
Macro and Micro Patterns in the Software
Design Activity

Jonatan HERNANDEZ a, Hironori WASHIZAKI b and Yoshiaki FUKAZAWA c

a Waseda University, jhernandez@asagi.waseda.jp
b Waseda University, washizaki@waseda.jp
c Waseda University, fukazawa@waseda.jp

Abstract. The activities of software analysis and design are important because they
are the first steps in the software development. The objective of this paper is to
identify the patterns that emerge during these activities. Identifying these patterns
is important because we can imitate the patterns that increase our productivity and
avoid the patterns that decrease our productivity. The patterns are made from se-
quences the logical actions “Create”, “Delete” and “Rename” applied on the el-
ements of the design diagrams. These actions are collected when creating UML
class diagrams with the open source modeling tool ArgoUML. The patterns found
are of two types: micro-pattens and macro-patterns. These patterns were related to
different design strategies such as top down, breadth first.

Keywords. software design, patterns, software modeling

1. Introduction

Software modeling is a human activity. Because “all software is designed”[1], design is
a fundamental building block in the software development process. Design is a human
activity characterized by the expertise and abilities of the designers who create it. Be-
cause of its human nature, one topic that has attracted research is the difference between
experts and novices. The strategies that both experts and novices use are important be-
cause we can imitate the patterns that increase our productivity, and avoid patterns that
make us less productive. Identifying these strategies will increase our understanding of
the design process, and help us to become better software designers.

Design problems are ill-defined. There is not only one and correct solution to a de-
sign problem. Moreover it is difficult to evaluate when a design is better than another.
There are classifications for the strategies used to solve a design problem[2]: opportunis-
tic, top down and bottom up, breadth first and depth first. The identification of these pat-
terns will help us understand when these strategies are applied, and what the character-
istics of the designers who apply them are.

One of the main targets of the research on the design activity has been on the differ-
ences between experts and novices [2][3][4][5]. From these researches some character-
istics of expertise in software design have been described. In [5] experts also know more
about strategies than moderate performers, and spend more time on problem comprehen-
sion. Experts decompose design problems into smaller ones. In [6] experts have more



models available for solving a problem. Thus, designers — depending on their expertise
— use different approaches to solve design problems. These are the characteristics that
we try to identify in the design activity.

Previous research has made extensive use of the verbal protocols to collect data
about the process of design in which the participants are requested to verbalize their
thinking processes [2] [7] [8]. These protocols require an extensive analysis of the
recorded sessions, making data collection time-consuming. Moreover most of the ele-
ments created during the activity are of a very short existence, like notes, and talks with
colleagues and co-workers [1]. A method for fast, automated data collection is still a
challenge.

2. Our Approach

The following method for collecting data is proposed: register the actions of Create,
Delete and Rename that are applied to the elements of a class diagram. The elements con-
sidered are class, interface, attribute, operation, generalization, association and package
from the UML standard. This is summarized in Table 1.

Element
Action Package Class Interface Attribute Operation Generalization Association

Create CP CC CI CA CO CG CS
Delete DP DC DI DA DO DG DS
Rename RP RC RI RA RO RG RS

Table 1. Abbreviations for the Actions collected from the user.

Thus, for each diagram created we have a sequence S of actions {a1,a2,a3...an},
where a is one of the elements of Table 1. After having all the sequence of actions, we
proceed to count all the patterns in the log. For counting the patterns we used the library
tau [9]. Then we analyzed the most frequent patterns. The process can be seen in Figure
1.

Pattern Detection

Problem

UML Class Diagram

Designer

Seq = a1,a2,a3... an

Figure 1. Process to obtain the log of the participants.



3. Experiment Setup

The subjects were asked to analyse the parts and control elements that are necessary
for an elevator to work properly. The objective is to have a UML class diagram with
the elements and relationships appropriate to the subject to represent an elevator and its
control system.

The subjects for the experiment were two students of 4th year of Bachelor Degree
and one student of 1st year of Master Degree from the Department of Computer Science
and Engineering. The sessions lasted between 1 hour and 1 hour and a half. One session
was recorded using screen recording software and then replicated to obtain the records
for analysis.

4. Results and Discussion

The experiments are identified as Experiment E1, E2 and E3 respectively. Each subject
is identified as S1, S2 and S3 in the same way. Figure 2 shows the total number of actions
and distribution per type. The resulting diagrams are in [10].

Figure 2. Total number each action: Create, Delete and Rename for all the elements

There were two kinds of patterns found. The first type of patterns were macro-
patterns. This kind of pattern appears when we see the complete sequence of actions.
The second type are micro-patterns. Micro-patterns are the sequence of actions. For ex-
ample, these patterns represent how common an action is such as Create Class followed
by a action Rename Class. Micro-patterns are where the sequences are located, and how
many times a sequence is repeated.

4.1. Macro-Patterns

The first macro-pattern is related to the total number of Delete actions. In E2 there is a
7.7% of Delete actions, while in E1 there is a 23.5% of Delete actions. In Figure 2 we
can see the distributions. In E2 Delete actions are the least used type of actions.

The next macro-pattern is related to the relationship between Create and Rename
actions. In E2 the numbers are almost equal while in E1 and in E3 the numbers of Create
actions are much smaller. We can see the comparison in Table 2.



Ratios E1 E2 E3

Create/Rename Class 18/29 = 0.62 13/14 = 0.93 11/25 = 0.44
Create/Rename Attribute 07/10 = 0.7 15/17 = 0.88 19/23 = 0.82
Create/Rename Operation 04/07 = 0.57 16/16 = 1 16/17 = 0.94

Table 2. Comparison of Create and Rename actions

Related to the previous macro-pattern, the relationship between the total num-
ber of classes and the Create Class action is examined. The ratios of total number of
classes/Create Class actions are: in E1 13/18 = 0.72; in E2 11/13 = 0.85 and in E3
7/11 = 0.64.

Figure 3. Number of Create, Delete and Rename actions applied to a class element

4.2. Micro-Patterns

The first micro-pattern is related to the distribution of actions. In E2, 9 from the 11 final
classes of the diagram were created in the first 10 minutes of the experiment. In E3 in
the first 10 minutes, 7 of the 7 final classes were created. We can see the distribution
of actions in Figure 3. In contrast, in E1 classes were created and removed from the
beginning to the end in the experiment.

The next micro-pattern in both E2 and E3 was a long sequence of creation of classes.
In E2 9 classes and also in E3 5 classes were created.

Finally, the most common micro-pattern in all three experiments was to create an
element, and rename it immediately from the default name assigned from ArgoUML.

4.3. Levels of Expertise

The macro-patters of a low percentage of Delete actions, and the micro-pattern of a
long sequence of Create Classes at the beginning might be related to a higher level of
expertise. This can be because the problem was thoroughly understood, and then all the
elements that were needed were created. This could be considered a top down, breadth-
first strategy, because first we define all the high level elements (classes), before defining
the details (attributes and operations). In this experiment this strategy was used by the
designers with more expertise.

The macro-pattern of the almost equal number of Create and Rename actions means
that the name chosen for a particular element remained without change. If on the contrary
there are more Rename actions, the elements changed their name many times. Thus,



having an almost equal number of these actions might be related to a higher level of
expertise.

A high percentage of Create and Delete actions of classes might be related to a lower
level of expertise. In support, S1 manifested that he had little experience making UML
class diagrams. He only used a few attributes or methods in his diagram and used a large
number of Delete and Rename actions.

4.4. Threats to Validity

Using ArgoUML as the tool limits the scope of the results, because different tools may
lead to different patterns. Also, its limitations when compared to a physical medium such
as a whiteboard that offers more freedom reduce the patterns that can be found. Finally,
the problem used is different from the ones in the industry. Therefore these results can
not be applied to other situations.

5. Conclusion and Future Work

We found macro and micro patterns related to the level of experience of the designer.
These patterns could indicate that a good strategy is to define the classes at the begin-
ning of the design and then to proceed with the details (top down, breadth first). On the
contrary, if we create classes during the whole period we might not have grasped the
problem at hand. Although at this point we do not have many macro and micro patterns,
the simple ones that we found helped us understand how strategies are applied.

In our future work more elements will be considered. For example parameter of
methods, notes or other kinds of diagrams (use case, sequence diagram). All of these
elements could be collected and analyzed. This also raises the question of which actions
of the designer are the most significant ones. Thus, a major topic is how to achieve a
better balance between the quantity of features examined in terms of level of significance.

References

[1] A. Baker, A. van der Hoek, H. Ossher, and M. Petre, “Guest editors’ introduction: Studying professional
software design,” IEEE Software, vol. 29, no. 1, pp. 28–33, Feb. 2012.

[2] W. Visser and J. Hoc, “Expert software design strategies,” in Psychology of Programming. Academic
Press, 1990, pp. 235–249.

[3] V. Popovic and B. Kraal, “Expertise in software design: Novice and expert models,” Proceedings of
Studying Professional Software Design, 2010.

[4] S. Sonnentag, C. Niessen, and J. Volmer, Expertise in software design. Bibliothek der Universität
Konstanz, 2006.

[5] S. Sonnentag, “Expertise in professional software design: A process study.” Journal of Applied Psychol-
ogy, vol. 83, no. 5, p. 703, 1998.

[6] B. Adelson and E. Soloway, “The role of domain experience in software design,” Software Engineering,
IEEE Transactions on, no. 11, pp. 1351–1360, 1985.

[7] K. Dorst and J. Dijkhuis, “Comparing paradigms for describing design activity,” Design Studies, vol. 16,
no. 2, pp. 261–274, 1995.

[8] W. Visser, “Designers’ activities examined at three levels: organization, strategies and problem-solving
processes,” Knowledge-Based Systems, vol. 5, no. 1, pp. 92–104, 1992.

[9] “Text analysis utilities,” june 2012. [Online]. Available: http://cran.r-project.org/web/packages/tau/tau.
pdf

[10] “Diagrams,” june 2012. [Online]. Available: http://www.fuka.info.waseda.ac.jp/∼jonatan/ref/RD.html


