
Goal-Oriented Requirements Analysis and an
Extended Design Pattern using Scala for Artificial

Intelligence Programming Contests
Kazunori Sakamoto

Dept. Computer Science
and Engineering

Waseda University
Tokyo, Japan

kazuu@ruri.waseda.jp

Hiroaki Hosono
Dept. Information Science

Tokyo Institute of Technology
Tokyo, Japan

wand1250@gmail.com

Seiji Sato, Hironori Washizaki, Yoshiaki Fukazawa
Dept. Computer Science and Engineering

Waseda University
Tokyo, Japan

{r0d8h8i0h@asagi., washizaki@, fukazawa@} waseda.jp

Abstract—An artificial intelligence programming contest with
game software is one of the most effective way of learning pro-
gramming. Contestants can spontaneously learn programming to
win in such contests. Although our previous work helps to hold
artificial intelligence programming contests, its effectiveness is
limited owing to an insufficient requirement analysis and uses of
an unrefined design pattern.

In this paper, we report on ACM JavaChallenge 2012, that is an
artificial intelligence programming contest. we elicit requirements
on a contest with a goal-oriented requirements analysis and
extend the state design pattern using Scala to hold JavaChallenge
2012. We evaluate JavaChallenge 2012 very highly by question-
naire investigation.

Index Terms—artificial intelligence programming contest; goal-
oriented requirements analysis; design pattern; Scala; framework

I. INTRODUCTION

A programming contest is an effective way of learning
programming [1], wherein contestants can spontaneously learn
programming to win in these contests. Numerous program-
ming contests such as the ACM International Collegiate Pro-
gramming Contest (ICPC) have been held [2]. In particular,
an artificial intelligence (AI) programming contest related
to game software can interest various participants who are
interested in programming, games and just competition.

Existing work developed several online judge systems that
aid to hold the programming contests such as the ICPC [3]–
[5]. Other work analyzes such programming contests [2], [6],
[7]. However, no existing work supports for AI programming
contests related to game software.

Previously, we held four AI programming contests related
to game software written in Java. We extracted reusable source
code from our game software as a framework, called Game
AI Arena (GAIA) [8]. GAIA were implemented using Java
to satisfy requirements which were elicited using the quality
model defined by ISO 9126. However, these requirements are
not on AI programming contests but only game software. Thus,
we overlooked a fault in game rules of our previous contests
with GAIA. Moreover, the helps of GAIA for applying the

state [9] is insufficient because the expression power of Java
is limited.

In this paper, we report on our experience of holding
JavaChallenge 2012 (JC2012), that is an AI programming
contest related to game software, in conjunction with the
ICPC Asia Regional Contest. Table I shows a summary
of our programming contests including JC2012. We elicit
requirements on such contests including JC2012 with a goal-
oriented requirements analysis. We also extend the state design
pattern using Scala to improve software quality. We evaluate
JC2012 very highly by questionnaire investigation, and thus,
confirmed the requirements were efficiently satisfied.

We investigate the following research questions:

• RQ1: What requirements of AI programming contests and
game software should be satisfied?

• RQ2: Are these requirements on the contests satisfied
efficiently by applying the extended pattern?

II. GOAL-ORIENTED REQUIREMENT ANALYSIS

Our previous requirement analysis treats only game software
because the quality model defined by ISO 9126 is for software
quality. In contrast, a goal-oriented requirements analysis can
elicit requirements on both game software and game rules [10].
Thus, we carried out a goal-oriented requirements analysis.

Figure 1 shows the results of the requirement analysis for
JC2012. The circles and squares indicate goals and implemen-
tations, respectively. We determined our two goals: fun and
learning Java because one of the most important characteristics
is fun [11]. The fun is also divided into six sub-goals (SGs):
interesting, understandable, usable, attractive, reliable and fair.

SG1. Interesting and SG2. Understandable: We made
game rules by integrating two well-known games, “The Set-
tlers of Catan (Catan)” and “Galcon” to make game software
interesting and understandable. The integration of well-known
games make game software novel and understandable because
contestants can easily understand well-known games and the
integration brings novelty. While “Catan” is a board game,



TABLE I
SUMMARY OF OUR PROGRAMMING CONTESTS

Contest Inspired game Game type Language for game software Language for AI programs Period #Player #Team
JC2009 Bomberman Turn-based action Java Java 1.5 hours 2 35
JC2010 None Turn-based action Java Java 4 hours 2 45
WR2010 None Turn-based action Java Java, Ruby, Python, Scala 19 days 4 19
WG2011 Pac-Man Turn-based action Java Java, Ruby, Python, C, C++, C# 36 days 4 109
JC2012 Galcon, Catan Turn-based strategy Java, Scala Java 2 hours 6 34

“Galcon” is a digital game whose category is real-time strat-
egy. We decided to use “Catan” as a basis adding the game
elements of “Galcon” into it. We also removed game elements
to make game rules simple because a oversimple integration
increases complexity of game rules.

SG3. Usable and SG4. Attractive: Contestants want to
properly use a character-based user interface (CUI) and a
graphical user interface (GUI) in terms of usability. Some-
times contestants adapt machine learning to AI programs.
While a CUI is suitable for programs for manipulating game
software in such case, a GUI is suitable for showing games
to audiences. Moreover, user want to use user-manipulation
and AI-manipulation modes for different purposes. However,
it is difficult to construct various UI modes because existing
patterns using Java cannot modularize such modes well. Thus,
we decided to use Scala to construct fine-grained modules
for the modes. Moreover, we decided to extended an existing
pattern for achieving separation of concerns (SoC). SoC aids
designers to concentrate on designing attractive user interfaces.

SG5. Fair: The exclusive AI execution prevents from inter-
ceptions of other AI programs, and the read-only state prevents
changing of the game state illegally. GAIA provides a feature
to execute AI programs exclusively and several immutable
classes. However, GAIA cannot help adding new immutable
classes that represent the game state. Thus, we decided to use
Scala to develop game software for JC2012 because functional
programming languages including Scala prefers immutability
and supports immutability.

SG6. Reliable: Faults do not occur in only game software
but also in game rules. To find faults in game rules, we decided
to review whole AI programming contests including game
rules. We released game documents without game software
to the public one week before JC2012. Moreover, we also
decided to conduct beta testing for verifying JC2012. We asked
programmers worked in sponsor companies to participate in
our beta testing one week before JC2012.

Note that JavaChallenge should encourage contestants to
learn Java. Thus, AI programs for JavaChallenge should be
written in Java. We decided that our game software provides
Java API for communicating with AI programs.

III. IMPLEMENTATION OF JAVACHALLENGE 2012

In this section, we describe how to satisfy the analyzed
requirements by explaining the design and implementation of
game rules and game software, called Asterobots.

Fig. 1. Results of goal-oriented requirements analysis for JC2012

A. Game Rules for JavaChallenge 2012

We developed the game rules of Asterobots for JC2012
integrating “Catan” and “Galcon” to satisfy SG1. Interesting
and SG2. Understandable. In “Catan”, the player earns points
by gathering the resources and developing the land to win. In
“Galcon”, the player occupies enemies’ planets, which pro-
duce soldiers, with soldiers to win. In Asterobots, the player
also occupies enemies’ veins with robots to win. The veins
produce materials similar to “Catan” and robots similar to
“Galcon”. Although the soldier productivity of each planet is
constant in “Galcon”, the material and soldier productivities of
each vein can be upgraded by consuming materials similarly to
“Catan” in Asterobots. Although “Catan” has four resources,
Asterobots has three materials to make game rules simple in
terms of SG2. Understandable.

Fig. 2. Screen shot of Asterobots for JavaChallenge 2012

Figure 2 shows the game screen of Asterobots. We pub-
lished the full rule document1 on our web site2.

1http://www.ai-comp.net/javachallenge2012/manual.pdf
2http://www.cs.titech.ac.jp/icpc2012/regional-contest/java-challenge-e.html



TABLE II
ABSTRACT CLASSES AND TRAITS WHICH REPRESENTS SCENES EXCEPT FOR BASIC CLASSES

Name Player Main Vein Console TextBox Graphical InitialRunner MainRunner
Module type Class Class Class Trait Trait Trait Trait Trait
Responcibility Game rules Game rules Game rules UI UI UI UI UI

B. Game Software for JavaChallenge 2012

Asterobots is developed using Scala but GAIA is developed
using Java. Although Scala can work with Java, specialized
methods for Scala are unnecessary for Java. We defined
interfaces for all the Scala classes that are used by AI programs
to hide the unnecessary methods.

Fig. 3. Class diagram of scene classes

We utilize the state pattern to modularize scenes classes,
which represent game scenes such as a title, a main and
a end scene. However, scene classes designed by the state
pattern strongly combine processing under game rules and
rendering UIs on the scenes. We extend the state pattern
using Scala, which provides a mixin feature through traits, to
address this problem. The mixin feature provides better way
of modularizing classes than an inheritance feature in Java.
We divide a scene class into two traits of processing under
game rules and rendering a UI using the mixin to satisfy SG3.
Usable and SG4. Attractive.

Figure 3 shows the class diagram of scene classes
in Asterobots. The Scene, AbstractScene and
CommandBaseScene interface or classes provide basic
features for representing game scenes. Talbe II shows the
abstract classes and traits which represents scenes except
for above-mentioned three classes. We abbreviates class and
trait names in “Name” and the following by removing the
Scene word (e.g. Player indicates PlayerScene). The
Player, Vein and Main abstract classes are core classes
for constructing game flow, which have only a responsibility
of processing under game rules without rendering a UI. These
classes have responsibilities which enable users to choose the
number of players and player names, to select the initial veins
and to play the game manipulating players, respectively.

The Console and TextBox traits provide methods for
a CUI and a GUI, respectively. While the Console trait
provides methods to read commands and write messages
through standard I/O, the TextBox trait provides methods
to show two text boxes for reading commands and writing
messages. The Graphical trait provides methods to render
the game screen using bitmap images. The InitialRunner
and MainRunner provides methods to read commands from
AI programs. We can use these classes construct game scenes
with various features about the UI. For example, the mixin of
the Main abstract class, Console and MainRunner traits
creates an object that reads commands from AI programs and
writes messages in the standard output.

Lists 1 and 2 show methods for constructing game scenes
for the CUI and for the GUI, respectively. Lists 2 use the
Waiting abstract class instead of the Player abstract
class. The Player abstract class, which asks users for the
player information, is unnecessary for AI programs because
AI programs provide the player information through getter
methods. Moreover, the Waiting abstract class allows users
to control the timing for starting the game. In this way, we
improved the state design pattern by utilizing the mixin feature
in Scala.

List 1. Scala code constructing console game with user manipulation
1 def startConsoleGame() = {
2 val end = new EmptyScene(null) with ResultScene
3 with ConsoleScene
4 val main = new MainScene(end) with ConsoleScene
5 val vein = new VeinScene(main) with ConsoleScene
6 new PlayerScene(vein) with ConsoleScene
7 }

List 2. Scala code constructing graphical game with AI programs
1 def graphicalContestScenes() = {
2 val main = new MainScene(null) with GraphicalScene
3 with TextBoxScene with MainRunnerScene
4 val wait = new WaitingScene(main)
5 with GraphicalScene with TextBoxScene
6 val vein = new VeinScene(wait) with GraphicalScene
7 with TextBoxScene with InitialRunnerScene
8 new WaitingScene(vein) with CompositeGraphicalScene
9 with TextBoxScene

10 }

IV. EVALUATION AND DISCUSSION

We evaluated how JC2012 and Asterobots satisfied the
analyzed requirements, which are six sub-goals, using a ques-
tionnaire. To do so, our questionnaire asks about the interest
of the game corresponding to SG1. Interesting, the clarity
of the game rules corresponding to SG2. Understandable,
the usefulness of the API corresponding to SG3. Usable, the
graphics corresponding to SG4. Attractive and the overall.



TABLE III
RESULT OF QUESTIONNAIRE INVESTIGATION

Interest Clarity of Usefulness Graphics Overall
of game game rules of API

Very good 34 17 18 31 28
Good 5 14 20 7 8
Poor 2 9 3 3 5
Very poor 0 1 0 0 0

Table III shows the results of this questionnaire investiga-
tion. We obtained answers from 41 contestants.

SG1. Interesting: Ninety-five percent of the answered
contestants felt that Asterobots is interesting. This is the
best evaluation in this investigation. We integrated two well-
known games, which are “Catan” and “Galcon”, to make
our game attractive and understandable. Several contestants
commented that the game rules of JC2012 are well designed
and very interesting. Although one contestant said that it
may be preferable that be played by hand rather than AI
programming, most of the contestants evaluated the game rules
highly. Therefore, we successfully developed the interesting
game rules.

SG2. Understandable: Seventy-six percent of the answered
contestants felt that the game rule is clear. This value is rela-
tively low in comparison with other values. Several contestants
commented that the time is too short because contestants
implement AI programs within only two hours in JC2012.
Although we released game documents before JC2012, the
contestants felt that the time is still insufficient.

Moreover, several contestants said that the game rules
should be simpler. In particular, a contestant said that the
integrated game rule is complex. This comments indicate an
integration of two games essentially increase complexity and
our reduction of game elements are insufficient. Therefore, we
should consider the simplicity of the game rule.

SG3. Usable: Ninety-three percent of the contestants felt
that our Java API is useful for implementing AI programs.
This is a very high evaluation in this investigation. Although
we developed Asterobots using Scala, we also use Java to
define interfaces as pure Java code for Java API. No contestant
commented on API. This indicates that our Java API had no
problem. Therefore, we successfully provided the Java API
through interfaces for the Scala program.

SG4. Attractive: Ninety-three percent of the contestants
also felt that the game graphics is attractive. This value is also
a very high evaluation in this investigation. We modularized
the scene classes with the mix-in feature of Scala to make our
game attractive. The SoCs between game logic and UIs helps
us divide the labor appropriately. In particular, our designers
concentrated on how to render the game screen. Therefore, we
successfully provided the fine game screen and useful UIs.

SG5. Fair: No AI program intercepts other AI programs
illegally. Therefore, we successfully achieved the fair game.

SG6. Reliable: We received seven issue reports in beta
testing and fixed them. As a result, no fault occurs in both
Asterobots and game rules. Therefore, we successfully pro-
vided the reliable game.

Overall: Eighty-eight percent of the contestants concluded
that, overall, JC2012 is good. This is a high evaluation in this
investigation. Most of the other evaluations are good except
for the clarity of the game rule. Approximately half of the
contestants commented “JC2012 is fun” or “Thank you for
the very fun game”. Therefore, JC2012 was successfully held.

As a result, we found that our analyzed requirements are
enough because no other requirement was acquired from
questionnaire investigation. Therefore, we answered RQ1 by
showing the requirements. Moreover, we confirmed the ex-
tended design pattern help to satisfy the requirements effi-
ciently because the results of the evaluation except for SG2.
Understandable are very high. Therefore, we answered RQ2
by showing this results. However, we should deal with the
simplicity by reducing dramatically more game elements or
by introducing novelty without an integration of games. We
plan to elicit better way of creating simple game rule in future.

V. CONCLUSION

We reported on JavaChallenge 2012 with our previous
programming contests and GAIA. We carried out a goal-
oriented requirements analysis and extended the state pat-
tern using Scala to satisfy the requirements efficiently. We
evaluated JavaChallenge 2012 and Asterobots using a ques-
tionnaire. Most of the answers are quite good with respect
to the analyzed requirements except for the understandable.
We plan to elicit better way of creating simple game rule in
future to improve understandability. In this way, we concluded
JavaChallenge 2012 was successfully held.

REFERENCES

[1] N. V. Shilov and K. Yi, “Engaging students with theory through acm
collegiate programming contest,” Commun. ACM, vol. 45, pp. 98–101,
September 2002.

[2] A. Trotman and C. Handley, “Programming contest strategy,” Computers
& Education, vol. 50, no. 3, pp. 821 – 837, 2008.

[3] J. P. Leal and F. Silva, “Mooshak: a web-based multi-site programming
contest system,” Softw. Pract. Exper., vol. 33, no. 6, pp. 567–581, May
2003.

[4] A. Kurnia, A. Lim, and B. Cheang, “Online judge,” Computers &
Education, vol. 36, no. 4, pp. 299 – 315, 2001.

[5] Y. Luo, X. Wang, and Z. Zhang, “Programming grid: a computer-aided
education system for programming courses based on online judge,” in
Proceedings of the 1st ACM Summit on Computing Education in China,
ser. SCE ’08. ACM, 2008, pp. 10:1–10:4.

[6] N. Gulley, “Patterns of innovation: a web-based matlab programming
contest,” in CHI ’01 Extended Abstracts on Human Factors in Comput-
ing Systems, ser. CHI EA ’01. ACM, 2001, pp. 337–338.

[7] M. Forišek, “The difficulty of programming contests increases,” in
Proceedings of the 4th International Conference on Informatics in
Secondary Schools - Evolution and Perspectives, ser. ISSEP ’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 72–85.

[8] K. Sakamoto, A. Ohashi, H. Washizaki, and Y. Fukazawa, “A framework
for game software which users play through artificial intelligence
programming (in japanese),” IEICE Transactions, vol. 95, no. 3, pp.
412–424, mar 2012.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley Pro-
fessional, 1995.

[10] A. van Lamsweerde, “Goal-oriented requirements engineering: a guided
tour,” in Requirements Engineering, 2001. Proceedings. Fifth IEEE
International Symposium on, 2001, pp. 249 –262.

[11] P. Salenieks and J. Naylor, “Professional skills assessment in program-
ming competitions,” SIGCSE Bull., vol. 20, no. 4, pp. 9–14, Dec. 1988.


