PatternRank: A Software-Pattern Search System Based on
Mutual Reference Importance

Atsuto Kubo
Waseda University
Japan

a.kubo@fuka.info
.waseda.ac.jp

Hiroyuki Nakayama
Waseda University
Japan

h-nakayama@fuka
.info.waseda.ac.jp

ABSTRACT

There are currently a large number of digitized pattern doc-
uments. However, there are no ordering method special-
ized for patterns, thus, developers have to read and evalu-
ate many pattern documents to find appropriate patterns
for developer’s facing problems. We focus to popularity of
patterns in this paper, because many patterns must refer
to core patterns in each domain. Our proposed method
calculates an importance value of each pattern document
using interpattern references and “in the same pattern cat-
alog”relationships. Since our method is a simple expansion
of Google’s PageRank method, obtained importance values
indicate popularity of each pattern. Resorting search result
by using the proposed method helps developers to find a
popular patterns from a targeted pattern document set. We
built a demo search system using the proposed method and
conducted search experiments for 131 pattern documents
gathered from the World Wide Web. The experiment re-
sults confirmed that popular patterns can be pulled up in
the results.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures—
Patterns

General Terms
Design

Keywords

Patterns, Interpattern Relationships, Information Retrieval

1. INTRODUCTION

There are currently a large number of digitized pattern
documents[3]. However, there are no ordering method spe-
cialized for patterns, thus, developers have to read and eval-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. A preliminary version of this paper was presented in a writers’
workshop at the 15th Conference on Pattern Languages of Programs (PLoP).
PLoP ’08, October 18-20, 2008, Nashville, TN, USA.

Copyright 2008 is held by the author(s). ACM 978-1-60558-151-4.

Yoshiaki Fukazawa
Waseda University Waseda University
Japan Japan

washizaki@waseda.jp fukazawa@waseda.jp

Hironori Washizaki

State Fixed Sized

of 10251 5 _7 Buffer [0.25] %

Initial !
. Garbage
%,| Bridge Collection {4
[0.25] [0.25]

State Fixed Sized
o[[0.2814 Buffer [0.2832] *

At last
: Garbage
.| Bridge Collection |«&"
[0.1544] [0.2808]

Numbers in braket denote importance value.
Importance value flows on each arrow.

Figure 1: Convergence Calculation

uate many pattern documents to find appropriate patterns
for developer’s facing problems. Through answering the
question what is an appropriate pattern is difficult and de-
pends on each situation, we focus to popularity of each pat-
tern in this paper, because many patterns must refer to
“core” patterns in each domain.

In this paper, we propose a popularity calculation method
specialized for pattern documents and demonstrate pattern
search using the system with the proposed method.

2. PATTERNRANK METHOD

The proposed method named “PatternRank” is a simple
expansion of Google’s PageRank method[1]. In PageRank,
documents are mapped to graph nodes and links between
documents are mapped to graph edges. In PatternRank,
pattern documents and relationships between pattern pat-
terns play each role above. We deal an occurrence of pat-
tern’s name as a relationship between patterns, denoted as
a solid arrow in Figure 1. Another point of expansion by
PatternRank is introducing “in the same pattern catalog”
relationships, denoted as a dotted arrow in Figure 1. Pattern
catalogs are specific structure of pattern documents. “in the
same pattern catalog” relationships reflect these structure
into the proposed method.

Progression of the calculation of our method is illustrated
in Figure 1. At first, each pattern node has an equal impor-
tance value. New importance value of each node is a sum of
incoming edges’ value. Importance value of each node is split

Precalculation \

of Importance value

: Pattern Doucment

Repository

Query Matching
/ and Ordering Result

Sorted Result:
Abstract Factory: 0.060

Iterator: 0.027 /

Figure 2: System Overview

User

up into outgoing reference edges and same-pattern-catalog
edges. Amount of same-pattern-catalog edge’s importance
value is smaller than reference edges and controlled by a
parameter named pattern catalog distribution ratio. Af-
ter several dozen repeats of calculation, importance value of
each pattern converges. Obtained value indicates popularity
of each pattern. Full explanation of the proposed method
is available at the PLoP2008’s website (http://hillside.
net/plop/2008/).

3. DEMONSTRATION

We built a demo search system using the proposed method
illustrated in Figure 2. Importance values of patterns are
calculated before user’s querying. When a user sends search
query to the system, it extracts the pattern documents match-
ing the query from the repository, sorts the documents by
importance values of each pattern document, and sends the
result to the user.

For the demonstration, 131 pattern documents were gath-
ered from the World Wide Web|[2, 4, 5, 6]. A pattern catalog
distribution ratio was set into 0.15 in the demonstration.

The top seven results of searching with query “memory”
is shown in Table 1. Table 2 shows the result in a same
condition except sorting by alphabetical order. The value
in the column Suitable? becomes “Yes” if each pattern cor-
responds to problems around memory management, and it
is marked by the authors of this paper through discussions
on the intent of each pattern. The columns Rec. and Prec.
put the values of recall and precision. Recall is the ratio
of two elements, the number of suitable results above each
rank and the number of all suitable results. Precision is the
ratio of two elements, the number of suitable results above
each rank and the number of all results above each rank.

In Table 1, several design patterns related to using mem-

ory efficiently, such as Lazy Evaluation, Proxy, and Flyweight

patterns appear with high rank. Lazy Evaluation pattern
achieves reduction of memory use by postponing evaluation
when evaluation is needed. Virtual Proxy within Proxy
pattern also achieves reduction of memory use by not creat-
ing objects until they are needed. Flyweight pattern saves
memory by sharing it between objects of the same type that
are used often. In the set of pattern marked as suitable,
Flyweight pattern was lifted up to higher rank by references
from many other patterns such as Composite and State pat-
terns.

4. CONCLUSION

Table 1: Result of Query ”memory” ordered by Pat-
ternRank

Pattern Suitable? Im. Rec. | Prec.
1 | Flyweight Yes 0.147 | 0.11 1.0
2 | Lazy Evaluation Yes 0.145 | 0.22 1.0
3 | High Speed Serial Port Yes 0.111 | 0.33 1.0
4 | Proxy Yes 0.111 | 0.44 1.0
5 | Serial Port Yes 0.111 | 0.56 1.0
6 | Immutable Object Yes 0.084 | 0.67 1.0
7 | Iterator Interface Yes 0.078 | 0.78 1.0

Im. denotes Importance Value, Rec. does Recall, and Prec. does Precision.

Table 2: Result of Query "memory” in Alphabetical
Order

Pattern Suitable? Im. Rec. | Prec.
1 | About Inheritance No 0.017 | 0.0 0.0
2 | Class As Type Code No 0.017 | 0.0 0.0
3 | Eval To Closure Yes 0.017 | 0.11 0.33
4 | Flyweight Yes 0.147 | 0.22 0.5
5 | High Speed Serial Port Yes 0.111 | 0.33 0.6
6 | Immutable Object Yes 0.084 | 0.44 | 0.67
7 | Iterator Interface Yes 0.078 | 0.56 0.71

We proposed an importance calculation method special-
ized for pattern documents. The method enables resorting
patterns by the order of popularity. The experiment results
confirmed that popular patterns can be pulled up into higher
rank in the result of searching. It is expected that resorting
search result by using the proposed method helps developers
to find a popular patterns from a targeted pattern document
set.

5. ACKNOWLEDGMENTS

Our heartfelt appreciation goes to Roberta Coelho, our
shepherd. Her comments dramatically improved the theo-
retical aspect of the proposed method. We also appreciate
many suggestions given by Ralph Jonson and Nuno Flores.
They genially supported us to improve our method, paper’s
style and expressions using precious time between workshop
sessions. Finally, we would like to thank to all attendees of
PLoP, especially Peter Sommerlad and Ralph Johnson, the
moderators, led discussion and elicited many useful sugges-
tions for the method.

6. REFERENCES

[1] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In the seventh international
conference on World Wide Web, pages 107-117, 1998.

[2] D. V. Camp. An object-oriented pattern digest.
http://patterndigest.com/.

[3] S. Henninger and V. Correa. Software pattern communities:
Current practices and challenges. In Proceedings of the 14th
Pattern Languages of Programs, 2007.

[4] V. Huston. Huston design patterns.
http://home.earthlink.net/?huston2/dp/patterns.html.

[5] E. Inc. Embedded design pattern catalog. http:
//www.eventhelix.com/RealtimeMantra/PatternCatalog/.

[6] S. Walters. Perl design patterns. http:
//perldesignpatterns.com/perldesignpatterns.html.

