
Detecting Design Patterns Using Source Code of Before Applying Design Patterns

Hironori Washizaki†‡, Kazuhiro Fukaya†, Atsuto Kubo†, Yoshiaki Fukazawa†
†Department of Computer Science and Engineering, Waseda University

3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
washizaki@waseda.jp , {hiro220, a.kubo }@fuka.info.waseda.ac.jp ,

fukazawa@waseda.jp
‡GRACE Center, National Institute of Infomatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract

Detecting design patterns from object-oriented program
source-code can help maintainers understand the design of
the program. However, the detection precision of conven-
tional approaches based on the structural aspects of pat-
terns is low due to the fact that there are several patterns
with the same structure. To solve this problem, we propose
an approach of design pattern detection using source-code
of before the application of the design pattern. Our ap-
proach is able to distinguish different design patterns with
similar structures, and help maintainers understand the de-
sign of the program more accurately. Moreover, our tech-
nique reveals when and where the target pattern has been
applied in an ordered series of revisions of the target pro-
gram. Our technique is useful to assess what kinds of pat-
terns increase what kinds of quality characteristics such as
the maintainability.

1. Introduction

A design pattern is an abstracted repeatable solution to a
commonly occurring software design problem under a cer-
tain context. Among a large number of design patterns ex-
tracted and reported from well-designed software, 23 Gang-
of-Four (GoF) design patterns [1] are particularly used in
object-oriented design.

Detecting (recovering) such GoF design patterns (later,
simply denoted as ”design patterns”) from object-oriented
program source-code can help maintainers understand the
design of the program. Most of the conventional approaches
for detecting design patterns from programs analyze the
structural aspects of programs, especially inter-class rela-
tionships [2, 3, 4, 5]. Since these approaches are based
on structural aspects, it is impossible to distinguish differ-

ent design patterns with the same structure, such as the
State design pattern[1] (Figure 1) and the Strategy
design pattern[1] (Figure 2). These patterns have different
aims and deal with different problems; however, structures
provided by these patterns’ solutions are quite similar.

To solve this problem, there are several advanced ap-
proaches. Wendehals et al. combined static and dynamic
analysis[6]; however, the result of dynamic analysis de-
pends on the representativeness of the execution sequences.
Moreover, dynamic analysis techniques require executable
programs beforehand. Shi and Olsson applied static pro-
gram analysis techniques (such as the data-flow analysis and
control-flow analysis) to the abstract syntax tree (AST) in
method bodies[7]. The approach distinguishes the patterns
that are structurally identical but differ in behavior. How-
ever the approach only deals with the problem-solved de-
signs (patterns’ solutions) and not the problems themselves;
therefore it seems to difficult to detect distorted implemen-
tations of patterns. As an another approach, Hahsler has de-
tected design patterns by using comments stored in version
archives[8]; however such approach might overlook design
pattern applications that are not intended by committers.

Thus, this paper proposes a novel technique for design
patterns detection based on static analysis using source-
code of before the application of the design pattern. By
utilizing the source-code of before applying design patterns,
our approach is able to distinguish design patterns that are
structurally identical but differ in their dealing problems.
This feature helps maintainers understand the design of the
program more accurately.

2. Detecting design patterns by code of before
applying patterns

Source-code sometimes has parts to where design pat-
terns can be applied, and we use these parts to detect design



request()Context handle()State
handle()ConcreteStateA handle()ConcreteStateB
Figure 1. State design pattern

request()Context algorithm()Strategy
algorithm()ConcreteStrategyA algorithm()ConcreteStrategyB

Figure 2. Strategy design pattern

patterns. We define characteristics and limitations that are
commonly found in those parts as ”conditions of smells” for
each design pattern. Usually, the conditions of smells can
be derived by seeing the following sections of each pattern
document: Motivation, Context, Problem, Forces, Solution
and Examples. Many of pattern documents are described
in a common format (known as the ”Canonical” format[9])
including these sections.

It is not guaranteed that design patterns can be applied to
any program that satisfies the conditions of smells. We use
the conditions of smells and the conditions used in conven-
tional techniques (we call them ”conditions of pattern spec-
ifications”) together for design pattern detection. Moreover
we assume that design patterns are tend to be applied in
design improvement activities (such as the refactoring ac-
tivities) and not applied from the beginning. Such usage is
sometimes recommended, such as in [10].

2.1 Detection procedure

Our technique requires a pair of source-code of before
applying design patterns and that of after applying them. In
our technique, users (usually software maintainers) check
the target source-code whether it satisfies the conditions of
smells and/or pattern specifications of a certain design pat-
tern. After that, the users examine the correspondence re-
lationship between the pair of source-code regarding roles
of the design pattern. If and only if the correspondence re-

lationship is proper, the users judge that the design pattern
has been applied.

We give two detection procedures: ”forward method”
shown in Figure 3 and ”backward method” shown in Fig-
ure 4. The backward method is useful when the target de-
sign pattern to be detected is given (i.e. obvious). On the
other hand, the forward method enables users to identify a
possibility that the design pattern might have been applied,
which conventional approaches failed to detect.

In below, we describe these procedures in detail with the
version control systems.

Forward method consists of the following steps:

1. Users check whether each source-code satisfies the
conditions of smells of a pattern P from the oldest
to the newest version by using our technique until the
source-code does not satisfy the conditions of smells.
Here we assume that the version that has not satisfy the
conditions of smells was Ver.K.

2. In this case, the users check whether the source-code
of both Ver.K − 1 and Ver.K satisfy the conditions
of pattern specifications of P by using conventional
techniques or manual review.

3. (a) If only the source-code of Ver.K satisfies the con-
ditions of pattern specifications, the users examine the
correspondence relationship between the source-code
of Ver.K − 1 and that of Ver.K regarding the design
pattern roles. And if there are clear correspondence re-
lationship between them, it is recognized that the pat-
tern P has been newly applied in Ver.K.

(b) Otherwise, if both of Ver.K − 1 and Ver.K do
not satisfy the conditions of pattern specifications, the
users should check manually whether the target design
pattern has been applied in Ver.K.

Backward method consists of the following steps:

1. The users check whether each source-code satisfies
the conditions of pattern specifications of a pattern P
from the newest to the oldest version by using conven-
tional techniques or manual review until the source-
code does not satisfy the conditions of pattern spec-
ifications. Here we assume that the version that has
not satisfy the conditions of pattern specifications was
Ver.L.

2. In this case, the users check whether the source-code
of both Ver.L and Ver.L + 1 satisfy the conditions of
smells of P by using our technique.

3. If only the source-code of Ver.L satisfies the condi-
tions of smells, the users examine the correspondence
relationship between these versions. And if there are



clear correspondence relationship between them, it is
recognized that the pattern P has been newly applied
in Ver.L + 1.

2.2 Example of detection

We show an example of detecting a design pattern
from Java program source-code in [10]. Regarding the
design shown in Figure 5 (taken from [10]), conven-
tional techniques based on the structural aspects of patterns
(such as the Tsantalis’s technique[4]) judge that State or
Strategy has been applied; however they cannot distin-
guish these two patterns[2, 4]. Moreover, it is assumed that
the previous version of the design in Figure 5 has been im-
plemented as shown in Figure 6 (also taken from [10]).

In this case, the design patterns to be distinguished are
obvious; so we can apply the backward method of our de-
tection technique to the example.

1. Conditions of smells for the State pattern
First, we derive the conditions of smells of State as
follows:

• C1: A method in the Context role class has
two or more conditional expressions that depend
on the same field in Context.

• C2: The field’s value is modified when
Context changes its state.

• C3: All of the possible values of the field are
given by constants.

2. Conditions of smells for the Strategy pattern
Second, we derive the conditions of smells of
Strategy as follows. Among the following two con-
ditions, C4 is exactly the same as that of the State
pattern (C1); however C5 is different from any condi-
tion of the State pattern.

• C4(= C1): A method in the Context class has
two or more conditional expressions that depend
on the same field in Context.

• C5: The field’s value is not modified by
Context itself.

3. Distinction of the State pattern and the Strategy
pattern
Third, we check whether the source-code of before ap-
plying the design pattern (figure 6) satisfies the condi-
tions of smells of State and Strategy. This step is
currently automated by preparing the smell detection
tool; the tool has been implemented by JavaML[11]
and XPath[12] for program static analysis (excerpt
shown in Figure 7).

� �
public class SystemPermission ... {
public void claimedBy(SystemAdmin

admin) {
if (state == REQUESTED) {
state = CLAIMED;
} else if (state == UNIX_REQUESTED){
state = UNIX_CLAIMED;
}
...
}

public void grantedBy(SystemAdmin
admin) {

if(profile.isUnixPermissionRequired()
&& state == UNIX_CLAIMED) {
isUnixPermissionGranted = true;
} else if (profile.
isUnixPermissionRequired() &&
!isUnixPermissionGranted()) {
state = UNIX_REQUESTED;

notifyUnixAdminsOfPermissionRequest();
return;
}
...
}
...

}� �
Figure 6. Previous version of Figure 5 (taken
from [10])

Consequently, the program of Figure 6 satisfies the
conditions of smells of State (C1 ∼ C3) as below;
however, the program does not satisfy one of the con-
ditions of smells of Strategy (C5).

• C1: the method claimedBy in the class
SystemPermission has multiple con-
ditional expressions that depend on the
same field state. According to Figure
5, SystemPermission has the role of
Context of the State pattern.

• C2: The value of the field state is modified in
these expressions.

• C3: state’s values are given by constants
(CLAIMED, REQUESTED, UNIX REQUESTED
and UNIX CLAIMED).

Thus, we judge that State has been applied in the
design of Figure 5.



Ver.1 Ver.2 Ver.K Ver.NVer.K-1
1. Users verify conformance of codes to the conditions of smells until the source-code (Ver.K) does not satisfy the conditions of smells.

2. Users check whether these code satisfy the conditions of pattern specifications.
NGOK OK OK Ver.N-1

Figure 3. Forward method

Ver.1 Ver.2 Ver.L+1 Ver.NVer.L
1. Users verify conformance of codes to the conditions of pattern specifications until the source-code (Ver.L) does not satisfy the conditions.

2. Users check whether these code satisfy the conditions of smells.
OK OK OKNG Ver.N-1

Figure 4. Backward method

+ grantedBy(...) : void+ deniedBy(...) : voidPermissionClaimed+ claimedBy(...) : voidPermissionRequested~ PermissionState(name : String)+ UNIX_CLAIMED : PermissionState+ UNIX_REQUESTED : PermissionState+ CLAIMED : PermissionState+ REQUESTED : PermissionState- name : StringPermissionState
+ grantedBy(...) : void+ deniedBy(...) : void+ claimedBy(...) : voidSystemPermission - permissionState

...
Figure 5. Example of applied the State pattern (taken from [10])



� �
...
String path = "test/binary-expr"; // Specifying conditional expressions
NodeIterator nb = XPathAPI.selectNodeIterator(nodeIf, path);
while ((nodeb = nb.nextNode()) != null) {

if(((Element)nodeb).getAttribute("op").equals("==")) {
// Checking whether the comparison operator is ==
path = "var-ref[1]"; // Extracting the variable for comparison
...

}
...

}
...� �

Figure 7. Implementation of the smell detection tool by JavaML and XPath (excerpt)

3. Experimental evaluations

To evaluate the usefulness of our technique, we con-
ducted an experiment of detecting design patterns from sev-
eral programs. We prepared four pairs of Java programs of
before and after applying the State pattern (totally eight
programs taken from [10, 13, 14, 15]) as the detection tar-
gets.

By using the four pairs, we compared the following
two approaches to evaluate whether the target approach
can detect the State pattern successfully: (a) applying
only Tsantalis’s technique[4] as the representative of the
available conventional techniques, and (b) applying both
of Tsantalis’s technique and our technique in the backward
method.

Table 1 shows the numbers of program pairs where
only State has been judged to be applied, State or
Strategy has been applied but not clearly distinguished
which one has been applied, and no pattern has been ap-
plied.

In Table 1, regarding three pairs, the conventional tech-
nique could not distinguish two design patterns because of
the structural similarity between them; our technique to-
gether with the conventional one has successfully distin-
guished them and detected that only the State pattern has
been applied. On the other hand, as well as the conven-
tional technique only, our technique together with the con-
ventional one could not detect the State pattern regard-
ing one pair. This is because we applied our technique in
the backward method. In such case where the conventional
technique cannot detect any pattern for the program, our
technique should be applied in the forward method.

As a result of the above-mentioned experiment, we con-
firmed that our technique is useful for detecting design pat-
terns precisely when used together with conventional tech-
niques.

Table 1. Comparisons of the number of pro-
gram pairs where the following pattern has
been judged to be applied
Approach Detected pattern

State State or Strategy None
(a) Conventional 0 3 1

only
(b) Conventional 3 0 1

with our
technique

4. Discussion from the viewpoint of quality

Our technique reveals when and where the design pat-
tern has been applied in an ordered series of versions of
the target program. Such capability is useful to assess what
kinds of design patterns increase what kinds of quality char-
acteristics. Table 2 shows measurement results of applying
the following design metrics (mainly related to the main-
tainability) on the source-code of before and after applying
State in [10].

• Lack of Cohesion in Methods (LCOM)[16]: LCOM
measures the correlation between methods and in-
stance fields (instance variables) in the same class.
High value indicates low cohesion of the target class;
it could be subdivided into two or more classes with
high cohesion.

• Weighted Methods per Class (WMC)[16]: WMC mea-
sures the number of weighted methods in each class.
High value indicates high complexity of the target
class. In our experiment, we simply counted the num-
ber of methods (i.e. we did not set any weight for any
method).



• McCabe Cyclomatic Complexity (MCC)[17]: MCC
measures the number of independent paths in the pro-
gram control flow. High value indicates high complex-
ity of the target method (or entire program). In our
experiment, we calculated the average of MCC values
of all methods.

In the result of source-code of after applying the State
pattern, all of three measurement values have decreased
compared with the source-code of before applying the pat-
tern. These results suggest that our technique has a capa-
bility of identifying designs before applying design patterns
as poor ones from the viewpoint of quality (especially the
maintainability in this case).

Table 2. Effects on quality measurements
Metric Before After
LCOM 0.37 0.14
WMC 8.75 4.18
MCC 1.67 1.15

5. Conclusion and future work

This paper proposed a technique of design pattern detec-
tion using source-code of before applying the design pat-
tern. Our approach is able to distinguish different design
patterns with similar structures, and help maintainers under-
stand the design of the program more accurately. Moreover,
our technique reveals when and where the design pattern
has been applied in an ordered series of versions of the tar-
get program, which is useful to assess what kinds of design
patterns increase what kinds of quality characteristics such
as the maintainability.

As our future work, we need more detection experiments
with a collection of source-code examples of before and af-
ter applying design patterns, to confirm the validity and use-
fulness of our technique.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[2] J. Niere, W. Schafer, J. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In
Proc. 24th International Conference on Software En-
gineering, 2002.

[3] A. Blewitt, A. Bundy, and L. Stark. Automatic verifi-
cation of design patterns in Java. In Proceedings of the

20th International Conference on Automated Software
Engineering, 2005.

[4] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. Halkidis. Design pattern detection using similarity
scoring. IEEE Transactions on Software Engineering,
32(11), 2006.

[5] J. Dong, Y. Sun, and Y. Zhao. Design pattern detection
by template matching. In Proc. ACM Symposium on
Applied Computing, 2008.

[6] L. Wendehals and A. Orso. Recognizing behavioral
patterns at runtime using finite automata. In Proc.
ICSE Workshop on Dynamic Analysis, 2006.

[7] N. Shi and R.A. Olsson. Reverse Engineering of De-
sign Patterns from Java Source Code. In Proc. 21st
IEEE/ACM International Conference on Automated
Software Engineering, 2006.

[8] M. Hahsler. A quantitative study of the adoption of
design patterns by open source software developers. In
Free/Open Source Software Development. Idea Group,
2005.

[9] The portland pattern repository. Canonical form.
http://c2.com/cgi/wiki?CanonicalForm

[10] J. Kerievsky. Refactoring to Patterns. Addison-
Wesley, 2004.

[11] G. Badros. JavaML: a markup language for Java
source code. In Proceedings of the 9th international
World Wide Web conference on Computer Networks,
2000.

[12] The World Wide Web Consortium (W3C) Recommen-
dation. Xml path language (XPath) version 1.0, 1999.
http://www.w3.org/TR/xpath/

[13] E. Freeman, E. Freeman, B. Bates, and K. Sierra.
Head First Design Patterns. O’Reilly Media, 2004.

[14] R. Martin. Agile Software Development: Principles,
Patterns, and Practices. Prentice Hall, 2002.

[15] S. Metsker. Design Patterns Java Workbook. Addison
Wesley Professional, 2002.

[16] Shyam R. Chidamber and Chris F. Kemerer. A metrics
suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476-493, 1994.

[17] T.J. McCabe. A Complexity Measure. IEEE Transac-
tions on Software Engineering, 2(4):308-320, 1976.


