TRACEABILITY MEASUREMENT BETWEEN A DESIGN MODEL
AND ITS SOURCE CODE

Hiroki Itoht, Hiroyuki Tanabef, Rieko Namikif, Hironori Washizakit and Yoshiaki Fukazaway
1 Department of Computer Science and Engineering
Waseda University
Tokyo, Japan
email: hitoh@fuka.info.waseda.ac.jp, {washizaki, fukazawa}@waseda.jp
1 Osaka Gas Information System Research Institute CO., LTD.
Tokyo, Japan
email: {Tanabe Hiroyuki, Namiki_Rieko}@ogis-ri.co.jp

ABSTRACT

Although researchers have recently investigated how
to use and preserve traceability because it is an impor-
tant issue for software maintainability, the degree of
traceability is difficult to recognize objectively and pre-
cisely even if traceability links are recovered. Herein
we propose a semi-automatic approach to measure the
traceability between a design model and its source
code via the Goal-Question-Metric approach. The
original algorithm which maps the elements of design
and implementation is also proposed for accurate mea-
surements. We discuss performance of the mapping al-
gorithm and usage of measurement results. The results
suggest that our approach may elucidate the condition
for traceability and aid in traceability maintenance.

KEY WORDS
traceability, GQM approach, metrics, mapping, soft-
ware maintenance

1 Introduction

Traceability, which is the degree a relationship can
be established between two or more products of the
development process [1], is crucial for software main-
tainability. Researchers have investigated utility of
traceability in model driven development. One ben-
efit of traceability is change impact analysis; Hammad
et al. have presented a system to detect changes in the
source code and to translate them into design changes
[2]. Olsen et al. have proposed coverage and orphan
analyses, which can effectively verify the adequacy of
documents [3]. Furthermore, other usages of traceabil-
ity have been reported in the survey of Winkler et al.
[4] (e.g. supporting design decisions, understanding
artifacts, and reusing software).

To take advantage of the benefits described
above, traceability must be identified. Although there
are several techniques to visualize traceability links, it
remains difficult to objectively comprehend the level
of traceability. Due to this hurdle, traceability may

not be recognized correctly, leading to problems with
maintenance such as inadequate modification of soft-
ware artifacts and determination of reusing design
components. Hence, both visualization and an indi-
cator are required to properly understand it.

We propose a semi-automatic approach to mea-
sure traceability between a design model described in
UML and its source code written in an object-oriented
program language. Our numeral results enable devel-
opers and evaluators objectively to recognize traceabil-
ity. Then developers can confirm the validity of the
documents and determine how to treat the documents
with regards to maintenance. To measure traceability
between a design model and its source code, trace-
ability links must be created because current software
development rarely maintains these links. Hence, we
also present an original mapping algorithm and discuss
its effectiveness.

This paper is structured as follows. Section 2 de-
scribes the motivation and the total image of our ap-
proach. Section 3 details the mapping procedure be-
tween design and implementation, and Section 4 mea-
sures the traceability. Section 6 discusses our meth-
ods, while Section 7 presents related works. Finally,
Section 8 concludes the paper.

2 Overview of Our Approach
2.1 Motivation

When software needs to be modified, developers will
consult its design model to specify the locations of the
change. However, if traceability is not established, it
becomes complicated to confirm which elements will be
impacted. Thus, a care of traceability can be signifi-
cant even during an activity of software maintenance.

Figure 1 represents that several differences are de-
tected between a design model and source code. When
maintainers plan to add a new function to the system,
they have some options to handle the problem. For ex-
ample, they may remove the divergence by changing

implementation

ClassA publicclass ClassA{

- attribute : int privateint attributel;
% +method() : void

s 1
______ \

publicint method(){ ... }

\ } -
\ -
N -7

% %:divergentelements

ClassB

Figure 1. Example of Divergence between Design and
Implementation

design information before maintenance. They may re-
cover the design model by reverse engineering, consid-
ering that the huge divergence occurs. Additionally,
they may decide to suspend the remediation tempo-
rally. To determine the action fitting for the actual
situation, a whole viewpoint is required besides infor-
mation about different elements.

On the other hand, recognition of traceability
tends to be subjective as demonstrated by the fact that
divergence visualization itself cannot provide an objec-
tive viewpoint. If members of a project cannot reach
a consensus about the condition of traceability, then
they cannot control it and make decisions for main-
tenance. Additionally, divergence visualization is not
applicable to a design model in the early stage because
the design structure may be changed (as illustrated in
3.1). As a result, it is difficult to understand validity
of a design model.

As outlined above, employing only visualiza-
tion is insufficient to determine the direction of soft-
ware maintenance and obtain the common recognition
about traceability. Therefore, we propose a method
of quantitative traceability measurement for objec-
tive recognition or comprehensive understanding along
with visualization.

2.2 Process

Figure 2 depicts our overall approach. The system in-
put requires two artifacts: a design model written by
UML and its object-oriented source code. Our pro-
cess consists of the following five steps and runs semi-
automatically.

Step 1: Extract the structure of the design
model and its source code

Structural information is required to analyze traceabil-
ity. We can conclude the step by using existing tools.
Some modeling tools can provide a way to access el-
ements of a design model and a reverse engineering
tool can extract the static structure of the source code.
Taking advantage of these functions, design and imple-
mentation elements can be compared.

[Step5: Determine an action]

consult consult

- -~
- ~
- ~
prepare peyeloper Prepare =

[Stepl: Extract Structure]

Source Code
Mapping Results (Java,C++,CH)
©:matched %:unmatched

-0
O

Structure of “‘o}' ™ Structure of

Design Model Source Code

[Step2: Map Elements J

Design Model

extract

~
~

-
~
~~

-

location
Info.

Goal

Question

(I J€
/< ! >E \ >\%etrics

GQM Paradigm
[Step3:Visualize Divergence] [Step4: Measure Traceability J

Figure 2. Total Image of Our Approach

Step 2: Map the elements between a the design
model and its source code

The second step evaluates which design elements cor-
respond to that of the source code. Our mapping algo-
rithm consists of four mapping rules and creates trace-
ability links semi-automatically. Section 3 describes
the algorithm in detail.

Step 3: Visualize divergence

Of course, divergence information should be provided
to modify the design and its source code. Several pa-
pers have proposed various methods to visualize the
differences between two models [6] [10] [11]. We adopt
a model that visualizes three types of differences with
color or stereotype. The definitions of the differences
are:

e Add: an element in the source code that is not
described in a design model

e Remove: an element in a design model that is not
described in the source code

e Modify: an element described in both a design
model and the source code with varying content

Step 4: Measure traceability

We define two paradigms based on the GQM approach
[9] for the measurement, which treat traceability from
system and class perspectives. Section 4 provides the
details.

Step 5: Determine an action for maintenance
Finally, developers determine how to remove differ-
ences using the results of divergence visualization and
traceability measurement. We offer guides for an ac-
tion toward maintenance in Section 5.

3 Mapping Elements between a Design
Model and Source Code

Currently software development makes few attempts
to establish the traceability links, which are required
to analyze the degree of traceability between a design
model and its source code. However, the mapping al-
gorithm cannot be a simple name-matching method
because the structure of the source code may change
as the design model evolves from the early phase. Sec-
tions 3.1 and 3.2 explain obstacles in employing an
early design model and the details of our mapping al-
gorithm, respectively.

3.1 Difficulty of Mapping a Design Model in
the Early Stage

Mapping becomes challenging when the source code
undergoes structural changes without violating the
software intentions. For example, after refactoring,
new classes may appear by class divisions, and these
additional items are not related due to the unavailabil-
ity of their identifiers for matching.

Figure 3 shows an example of mapping elements
between a design model and its source code where
refactoring induces a structural change in the source
code. If a simple algorithm, which searches for match-
ing of class names, is applied, the class Person in the
design is only mapped to the class with the same name
in the implementation. Consequently, the class Tele-
phoneNumber in the source code will not be linked
with Person in the design. Therefore, a new algorithm
must be prepared to address structural changes in the
source code, which cause an incorrect measurement.

3.2 Mapping Algorithm

Our mapping algorithm consists of four rules. Each
rule proposes candidates for a traceability link.

Rules 1 and 2 are simple mapping rules using the
class name as an identifier, and provide comparatively
precise results. Definitions are described as below.

Person
2| name
/
Person I getOfficeTelephone()
name o / \l/
i I~ TelephoneNumber
officeNumber \
getTelephoneNumber() \ areaCode
number
getTelephoneNumber()
design implementation
- = > mapping

Figure 3. Extraction with Association Matching

Rule 1: Path Matching

Map the classes in the design model and source code
whose names (considering namespace) are equal to
each other.

Rule 2: Name Matching

Map the classes in the design model and its source
code which are not mapped by Rule 1, if their names
(not considering namespace) are equal to each other.

Unfortunately, Rules 1 and 2 are insufficient for
proper mapping because the structure of a design
model does not necessarily equate to that of the source
code. Hence, Rules 3 and 4 are defined to resolve this
issue.

Rule 3 create links in accordance with the value
of the cosine similarity between class names. It as-
sumes that additional classes created through refactor-
ing have names similar to those of the original classes.

Rule 3: Cosine Similarity Matching
Maps classes (Cy in design model and C; in source
code) that satisfy two conditions:

1. C; is not mapped with any classes upon applying
Rules 1 or 2.

2. Cosine similarity between class names of Cy and
C; is equal or greater than 0.75.

Rule 4 links classes by summing textual informa-
tion and structural characteristics. It aims to detect
new classes, which are created by refactoring with class
divisions introduced in [5], e.g., “Extract Class” and
“Extract Superclass”. Actually, Figure 3 is an exam-
ple of refactoring “Extract Class”, which is covered by
Rule 4.

Rule 4: Extraction with Association / Gener-
alization Matching

Maps classes (Cy in design model and C; in source
code) that satisfy three conditions:

Department - ==
Party ™
getTotalAnnualCost() = — = = = = = = \
getName() getAnnualCost() \
getHeadCount() 7 getName() 1
7’ - 1
d Vi
Employee @7
£, ~ Employee Department
getAnnualCost()
getName() — — — — I getAnnualCost() getTotalAnnualCost()
getld() getld() getHeadCount()
design implementation

- = > mapping

Figure 4. Extraction with Generalization Matching

1. C} is not mapped with any classes upon applying
Rules 1 or 2.

2. C; has a generalization relationship or a navigable
node of an association with a class in the source
code which has already been mapped with Cj.

3. Vocabulary Coverage Metric (VCM) between Cy
and C; is equal or greater than 0.4.

VCM is defined as follows. Vj is a set of vocabu-
lary included in a design class and V; is one included
in the source code.

VocabularyCoverageMetric(VCM) = %
(2

Figure 4 illustrates refactoring of “Extract Su-
perclass” and explains the application of Rule 4. Ac-
cording to the first and second conditions, the class
Department in the design and the class Party in the
implementation have a possibility to be mapped; the
classes Department are linked and Department in the
implementation is a child of Party. VCM of Depart-
ment in the design with Party in the implementation
is computed as below.

Va = {department, get, total,annual,
cost, name, head, count}

Vi = {party, get,annual, cost,name}
VCM = [VanVi| _ [{get,annual,cost,name}| 0.80

Vil = Hparty,get,annual,cost,name}| =

As aresult, Rule 4 maps these two classes which satisfy
the three conditions.

After completing a search using the four map-
ping rules, users select the correct candidates. In this
way, traceability links between a design model and its
source code are recovered semi-automatically, which
allows traceability to be precisely measured.

Design ; Implementation

Common

Figure 5. The Image of Element Classification

4 Measurement of Traceability

In our approach, traceability is measured from two
viewpoints: system and class perspectives. Traceabil-
ity from a system perspective verifies the number of
common classes and relationships between a design
model and its source code, whereas that from a class
perspective evaluates whether design elements such as
attributes or operations match the source code ele-
ments and vice versa.

To measure traceability, we adopt the GQM ap-
proach with two goals: “traceability from a system
perspective” and “traceability from a class perspec-
tive”. The following subsections detail the GQM
paradigms of the two goals.

After metrics are measured, the scores of the goals
and questions are obtained by calculating the average
of its own holding metrics®.

4.1 Traceability from a System Perspective

Target elements for measurement are the contents of
a design model and its source code, and some of these
belong to the both artifacts (see Figure 5). We de-
fine Questions 1 and 2 for traceability from a system
perspective. Question 1 asks, “Are classes and rela-
tionships in the design model described in the source
code?” That is, the question observes Common per
Design. On the other hand, Question 2 asks, “Are
classes and relationships in the source code described
in the design model?”, which observes Common per
Implementation. Finally, after defining the questions,
the metrics of this paradigm are derived. The results
are useful when confirming the validity of a model or
its source code. Table 1 shows the GQM paradigm of
traceability from a system perspective.

4.2 Traceability from a Class Perspective

Similar to traceability from a system perspective, we
define two questions and develop metrics for each ques-
tion. Developers can check the values when consider-
ing reusing a component or reengineering. Table 2

LIf the denominator of a metric becomes zero, a value of it
will be “NaN” and is not used to calculate scores of the goal
and question

Goal Question Metrics
S-M1. Ratio (%) that a class of a design model could be
S-Q1. Are classes and mapped to that of the source code
relationships in the S-M2. Ratio (%) that a class belongs to the same namespace
design model described between the design model and source code
S-G. in the source code? S-M3. Ratio (%) that a relationship of a design model could
Traceability be mapped to that of the source code
from a system S-M4. Ratio (%) that a class of the source code could be
perspective S-Q2. Are classes and mapped to that of the design model
relationships in the S-M2. Ratio (%) that a class belongs to the same namespace
source code described in | between the design model and source code
the design model? S-M5. Ratio (%) that a relationship of the source code could
be mapped to that of the design model
Table 1. GQM Paradigm of Traceability from a System Perspective
Goal Question Metrics
C-M1. Ratio (%) that attributes of the design model could be
mapped to those of the source code
C-Q1. Are contents of a | C-M2. Ratio (%) that operations of the design model could be
class in the design model | mapped to those of the source code
described in source C-M3. Ratio (%) that mapped attributes and operations have
code? common visibility, types, and arguments
C-G. C-M4. Ratio (%) that relationships between classes of the de-
Traceability sign model could be mapped to those of the source code
from a class C-M5. Ratio (%) that attributes of the source code could be
perspective mapped to those of the design model
C-Q2. Are contents of a | C-M6. Ratio (%) that operations of the source code could be
class in the source code mapped to those of the design model
described in the design C-M3. Ratio (%) that mapped attributes and operations have
model? common visibility, types, and arguments
C-M7. Ratio (%) that relationships between classes of the
source code could be mapped to those of the design model

Table 2. GQM Paradigm of Traceability from a Class Perspective

shows the GQM paradigm of traceability from a class
perspective.

5 Determine an Action for Mainte-

nance
Score of S-Q2
high low

Score high 1. Good.) 1I. Consifier modification

Traceability | of the divergence about
of
sQ1 i .the a(flded classes

low III. Consider discarding and restruc-
turing the design model

Table 3. An action from the Scores of S-Q1 and S-Q2

Score of C-Q2
high low

. ii. Consider modifica-
Score . i. Good . .
high e tion or refactoring of the
of Traceability
c-Q1 model and source code
low iii. Review the validity of the class

Table 4. An action from the Scores of C-Q1 and C-Q2

This section indicates how to determine a direc-
tion for maintenance from the results of traceability
measurement. To accomplish the purpose, the ques-
tion scores play an important role.

Traceability from a system perspective represents
how software artifacts are validated. Table 3 shows the
relationship between the score of question 1 (S-Q1)
and 2 (S-Q2). An S-QI score will be high if correct
software development was conducted. Conversely, if
a design model has the low S-Q1 score, a manager of
the project should consider discarding and restructur-
ing this because it indicates that the source code has
not succeeded the intentions in the design phase. A
score of S-Q2 will be lower as new functions are added
to the system. Thus, the model and the source code
with a poor S-Q2 score should be modified if detected
additional functions violate the design intentions.

Traceability from a class perspective suggests
whether the information about a class is up-to-date.
Table 4 shows an action for remedying the divergence
about classes. It is effective for modification to pri-
oritize classes based on those traceability scores and
significance in the system.

As above stated, developers can improve trace-

ability by consulting the question scores. The applica-
tion examples are presented in the next section.

6 Discussions

We use two experiments to validate our approach; the
first inspects performance of our mapping method and
the second reveals usage of traceability measurement
through the interviews with the developers. To in-
vestigate these issues, eight pairs of design models and
source codes are examined. Table 5 illustrates the scale
of these projects.

Proj Design Model Source Code

’ Stage #Classes | Lang. | #Classes | LOC
A Early Stage 31 C++ 54 2703
B Early Stage 23 C++ 29 2148
C Late Stage 22 C++ 26 1497
D Late Stage 31 C++ 32 2239
E Early Stage 31 Java 139 8399
F Late Stage 25 Java 28 3554
G Early Stage 11 Java 13 319
H Early Stage 19 Java 23 478

Table 5. Eight Projects for the Case Study

6.1 Performance of Our Mapping Method

Herein, we describe the performance results using our
mapping approach. Table 6 represents the number
of total and correct candidates against each mapping
rule. In the table, “p” denotes mappings proposed by
the approach, “c” corresponds to correct links found
by the approach, and “c(manual)” indicates correct
links extracted via a human decision.

Rules 1 and 2 can map elements for almost all
candidates in all projects; there is one mistake in 199
candidates. Hence, Rules 1 and 2 play a role in pre-
cisely bridging a design model and its source code. In
contrast, Rules 3 and 4 create a few candidates for
mapping in some projects; although few candidates
are found in Projects F and G, many are detected in
the early stage of the design model for Projects A and
E.

Actually, Table 4 indicates that there are the two
doubtful precision values of Rules 3 and 4. One is the
value of precision for Rule 3 in Project E, which is
caused by the emergence of many classes with similar
names. The other is that for Rule 4 in Project A, which
occurs because the rule regards classes created by new
functions as transformations produced by refactoring.
The results indicate that Rules 3 and 4 do not provide
as consistent results as Rules 1 and 2.

However, the value of recall is more important
than that of precision because our approach is semi-
automatic. Even if a faulty traceability link is re-
ported, users can dismiss it. On the other hand, the

addition of a new link is a time-consuming process.
Thus, recall, which reflects how much manual recov-
ery is required, has precedence over precision. In our
algorithm, Rules 3 and 4 aim at improving a recall
value by combining these rules and overcoming struc-
tural changes.

The experimental results suggest that a user only
needs to add a few links per project after applying our
algorithm, indicating that a little work is sufficient to
initiate the measurement.

6.2 Usage of the Results for Maintenance

This section presents two examples that apply our ap-
proach to traceability maintenance. We conducted
measurements for Projects C and D and deliberated
the implications of the results. After that, real soft-
ware development situations are confirmed via inter-
views with the developers who understand the condi-
tion of traceability well. Here, we present the results
of the comparison between the measurements and the
perception of developers about traceability.

First, we illustrate the inspection results of trace-
ability measurement for Project C. The score of trace-
ability from a system perspective stands at a high level
(see Figure 6). With regard to the class perspective,
most goal scores are high as seen in Figure 7, whereas
two classes have problems (their scores are 47.0 and
52.4). Thus, we judged that the design model keeps
valid (I in Table 3) and only a few classes which have
the poor scores require to be modified for the next ac-
tion (ii in Table 4). After inspection, we interviewed
the developer of Project C about the situation of trace-
ability. Consequently, it is apparent that the members
had placed great importance to traceability through
the development and revised information every time
the structure changed. The developer also indicated
that the two problem classes have relatively low trace-
ability and plans to address them. The facts are con-
sistent with the measurement results, and confirm that
our approach can speculate the condition of traceabil-
ity and an appropriate action in Project C.

The score of traceability from a system perspec-
tive for Project D was the highest of eight projects,
whereas the project has many classes with the poor
goal scores from a class perspective (see Figure 6 and
7) which are accompanied with an unsatisfactory C-
Q2. Thus, we evaluated that it is better to keep the
structure and modify the class members based on the
notion described in Section 5. Similar to Project C, we
asked the developer of Project D about the adequacy
of the results. The results got a positive response re-
garding the system perspective and the decision for
the divergence modification, whereas those of the class
perspective were negative. We found that this paradox
is due to omissions of elements in the design model. If
attributes or operations are omitted from the class de-

Project Total
#c(manual) #p #c precision recall
A 43 49 40 81.6% 93.0%
B 16 16 16 100.0% 100.0%
C 21 22 21 95.5% 100.0%
D 30 31 30 96.8% 100.0%
E 82 91 73 80.2% 89.0%
F 24 25 24 96.0% 100.0%
G 13 11 11 100.0% 84.6%
H 16 16 16 100.0% 100.0%
Project Rule 1 Rule 2 Rule 3 Rule 4
#p #c precision | #p #c precision | #p #c precision | #p Fc precision
A 28 28 100.0% 1 1 100.0% 10 10 100.0% 9 1 11.1%
B 0 0 — 14 14 100.0% 2 2 100.0% 0 0 —
C 21 21 100.0% 0 0 — 1 0 0.0% 0 0 —
D 30 30 100.0% 0 0 — 0 0 — 1 0 0.0%
E 0 0 — 55 55 100.0% 29 14 48.3% 19 16 84.2%
F 0 0 — 24 23 95.8% 1 1 100.0% 0 0 —
G 10 10 100.0% 0 0 — 1 1 100.0% 1 1 100.0%
H 16 16 100.0% 0 0 — 0 0 — 0 0 —

Table 6. Performance of Our Mapping Algorithm

- o
o o

Score of $-Ql, 5-Q2
b4

(=]

Figure 6. The Scores of S-Q1 and S-Q2

scriptions, they will be regarded as added elements in
source code, which results in the poor scores.

We confirmed that the results are helpful to spec-
ulate the condition of traceability even if the system is
unfamiliar to an evaluator. However, omission of ele-
ments should be noticed because it may prevent from
recognizing traceability correctly.

7 Related Works

There exist researches proposing the differencing al-
gorithm between models, such as UMLDIff [10] and
SiDiff [11]. UMLDiff compares the models created by
extracting the structure of version-controlled object-
oriented source code, whereas SiDiff detects differences
using an original weight algorithm with similarity cal-
culation. Although these approaches are helpful to
compare the model structures of consecutive versions,
it is insufficient simply to compare elements consti-

Frequency

10

0-40 4050 50-60 60-70 70-80 80-S0 90-100

Score of C-G
m ProjectC ProjectD

Figure 7. The Scores of C-G

tuting the source code structure. When evaluating
traceability between a design and its implementation,
structural changes must also be considered.

One hurdle in traceability research is recovering
traceability links. Antoniol et al. proposed a method
to establish traceability links from the requirement to
the source code based on information retrieval (IR)
technique [7]. Gethers et al. integrates several stand-
alone IR methods, aiming to improve previous recov-
ery approaches [12]. In addition, the technique of
Zhang et al. has been applied to ontology to link soft-
ware artifacts semantically [13].

The approaches showed in this section can recover
traceability links with their original methods. How-
ever, few works discuss traceability specializing in a
design and its source code. Antoniol et al. tackled the
issue in [14] but it is rather old. Moreover, as men-
tioned before, links themselves cannot be a director
for an exact action, which creates a need to provide

quantitative indicator.

8 Conclusion

Herein we propose an approach to measure the level
of traceability between a design model and its source
code. To achieve this object, two methods are pre-
sented. The first is a mapping algorithm, which
bridges a design model and its source code. This semi-
automatic approach presents candidates of traceability
links, and the user extracts the correct ones. The sec-
ond is the GQM paradigms to measure traceability,
which are defined from two perspectives, system and
class perspectives. Finally, the paper verifies the per-
formance of our mapping algorithm and employs the
measurement results in traceability maintenance.

For future works, our approach could be improved
by applying previous research as described below. The
technique of Eaddy et al. [8] would enable our map-
ping method to be more precise because it uses not
only IR but also dynamic analysis and program analy-
sis to trace the requirement to the source code. Addi-
tionally, it should be a significant activity for traceabil-
ity to be analyzed from the aspect of behavior as well
as the static structure. Several methodologies have
been proposed to extract the behavior of system and
generate UML dynamic diagrams (such as sequence
diagram [15] and collaboration diagram [16]), which
prepares for comparing elements before measurement.
Egyed et al. have reported an automatic technique
to generate trace information and have applied it to
software documents, including a state chart diagram
in its case study [17]. Traceability analysis focusing on
a behavioral aspect would provide furthermore infor-
mation to verify the validity of artifacts.

References

[1] IEEE, IEEE Standard Glossary of Software En-
gineering Terminology, (New York, IEEE, 1990).

[2] M. Hammad, M. L. Collard and J. I. Maletic, Au-
tomatically identifying changes that impact code-
to-design traceability during evolution, ICPC 09,
2009, 35-64.

[3] G. K. Olsen and J. Oldevik, Scenarios of
Traceability in Model to Text Transformations,
ECMDA-FA 07, 2007, 144-156.

[4] S. Winkler and J. V. Pilgrim, A survey of trace-
ability in requirements engineering and model-
driven development, Software and Systems Mod-
eling, 9(4), 2010, 529-565.

[5] M. Fowler, Refactoring: Improving The Design Of
Existing Code, (Boston, Addison-Wesley, 1999).

[6] G. C. Murphy, D. Notkin and K. J. Sullivan,
Software Reflexion Models: Bridging the Gap be-
tween Design and Implementation, IEEE Trans-
actions on Software Engineering, 27(4), 2001,
364-380.

[7] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia
and E. Merlo, Recovering Traceability Links be-
tween Code and Documentation, IEFE Transac-
tions on Software Engineering, 28(10), 2002, 970-
983.

[8] M. Eaddy, A. V. Aho, G. Antoniol and Y. G.
Guéhéneuc, CERBERUS: Tracing Requirements
to Source Code Using Information Retrieval, Dy-
namic Analysis, and Program Analysis, ICPC
08, 2008, 53-62.

[9] V. R. Basili, G. Cladiera and H. D. Rombach,
The goal question metric approach, in J. J.
Marciniak (Ed.) Encyclopedia of Software Engi-
neering, (New York, John Wiley & Sons, Inc.,
1994), 528-532.

[10] Z. Xing and E. Stroulia, UMLDIiff: An Algo-
rithm for Object-Oriented Design Differencing,
ASE 05, 2005, 54-65.

[11] C. Treude, S. Berlik, S. Wenzel and U. Kelter,
Difference computation of large models, ESEC-
FSE ’07, 2007, 295-304.

[12] M. Gethers, R. Oliveto, D.Poshyvanyk and A.
D. Lucia, On Integrating Orthogonal Information
Retrieval Methods to Improve Traceability Recov-
ery, ICSM ’11, 2011, 133-142.

[13] Y. Zhang, R. Witte, J. Rilling and V. Haarslev,
Ontological approach for the semantic recovery of
traceability links between software artefacts, IET
Software, 2(3), 2008, 185-203.

[14] G. Antoniol, B. Caprile, A. Potrich and P.
Tonella, Design-code traceability for object-
oriented systems, Annals of Software Engineer-
ing, 9(1-2), 2000, 35-58.

[15] L. C. Briand, Y. Labiche and J. Leduc, To-
ward the Reverse Engineering of UML Sequence
Diagrams for Distributed Java Software, IEEE
Transactions on Software Engineering, 2006, 642-
663.

[16] R. Kollmann and M. Gogolla, Capturing dynamic
program behavior with UML collaboration dia-
grams, CSMR 01, 2001, 58-67.

[17] A. Egyed and P. Grunbacher, Automating re-
quirements traceability: Beyond the record & re-
play paradigm, ASE 02, 2002, 163-171.

