable devel-opers and evaluators obje
tively to re
ognize tra
eabil-ity. Then developers
an
on�rm the validity of thedo
uments and determine how to treat the do
umentswith regards to maintenan
e. To measure tra
eabilitybetween a design model and its sour
e
ode, tra
e-ability links must be
reated be
ause
urrent softwaredevelopment rarely maintains these links. Hen
e, wealso present an original mapping algorithm and dis
ussits e�e
tiveness.This paper is stru
tured as follows. Se
tion 2 de-s
ribes the motivation and the total image of our ap-proa
h. Se
tion 3 details the mapping pro
edure be-tween design and implementation, and Se
tion 4 mea-sures the tra
eability. Se
tion 6 dis
usses our meth-ods, while Se
tion 7 presents related works. Finally,Se
tion 8
on
ludes the paper.2 Overview of Our Approa
h2.1 MotivationWhen software needs to be modi�ed, developers will
onsult its design model to spe
ify the lo
ations of the
hange. However, if tra
eability is not established, itbe
omes
ompli
ated to
on�rm whi
h elements will beimpa
ted. Thus, a
are of tra
eability
an be signi�-
ant even during an a
tivity of software maintenan
e.Figure 1 represents that several di�eren
es are de-te
ted between a design model and sour
e
ode. Whenmaintainers plan to add a new fun
tion to the system,they have some options to handle the problem. For ex-ample, they may remove the divergen
e by
hanging

Figure 1. Example of Divergen
e between Design andImplementationdesign information before maintenan
e. They may re-
over the design model by reverse engineering,
onsid-ering that the huge divergen
e o

urs. Additionally,they may de
ide to suspend the remediation tempo-rally. To determine the a
tion �tting for the a
tualsituation, a whole viewpoint is required besides infor-mation about di�erent elements.On the other hand, re
ognition of tra
eabilitytends to be subje
tive as demonstrated by the fa
t thatdivergen
e visualization itself
annot provide an obje
-tive viewpoint. If members of a proje
t
annot rea
ha
onsensus about the
ondition of tra
eability, thenthey
annot
ontrol it and make de
isions for main-tenan
e. Additionally, divergen
e visualization is notappli
able to a design model in the early stage be
ausethe design stru
ture may be
hanged (as illustrated in3.1). As a result, it is diÆ
ult to understand validityof a design model.As outlined above, employing only visualiza-tion is insuÆ
ient to determine the dire
tion of soft-ware maintenan
e and obtain the
ommon re
ognitionabout tra
eability. Therefore, we propose a methodof quantitative tra
eability measurement for obje
-tive re
ognition or
omprehensive understanding alongwith visualization.2.2 Pro
essFigure 2 depi
ts our overall approa
h. The system in-put requires two artifa
ts: a design model written byUML and its obje
t-oriented sour
e
ode. Our pro-
ess
onsists of the following �ve steps and runs semi-automati
ally.Step 1: Extra
t the stru
ture of the designmodel and its sour
e
odeStru
tural information is required to analyze tra
eabil-ity. We
an
on
lude the step by using existing tools.Some modeling tools
an provide a way to a

ess el-ements of a design model and a reverse engineeringtool
an extra
t the stati
 stru
ture of the sour
e
ode.Taking advantage of these fun
tions, design and imple-mentation elements
an be
ompared.

Figure 2. Total Image of Our Approa
hStep 2: Map the elements between a the designmodel and its sour
e
odeThe se
ond step evaluates whi
h design elements
or-respond to that of the sour
e
ode. Our mapping algo-rithm
onsists of four mapping rules and
reates tra
e-ability links semi-automati
ally. Se
tion 3 des
ribesthe algorithm in detail.Step 3: Visualize divergen
eOf
ourse, divergen
e information should be providedto modify the design and its sour
e
ode. Several pa-pers have proposed various methods to visualize thedi�eren
es between two models [6℄ [10℄ [11℄. We adopta model that visualizes three types of di�eren
es with
olor or stereotype. The de�nitions of the di�eren
esare:� Add: an element in the sour
e
ode that is notdes
ribed in a design model� Remove: an element in a design model that is notdes
ribed in the sour
e
ode� Modify: an element des
ribed in both a designmodel and the sour
e
ode with varying
ontent

Step 4: Measure tra
eabilityWe de�ne two paradigms based on the GQM approa
h[9℄ for the measurement, whi
h treat tra
eability fromsystem and
lass perspe
tives. Se
tion 4 provides thedetails.Step 5: Determine an a
tion for maintenan
eFinally, developers determine how to remove di�er-en
es using the results of divergen
e visualization andtra
eability measurement. We o�er guides for an a
-tion toward maintenan
e in Se
tion 5.3 Mapping Elements between a DesignModel and Sour
e CodeCurrently software development makes few attemptsto establish the tra
eability links, whi
h are requiredto analyze the degree of tra
eability between a designmodel and its sour
e
ode. However, the mapping al-gorithm
annot be a simple name-mat
hing methodbe
ause the stru
ture of the sour
e
ode may
hangeas the design model evolves from the early phase. Se
-tions 3.1 and 3.2 explain obsta
les in employing anearly design model and the details of our mapping al-gorithm, respe
tively.3.1 DiÆ
ulty of Mapping a Design Model inthe Early StageMapping be
omes
hallenging when the sour
e
odeundergoes stru
tural
hanges without violating thesoftware intentions. For example, after refa
toring,new
lasses may appear by
lass divisions, and theseadditional items are not related due to the unavailabil-ity of their identi�ers for mat
hing.Figure 3 shows an example of mapping elementsbetween a design model and its sour
e
ode whererefa
toring indu
es a stru
tural
hange in the sour
e
ode. If a simple algorithm, whi
h sear
hes for mat
h-ing of
lass names, is applied, the
lass Person in thedesign is only mapped to the
lass with the same namein the implementation. Consequently, the
lass Tele-phoneNumber in the sour
e
ode will not be linkedwith Person in the design. Therefore, a new algorithmmust be prepared to address stru
tural
hanges in thesour
e
ode, whi
h
ause an in
orre
t measurement.3.2 Mapping AlgorithmOur mapping algorithm
onsists of four rules. Ea
hrule proposes
andidates for a tra
eability link.Rules 1 and 2 are simple mapping rules using the
lass name as an identi�er, and provide
omparativelypre
ise results. De�nitions are des
ribed as below.

Figure 3. Extra
tion with Asso
iation Mat
hingRule 1: Path Mat
hingMap the
lasses in the design model and sour
e
odewhose names (
onsidering namespa
e) are equal toea
h other.Rule 2: Name Mat
hingMap the
lasses in the design model and its sour
e
ode whi
h are not mapped by Rule 1, if their names(not
onsidering namespa
e) are equal to ea
h other.Unfortunately, Rules 1 and 2 are insuÆ
ient forproper mapping be
ause the stru
ture of a designmodel does not ne
essarily equate to that of the sour
e
ode. Hen
e, Rules 3 and 4 are de�ned to resolve thisissue.Rule 3
reate links in a

ordan
e with the valueof the
osine similarity between
lass names. It as-sumes that additional
lasses
reated through refa
tor-ing have names similar to those of the original
lasses.Rule 3: Cosine Similarity Mat
hingMaps
lasses (Cd in design model and Ci in sour
e
ode) that satisfy two
onditions:1. Ci is not mapped with any
lasses upon applyingRules 1 or 2.2. Cosine similarity between
lass names of Cd andCi is equal or greater than 0.75.Rule 4 links
lasses by summing textual informa-tion and stru
tural
hara
teristi
s. It aims to dete
tnew
lasses, whi
h are
reated by refa
toring with
lassdivisions introdu
ed in [5℄, e.g., \Extra
t Class" and\Extra
t Super
lass". A
tually, Figure 3 is an exam-ple of refa
toring \Extra
t Class", whi
h is
overed byRule 4.Rule 4: Extra
tion with Asso
iation / Gener-alization Mat
hingMaps
lasses (Cd in design model and Ci in sour
e
ode) that satisfy three
onditions:

Figure 4. Extra
tion with Generalization Mat
hing1. Ci is not mapped with any
lasses upon applyingRules 1 or 2.2. Ci has a generalization relationship or a navigablenode of an asso
iation with a
lass in the sour
e
ode whi
h has already been mapped with Cd.3. Vo
abulary Coverage Metri
 (VCM) between Cdand Ci is equal or greater than 0.4.VCM is de�ned as follows. Vd is a set of vo
abu-lary in
luded in a design
lass and Vi is one in
ludedin the sour
e
ode.V o
abularyCoverageMetri
(V CM) = jVd \ VijjVijFigure 4 illustrates refa
toring of \Extra
t Su-per
lass" and explains the appli
ation of Rule 4. A
-
ording to the �rst and se
ond
onditions, the
lassDepartment in the design and the
lass Party in theimplementation have a possibility to be mapped; the
lasses Department are linked and Department in theimplementation is a
hild of Party. VCM of Depart-ment in the design with Party in the implementationis
omputed as below.Vd = fdepartment; get; total; annual;
ost; name; head;
ountgVi = fparty; get; annual;
ost; namegV CM = jVd\VijjVij = jfget;annual;
ost;namegjjfparty;get;annual;
ost;namegj = 0:80As a result, Rule 4 maps these two
lasses whi
h satisfythe three
onditions.After
ompleting a sear
h using the four map-ping rules, users sele
t the
orre
t
andidates. In thisway, tra
eability links between a design model and itssour
e
ode are re
overed semi-automati
ally, whi
hallows tra
eability to be pre
isely measured.

Figure 5. The Image of Element Classi�
ation4 Measurement of Tra
eabilityIn our approa
h, tra
eability is measured from twoviewpoints: system and
lass perspe
tives. Tra
eabil-ity from a system perspe
tive veri�es the number of
ommon
lasses and relationships between a designmodel and its sour
e
ode, whereas that from a
lassperspe
tive evaluates whether design elements su
h asattributes or operations mat
h the sour
e
ode ele-ments and vi
e versa.To measure tra
eability, we adopt the GQM ap-proa
h with two goals: \tra
eability from a systemperspe
tive" and \tra
eability from a
lass perspe
-tive". The following subse
tions detail the GQMparadigms of the two goals.After metri
s are measured, the s
ores of the goalsand questions are obtained by
al
ulating the averageof its own holding metri
s1.4.1 Tra
eability from a System Perspe
tiveTarget elements for measurement are the
ontents ofa design model and its sour
e
ode, and some of thesebelong to the both artifa
ts (see Figure 5). We de-�ne Questions 1 and 2 for tra
eability from a systemperspe
tive. Question 1 asks, \Are
lasses and rela-tionships in the design model des
ribed in the sour
e
ode?" That is, the question observes Common perDesign. On the other hand, Question 2 asks, \Are
lasses and relationships in the sour
e
ode des
ribedin the design model?", whi
h observes Common perImplementation. Finally, after de�ning the questions,the metri
s of this paradigm are derived. The resultsare useful when
on�rming the validity of a model orits sour
e
ode. Table 1 shows the GQM paradigm oftra
eability from a system perspe
tive.4.2 Tra
eability from a Class Perspe
tiveSimilar to tra
eability from a system perspe
tive, wede�ne two questions and develop metri
s for ea
h ques-tion. Developers
an
he
k the values when
onsider-ing reusing a
omponent or reengineering. Table 21If the denominator of a metri
 be
omes zero, a value of itwill be \NaN" and is not used to
al
ulate s
ores of the goaland question

Goal Question Metri
sS-G.Tra
eabilityfrom a systemperspe
tive S-Q1. Are
lasses andrelationships in thedesign model des
ribedin the sour
e
ode? S-M1. Ratio (%) that a
lass of a design model
ould bemapped to that of the sour
e
odeS-M2. Ratio (%) that a
lass belongs to the same namespa
ebetween the design model and sour
e
odeS-M3. Ratio (%) that a relationship of a design model
ouldbe mapped to that of the sour
e
odeS-Q2. Are
lasses andrelationships in thesour
e
ode des
ribed inthe design model? S-M4. Ratio (%) that a
lass of the sour
e
ode
ould bemapped to that of the design modelS-M2. Ratio (%) that a
lass belongs to the same namespa
ebetween the design model and sour
e
odeS-M5. Ratio (%) that a relationship of the sour
e
ode
ouldbe mapped to that of the design modelTable 1. GQM Paradigm of Tra
eability from a System Perspe
tiveGoal Question Metri
s
C-G.Tra
eabilityfrom a
lassperspe
tive

C-Q1. Are
ontents of a
lass in the design modeldes
ribed in sour
e
ode? C-M1. Ratio (%) that attributes of the design model
ould bemapped to those of the sour
e
odeC-M2. Ratio (%) that operations of the design model
ould bemapped to those of the sour
e
odeC-M3. Ratio (%) that mapped attributes and operations have
ommon visibility, types, and argumentsC-M4. Ratio (%) that relationships between
lasses of the de-sign model
ould be mapped to those of the sour
e
odeC-Q2. Are
ontents of a
lass in the sour
e
odedes
ribed in the designmodel? C-M5. Ratio (%) that attributes of the sour
e
ode
ould bemapped to those of the design modelC-M6. Ratio (%) that operations of the sour
e
ode
ould bemapped to those of the design modelC-M3. Ratio (%) that mapped attributes and operations have
ommon visibility, types, and argumentsC-M7. Ratio (%) that relationships between
lasses of thesour
e
ode
ould be mapped to those of the design modelTable 2. GQM Paradigm of Tra
eability from a Class Perspe
tiveshows the GQM paradigm of tra
eability from a
lassperspe
tive.5 Determine an A
tion for Mainte-nan
e S
ore of S-Q2high lowS
oreofS-Q1 high I. GoodTra
eability II. Consider modi�
ationof the divergen
e aboutthe added
lasseslow III. Consider dis
arding and restru
-turing the design modelTable 3. An a
tion from the S
ores of S-Q1 and S-Q2S
ore of C-Q2high lowS
oreofC-Q1 high i. GoodTra
eability ii. Consider modi�
a-tion or refa
toring of themodel and sour
e
odelow iii. Review the validity of the
lassTable 4. An a
tion from the S
ores of C-Q1 and C-Q2

This se
tion indi
ates how to determine a dire
-tion for maintenan
e from the results of tra
eabilitymeasurement. To a

omplish the purpose, the ques-tion s
ores play an important role.Tra
eability from a system perspe
tive representshow software artifa
ts are validated. Table 3 shows therelationship between the s
ore of question 1 (S-Q1)and 2 (S-Q2). An S-Q1 s
ore will be high if
orre
tsoftware development was
ondu
ted. Conversely, ifa design model has the low S-Q1 s
ore, a manager ofthe proje
t should
onsider dis
arding and restru
tur-ing this be
ause it indi
ates that the sour
e
ode hasnot su

eeded the intentions in the design phase. As
ore of S-Q2 will be lower as new fun
tions are addedto the system. Thus, the model and the sour
e
odewith a poor S-Q2 s
ore should be modi�ed if dete
tedadditional fun
tions violate the design intentions.Tra
eability from a
lass perspe
tive suggestswhether the information about a
lass is up-to-date.Table 4 shows an a
tion for remedying the divergen
eabout
lasses. It is e�e
tive for modi�
ation to pri-oritize
lasses based on those tra
eability s
ores andsigni�
an
e in the system.As above stated, developers
an improve tra
e-

ability by
onsulting the question s
ores. The appli
a-tion examples are presented in the next se
tion.6 Dis
ussionsWe use two experiments to validate our approa
h; the�rst inspe
ts performan
e of our mapping method andthe se
ond reveals usage of tra
eability measurementthrough the interviews with the developers. To in-vestigate these issues, eight pairs of design models andsour
e
odes are examined. Table 5 illustrates the s
aleof these proje
ts.Proj. Design Model Sour
e CodeStage #Classes Lang. #Classes LOCA Early Stage 31 C++ 54 2703B Early Stage 23 C++ 29 2148C Late Stage 22 C++ 26 1497D Late Stage 31 C++ 32 2239E Early Stage 31 Java 139 8399F Late Stage 25 Java 28 3554G Early Stage 11 Java 13 319H Early Stage 19 Java 23 478Table 5. Eight Proje
ts for the Case Study6.1 Performan
e of Our Mapping MethodHerein, we des
ribe the performan
e results using ourmapping approa
h. Table 6 represents the numberof total and
orre
t
andidates against ea
h mappingrule. In the table, \p" denotes mappings proposed bythe approa
h, \
"
orresponds to
orre
t links foundby the approa
h, and \
(manual)" indi
ates
orre
tlinks extra
ted via a human de
ision.Rules 1 and 2
an map elements for almost all
andidates in all proje
ts; there is one mistake in 199
andidates. Hen
e, Rules 1 and 2 play a role in pre-
isely bridging a design model and its sour
e
ode. In
ontrast, Rules 3 and 4
reate a few
andidates formapping in some proje
ts; although few
andidatesare found in Proje
ts F and G, many are dete
ted inthe early stage of the design model for Proje
ts A andE. A
tually, Table 4 indi
ates that there are the twodoubtful pre
ision values of Rules 3 and 4. One is thevalue of pre
ision for Rule 3 in Proje
t E, whi
h is
aused by the emergen
e of many
lasses with similarnames. The other is that for Rule 4 in Proje
t A, whi
ho

urs be
ause the rule regards
lasses
reated by newfun
tions as transformations produ
ed by refa
toring.The results indi
ate that Rules 3 and 4 do not provideas
onsistent results as Rules 1 and 2.However, the value of re
all is more importantthan that of pre
ision be
ause our approa
h is semi-automati
. Even if a faulty tra
eability link is re-ported, users
an dismiss it. On the other hand, the

addition of a new link is a time-
onsuming pro
ess.Thus, re
all, whi
h re
e
ts how mu
h manual re
ov-ery is required, has pre
eden
e over pre
ision. In ouralgorithm, Rules 3 and 4 aim at improving a re
allvalue by
ombining these rules and over
oming stru
-tural
hanges.The experimental results suggest that a user onlyneeds to add a few links per proje
t after applying ouralgorithm, indi
ating that a little work is suÆ
ient toinitiate the measurement.6.2 Usage of the Results for Maintenan
eThis se
tion presents two examples that apply our ap-proa
h to tra
eability maintenan
e. We
ondu
tedmeasurements for Proje
ts C and D and deliberatedthe impli
ations of the results. After that, real soft-ware development situations are
on�rmed via inter-views with the developers who understand the
ondi-tion of tra
eability well. Here, we present the resultsof the
omparison between the measurements and theper
eption of developers about tra
eability.First, we illustrate the inspe
tion results of tra
e-ability measurement for Proje
t C. The s
ore of tra
e-ability from a system perspe
tive stands at a high level(see Figure 6). With regard to the
lass perspe
tive,most goal s
ores are high as seen in Figure 7, whereastwo
lasses have problems (their s
ores are 47.0 and52.4). Thus, we judged that the design model keepsvalid (I in Table 3) and only a few
lasses whi
h havethe poor s
ores require to be modi�ed for the next a
-tion (ii in Table 4). After inspe
tion, we interviewedthe developer of Proje
t C about the situation of tra
e-ability. Consequently, it is apparent that the membershad pla
ed great importan
e to tra
eability throughthe development and revised information every timethe stru
ture
hanged. The developer also indi
atedthat the two problem
lasses have relatively low tra
e-ability and plans to address them. The fa
ts are
on-sistent with the measurement results, and
on�rm thatour approa
h
an spe
ulate the
ondition of tra
eabil-ity and an appropriate a
tion in Proje
t C.The s
ore of tra
eability from a system perspe
-tive for Proje
t D was the highest of eight proje
ts,whereas the proje
t has many
lasses with the poorgoal s
ores from a
lass perspe
tive (see Figure 6 and7) whi
h are a

ompanied with an unsatisfa
tory C-Q2. Thus, we evaluated that it is better to keep thestru
ture and modify the
lass members based on thenotion des
ribed in Se
tion 5. Similar to Proje
t C, weasked the developer of Proje
t D about the adequa
yof the results. The results got a positive response re-garding the system perspe
tive and the de
ision forthe divergen
e modi�
ation, whereas those of the
lassperspe
tive were negative. We found that this paradoxis due to omissions of elements in the design model. Ifattributes or operations are omitted from the
lass de-

Proje
t Total#
(manual) #p #
 pre
ision re
allA 43 49 40 81.6% 93.0%B 16 16 16 100.0% 100.0%C 21 22 21 95.5% 100.0%D 30 31 30 96.8% 100.0%E 82 91 73 80.2% 89.0%F 24 25 24 96.0% 100.0%G 13 11 11 100.0% 84.6%H 16 16 16 100.0% 100.0%Proje
t Rule 1 Rule 2 Rule 3 Rule 4#p #
 pre
ision #p #
 pre
ision #p #
 pre
ision #p #
 pre
isionA 28 28 100.0% 1 1 100.0% 10 10 100.0% 9 1 11.1%B 0 0 | 14 14 100.0% 2 2 100.0% 0 0 |C 21 21 100.0% 0 0 | 1 0 0.0% 0 0 |D 30 30 100.0% 0 0 | 0 0 | 1 0 0.0%E 0 0 | 55 55 100.0% 29 14 48.3% 19 16 84.2%F 0 0 | 24 23 95.8% 1 1 100.0% 0 0 |G 10 10 100.0% 0 0 | 1 1 100.0% 1 1 100.0%H 16 16 100.0% 0 0 | 0 0 | 0 0 |Table 6. Performan
e of Our Mapping Algorithm

Figure 6. The S
ores of S-Q1 and S-Q2 Figure 7. The S
ores of C-Gs
riptions, they will be regarded as added elements insour
e
ode, whi
h results in the poor s
ores.We
on�rmed that the results are helpful to spe
-ulate the
ondition of tra
eability even if the system isunfamiliar to an evaluator. However, omission of ele-ments should be noti
ed be
ause it may prevent fromre
ognizing tra
eability
orre
tly.7 Related WorksThere exist resear
hes proposing the di�eren
ing al-gorithm between models, su
h as UMLDi� [10℄ andSiDi� [11℄. UMLDi�
ompares the models
reated byextra
ting the stru
ture of version-
ontrolled obje
t-oriented sour
e
ode, whereas SiDi� dete
ts di�eren
esusing an original weight algorithm with similarity
al-
ulation. Although these approa
hes are helpful to
ompare the model stru
tures of
onse
utive versions,it is insuÆ
ient simply to
ompare elements
onsti-

tuting the sour
e
ode stru
ture. When evaluatingtra
eability between a design and its implementation,stru
tural
hanges must also be
onsidered.One hurdle in tra
eability resear
h is re
overingtra
eability links. Antoniol et al. proposed a methodto establish tra
eability links from the requirement tothe sour
e
ode based on information retrieval (IR)te
hnique [7℄. Gethers et al. integrates several stand-alone IR methods, aiming to improve previous re
ov-ery approa
hes [12℄. In addition, the te
hnique ofZhang et al. has been applied to ontology to link soft-ware artifa
ts semanti
ally [13℄.The approa
hes showed in this se
tion
an re
overtra
eability links with their original methods. How-ever, few works dis
uss tra
eability spe
ializing in adesign and its sour
e
ode. Antoniol et al. ta
kled theissue in [14℄ but it is rather old. Moreover, as men-tioned before, links themselves
annot be a dire
torfor an exa
t a
tion, whi
h
reates a need to provide

quantitative indi
ator.8 Con
lusionHerein we propose an approa
h to measure the levelof tra
eability between a design model and its sour
e
ode. To a
hieve this obje
t, two methods are pre-sented. The �rst is a mapping algorithm, whi
hbridges a design model and its sour
e
ode. This semi-automati
 approa
h presents
andidates of tra
eabilitylinks, and the user extra
ts the
orre
t ones. The se
-ond is the GQM paradigms to measure tra
eability,whi
h are de�ned from two perspe
tives, system and
lass perspe
tives. Finally, the paper veri�es the per-forman
e of our mapping algorithm and employs themeasurement results in tra
eability maintenan
e.For future works, our approa
h
ould be improvedby applying previous resear
h as des
ribed below. Thete
hnique of Eaddy et al. [8℄ would enable our map-ping method to be more pre
ise be
ause it uses notonly IR but also dynami
 analysis and program analy-sis to tra
e the requirement to the sour
e
ode. Addi-tionally, it should be a signi�
ant a
tivity for tra
eabil-ity to be analyzed from the aspe
t of behavior as wellas the stati
 stru
ture. Several methodologies havebeen proposed to extra
t the behavior of system andgenerate UML dynami
 diagrams (su
h as sequen
ediagram [15℄ and
ollaboration diagram [16℄), whi
hprepares for
omparing elements before measurement.Egyed et al. have reported an automati
 te
hniqueto generate tra
e information and have applied it tosoftware do
uments, in
luding a state
hart diagramin its
ase study [17℄. Tra
eability analysis fo
using ona behavioral aspe
t would provide furthermore infor-mation to verify the validity of artifa
ts.Referen
es[1℄ IEEE, IEEE Standard Glossary of Software En-gineering Terminology, (New York, IEEE, 1990).[2℄ M. Hammad, M. L. Collard and J. I. Maleti
, Au-tomati
ally identifying
hanges that impa
t
ode-to-design tra
eability during evolution, ICPC '09,2009, 35-64.[3℄ G. K. Olsen and J. Oldevik, S
enarios ofTra
eability in Model to Text Transformations,ECMDA-FA '07, 2007, 144-156.[4℄ S. Winkler and J. V. Pilgrim, A survey of tra
e-ability in requirements engineering and model-driven development, Software and Systems Mod-eling, 9(4), 2010, 529-565.[5℄ M. Fowler, Refa
toring: Improving The Design OfExisting Code, (Boston, Addison-Wesley, 1999).

[6℄ G. C. Murphy, D. Notkin and K. J. Sullivan,Software Re
exion Models: Bridging the Gap be-tween Design and Implementation, IEEE Trans-a
tions on Software Engineering, 27(4), 2001,364-380.[7℄ G. Antoniol, G. Canfora, G. Casazza, A. D. Lu
iaand E. Merlo, Re
overing Tra
eability Links be-tween Code and Do
umentation, IEEE Transa
-tions on Software Engineering, 28(10), 2002, 970-983.[8℄ M. Eaddy, A. V. Aho, G. Antoniol and Y. G.Gu�eh�eneu
, CERBERUS: Tra
ing Requirementsto Sour
e Code Using Information Retrieval, Dy-nami
 Analysis, and Program Analysis, ICPC'08, 2008, 53-62.[9℄ V. R. Basili, G. Cladiera and H. D. Romba
h,The goal question metri
 approa
h, in J. J.Mar
iniak (Ed.) En
y
lopedia of Software Engi-neering, (New York, John Wiley & Sons, In
.,1994), 528-532.[10℄ Z. Xing and E. Stroulia, UMLDi�: An Algo-rithm for Obje
t-Oriented Design Di�eren
ing,ASE '05, 2005, 54-65.[11℄ C. Treude, S. Berlik, S. Wenzel and U. Kelter,Di�eren
e
omputation of large models, ESEC-FSE '07, 2007, 295-304.[12℄ M. Gethers, R. Oliveto, D.Poshyvanyk and A.D. Lu
ia, On Integrating Orthogonal InformationRetrieval Methods to Improve Tra
eability Re
ov-ery, ICSM '11, 2011, 133-142.[13℄ Y. Zhang, R. Witte, J. Rilling and V. Haarslev,Ontologi
al approa
h for the semanti
 re
overy oftra
eability links between software artefa
ts, IETSoftware, 2(3), 2008, 185-203.[14℄ G. Antoniol, B. Caprile, A. Potri
h and P.Tonella, Design-
ode tra
eability for obje
t-oriented systems, Annals of Software Engineer-ing, 9(1-2), 2000, 35-58.[15℄ L. C. Briand, Y. Labi
he and J. Ledu
, To-ward the Reverse Engineering of UML Sequen
eDiagrams for Distributed Java Software, IEEETransa
tions on Software Engineering, 2006, 642-663.[16℄ R. Kollmann and M. Gogolla, Capturing dynami
program behavior with UML
ollaboration dia-grams, CSMR '01, 2001, 58-67.[17℄ A. Egyed and P. Grunba
her, Automating re-quirements tra
eability: Beyond the re
ord & re-play paradigm, ASE '02, 2002, 163-171.

