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Abstract—UML class diagrams representing the static 

structure of the relations between different concepts existing in 

a problem are widely used in model-based software 

development. However, no effective measures of a class 

diagram’s understandability yet exist. We have devised 

quantitative measures of a class diagram’s understandability 

and evaluated their validity. We obtained strong correlations 

between the domain experts’ subjective evaluations of the 

understandability of a class diagram and the measurements of 

our methods. These results indicate that our measures can 
effectively quantify the understandability of class diagrams. 

Keywords-Software Metrics; Software Evaluation; Software 

design metrics; UML class diagrams; Maintainability; 

Understandability. 

I.  INTRODUCTION 

Unified Modeling Language (UML) [1] is a useful 
modeling language that standardizes the notation of various 
models being used for object-oriented development. 
Knowledge sharing is supposed to be easier if the reader of 
the UML diagrams understands the notation of the UML 
models. The class diagram in the definition of the UML 
represents the concepts existing in the problem and a static 
structure of the relations between these concepts. 

The class diagram is understood by evaluating the 
validity of the relations between the classes. In particular, 
this is achieved by comparing the relations between the 
concepts described in the class diagram with the relations 
between the concepts that the reader tacitly possesses. When 
both structures are similar, the reader normally believes that 
the relational structure of the class diagram is valid and that 
its understandability is high. When the structures are 
dissimilar, the reader may feel that the validity and 
understandability of the diagram are poor.  

In light of this, the following self-review method has 
been suggested [2]: Read “word A and word B have a 
relationship” by using the class names of a related edge. If 
you feel uncomfortable, you should review the layout of the 
responsibilities. However, a correlation between the validity 
evaluation of the class relations like mentioned above, and 
the understandability of the class diagram have not yet been 
elucidated. 

A wide variety of metrics, i.e., objective standards for 
measuring the quality of software, have been proposed for a 
class diagram. For example, there are CK Metrics [3] that 
can measure the sum of the complexities of the class’s 
operation (WMC) and lack of cohesion of methods (LCOM), 
etc. However, there is no metric for measuring the 
understandability of a class diagram. There is an article [5], 
but the correlation between the qualitative evaluation of the 
models covering various qualities and the complexity of the 
structure based on uniting the classes [4] is rather weak. 

If valid metrics of the class diagram’s understandability 
were to be defined, they would be useful for estimating the 
time-cost involved in understanding a class diagram, for 
creating objective reviews based on the understandability of 
the diagram, for selecting the best models from among all the 
others for the same problem, and for detecting the parts of 
the class diagram in which the understandability is poor. 

Our fundamental hypothesis is as follows: if the 
similarity of two words is a high degree, the reader of the 
class diagram will recognize the close relation between them. 
Furthermore, if two closely related words are near each other 
on the class diagram, the understandability of the class 
diagram will be high. The above hypothesis led us to propose 
three metrics for the understandability of a class diagram. 
We evaluated their validity and the hypothesis by analyzing 
the correlation between the subjective evaluations of 
understandability and measurements given by the metrics. 

II. METRICS CONCERNING UNDERSTANDABILITY OF THE 

CLASS DIAGRAM 

A class diagram has three aspects, as Fig. 1 shows, the 
class structure and package structure as a macro view, the 
attributes, and the operations as the micro views. 

We shall now define the fundamental hypothesis. If two 
words are similar, the reader of a class diagram would 
naturally recognize the close relation between them. And 
also, if the relation between two elements on the class 
diagram is close, the reader would expect the words of the 
elements are similar. That is, if the relation is close and the 
two words are similar, the reader would easily understand the 
class diagram. The above hypothesis can be recast into three 
versions based on the three aspects of the class diagram. 

 



H1）Class Structure Hypothesis 
If the following two detailed hypotheses hold for the 

entire class diagram, the class diagram will be easily 
understandable.  

 The similarity between two class names increases as the 
relation between the two classes in the class diagram is 
strengthened in terms of the class’s static relational 
structure. 

 The similarity between two class names decreases as the 
relation between two classes in the class diagram 
weakens in terms of the class’s static relational structure. 
Fig. 1.1 and 1.2 have similar classes. However, Fig. 1.1 

seems to have a higher level of understandability, because 
the “RunningRecord” class and “Course” class in Fig. 1.1 are 
not similar class names, and also are indirectly connected 
with each other in the class diagram. On the other hand, the 
“Course” class and “Record” class in Fig. 1.2 are also not 
similar class names, but are directly connected with each 
other in the class diagram. 

H2）Package Structure Hypothesis 
If the following detailed hypotheses hold for the entire 

class diagram, the understandability will be high.  

 The similarity between two package names increases as 
the relation between the two packages in the class 
diagram is strengthened in terms of the package’s static 
relational structure. 

 The similarity between the two package names decreases 
as the relation between two packages in the class diagram 
weakens in terms of the package’s static relational 
structure. 
Fig. 1.1 has a higher level of understandability than Fig. 

1.2, because the “RunningManagement” package and 
“Running” package in Fig. 1.1 are similar package names, 
and also are directly connected with each other in the class 
diagram. On the other hand, the “Management” package and 
“Running” package in Fig. 1.2 are not similar package names, 
but are directly connected with each other in the class 
diagram. 

 

H3）Attributes and Operations Hypothesis 
If the attributes and operations with similar names are put 

into one class, the cohesion of that class will be high. 
Furthermore, the understandability increases with the degree 
of cohesion. 

In Fig. 1.1, the class name, attributes, and operations in 
the “Running” class, such as (Running, speed), (Running, 
accelerate) and (speed, stop) are closely related to each other. 
If H3 were true, the “Running” class would have high 
cohesion and understandability. In contrast, the cohesion and 
understandability of Fig. 1.2 are lower than in Fig. 1.1 
because the relation between "Record" and "error" in Fig. 1.2 
seems weak. 

In order to measure the understandability of the class 
diagram by using the above hypotheses, we need to devise 
methods for analyzing the class structures and measuring the 
word similarities. The class structure can be analyzed by 
using graph theory. The way of measuring the word 
similarity is defined in the next paragraph. 

A. Word Similarity 

People can naturally decide whether two words are 
similar in meaning. However, they do so qualitatively, not 
quantitatively. To dispense with personal biases, we shall 
measure the similarity between two words by using the 
PathLength method defined in WordNet::Similarity [7]. 
WordNet::Similarity is created from the WordNet [6] 
thesaurus. 

First, the PathLength method looks for common upper 
concepts and determines the shortest path between two 
words. Next, the word similarity between word x and word y 
Wsim(x,y) is defined by taking the reciprocal of the number 
of nodes (the shortest path distance + 1) on the shortest path: 

. 
Fig. 2 shows an example of a similarity measurement 

between “running” and “record”. 
 

Figure 1.Three aspects of class diagram (Left: Figure. 1.1, Right: Figure. 1.2) 



 
Figure 2. Word similarity between “running” and “record” 

 

Class diagrams frequently describe “compound words”, 
which are a combination of two or more words. 

A similarity measure for compound words consists of a 
number of steps. 1) The compound words cwa and cwb are 
divided into resolution words cwa= {wa1 , …, wam} and cwb= 
{wb1 , …, wbn} by using a capitalization naming rule 1 , 
respectively. The number of resolution words in cwa is |cwa| 
= m. 2) The pair of the word in cwa and the word in cwb with 
the highest Wsim is added to the sum of Wsim. 3) The 
selected words in cwa and cwb in the 2nd step are removed 
from cwa and cwb, respectively. 4) The 2nd and 3rd steps are 
repeated n (The smaller number of resolution words) times 
until a smaller number of resolution words. It means Eq. (1) 
is calculated repeatedly. 5) The average value CWsim 
(compound word similarity) is computed by dividing the 
sum of Wsim by the larger number of resolution words: 

. 

. (1) 

 

 . (2) 

To calculate Eq. (1), which accurately reflects the 
information concerning the compound words, a resolution 
word is removed from the after term’s choice after it is used 
once. Moreover, dividing the sum by the larger number of 
resolution words is meant to reflect the information 
concerning the words excluded from Eq. (2). 

The following sentence shows an example of measuring 
the CWsim of "sensorID" and "getSensorID". Table 1 lists 
the Wsim measurements of all the pairs of resolution words. 

 
TABLE I.  WSIM MEASUREMENTS OF RESOLUTION WORDS 

                                                        
1 This rule is well known as the "Camel Case". The naming rule 

that the writer observes may be different depending on where he 

belongs. However, “Camel Case” may be the most common 

naming rule. Thus, a capitalization naming rule was adopted for 

our resolution method. 

 The smaller number of resolution words is 2. Thus, two 
pairs of resolution words that have high Wsim are needed 
and one pairs’ words should be different from the other 
pairs’ words. In the example, the correct pairs are {(Sensor, 
Sensor), (ID, ID)}. The larger number of resolution words is 
3. Therefore, we get CWsim by dividing the sum of the 
selected pairs’ Wsims by 3: 

. 

B. Class Relational Structure Understandability 

Definition. C represents a set of classes in a class 
diagram, |C| represents the number of classes, and a class 
used as the element is defined as cx (x = 1, …, |C|). div 
represents the distance of the shortest path between two 
classes that can be reached by using the tracing relation 
while taking the reference direction into consideration. 

For example, the value of div between the 
“RunningRecord” class and the “Course” class in Fig. 1.1 is 
2 and the value of div between the “Record” class and the 
“Course” class in Fig. 1.2 is 1. 

Regarding H1, we define the expected similarity between 
two class names on the basis of the shortest distance of the 
class’s static relational structure as ESim (expected similarity 
in terms of relational distance). ESim represents the strength 
of relation in terms of the class’s static relational structure. 
The equation is as follows: 

 
Here, 0 < ESim(cx,cy) <= 1/2. ESim approaches 1/2 as the 

shortest distance between two classes decrease. 
CWsim(cx,cy) represents the similarity between two class 

names. The difference between ESim(cx,cy) and CWsim(cx,cy) 
is normalized so that the understandability will be higher 
when the difference approaches 1 and the understandability 
will be lower when the difference approaches 0. We define 
the normalized difference as the relational distance 
understandability (RDU): 

. 
The class relational structure understandability (CRSU) is 

defined by taking the average of the RDUs for the entire 
class diagram. The equation is as follows: 

. 
If H1 is valid, the CRSU should have the following 

characteristics: as the CRSU approaches 1, the 
understandability of the class diagram to the reader increases. 
Moreover, as the CRSU approaches 0, the understandability 
decreases. 

 
TABLE II. DATA USED IN MAKING CRSU MEASUREMENT IN FIG. 1.1 

 Get Sensor ID 

Sensor 0.05 1 0.0769 

ID 0.0625 0.0769 1 
cx cy Div ESim CWsim RDU 

Course Running 1 0.5 1 0.5 

Running RunningRecord 1 0.5 0.5 1 

Course RunningRecord 2 0.333 0.125 0.791 



Process of CRSU measurement. We developed a 
system that automatically measures the CRSU. Fig. 3 shows 
an overview of the system. Let us give an example for 
measuring the CRSU in Fig. 1.1. Table 2 lists the data from 
the CRSU measurements. 

 
Figure 3. Overview of CRSU measuring system 

Step1. Get XMI data from the CASE tool and input the 
data. The class diagram expressing Fig. 1.1 is drawn up 
using the CASE tool, and the class diagram must be output 
in the XMI [8] format. It is necessary to perform this process 
manually.  

Step2. Extract class names and relational structure. By 
analyzing the XMI data obtained in step 1, the system 
acquires the class names and relations between the classes. 
When the class names are in Japanese, the class names are 
translated into English by using a translation service [9]. 
Translations are sometimes necessary because WordNet uses 
only English words. We decided to use a translation service 
because it would remove as much of the personal biases of 
the translation as possible. 

Step3. Generate and analyze the graph. A directed graph 
is generated from the results of step 2 reflecting the direction 
of the reference and the direction of the dependency, and the 
distance of the shortest path between the two classes where 
the route exists is calculated. When the direction of the 
reference is not clearly described in the relation, the system 
treats the relation as an interactive one. Furthermore, the 
system treats all kinds of relations in the same way. 

Step4. Measure the word similarity. Paragraph 2.2 
discusses the methods for measuring the “word similarity” 
and “compound word similarity”. 

Step5. Calculate the CRSU using the results from Steps 3 
and 4. The CRSU is calculated by using the defining 
equation in paragraph 2.2.1. In this case, CRSU = 
(0.5+1+0.7917) /3 = 0.7639. The CRSU of Fig. 1.2 is about 
0.6944. When comparing Figs. 1.1 and 1.2 again, we see that 
both diagrams have similar classes, but different class 
structures. Fig. 1.1 does not have any doubtful relations and 
seems valid. In contrast, the relation between the “Course” 
class and “Record” class in Fig. 1.2 does not seem to be very 
close. Therefore, the validity of Fig. 1.2 is doubtful. 

The CRSU measurements seem to correspond to the 
reader’s evaluations. Therefore, we can say that in the case 
of Fig. 1, the CRSU is appropriate as a measure of 
understandability for the class diagram and that hypothesis 
H1 is valid. 

C. Package Relational Structure Understandability 

P represents a set of packages in the class diagram, and 
|P| represents the number of packages. A package is defined 
as px (x = 1, …, |P|). div represents the distance of the 
shortest path between two packages that can be reached by 
tracing the relation in the direction of the dependency. 

For example, the value of div between the 
“RunningManagement” package and the “Running” package 
in Fig. 1.1 is 1 and the value of div between the 
“Management” package and the “Running” package in Fig. 
1.2 is 1. 

Regarding H2, we denote the expected value of the 
similarity between two package names on the basis of the 
shortest distance in the static relation-structure as the 
expected similarity in terms of relational distance (ESim): 

. 
Here, 0 < ESim(px,py) <= 1/2. ESim approaches 1/2 as the 

shortest distance between two packages gets smaller. 
CWsim(px,py) represents the similarity between two 

package names. The difference between ESim(px,py) and 
CWsim(px,py) is normalized so that the level of 
understandability increases as the difference approaches 1. 
We denote the normalized difference as the relational 
distance understandability (RDU). The equation is: 

. 
The package relational structure understandability 

(PRSU) is defined as the average RDU for the entire class 
diagram. The equation is: 

. 
If H2 is valid, the PRSU should have the following 

characteristics: the understandability should improve as the 
PRSU increases. Moreover, the understandability decreases 
when the PRSU decreases. 

The PRSU of Fig. 1.1 is 1, and the PRSU of Fig. 1.2 is 
about 0.6429. The package dependency between “Running” 
and “RunningManagement” in Fig. 1.1 seems more valid 
than that of Fig. 1.2. The PRSU values correspond to the 
reader’s instinctive assessments of the package structure. As 
a result, it seems that the PRSU and hypothesis H2 are 
appropriate in the case of Fig. 1. 

D. Class Cohesion based on Word Similarity 

C represents a set of the classes in the class diagram, |C| 
represents the number of classes, and a class is defined as cx 

(x = 1, …, |C|). Ax represents a set of the attributes of cx, |Ax| 
represents the number of attributes of cx, and an attribute is 
defined as ax (x = 1, …, |Ax|). Mx represents a set of the 



operations of cx, |Mx| represents the number of operations of 
cx, and an operation is defined as mx (x = 1, …, |Mx|). 

Regarding H3, we define three equations: simCA 
(average similarity between the class name and attribute 
names), simCM (average similarity between the class name 
and operation names), and simAM (average similarity 
between the attribute names and operation names): 

. 
The averages are also calculated for all items in the entire 

class diagram. Note that the classes without item values are 
ignored in these calculations: 

. 
By summing these three equations, we arrive at class 

cohesion based on word similarity (CCS): 

. 
Fig. 1.1 has a CCS of 1.11667, and Fig. 1.2 has one of 

0.4442. The CCS values correspond to the reader’s 
qualitative assessment of class cohesion. Therefore, it seems 
that CCS and H3 are appropriate in the case of Fig. 1. 

III.  EVALUATION 

We used the three metrics on 29 models extracted at 
random from the 41 models submitted to the Tokai regional 
preliminaries of the ET Robot Contest 2008 [10] to save the 
effort of drawing class diagrams from submitted models. 
There is the detail of the extracted models in the appendix. 
The participating teams created the UML diagrams while 
developing the control software for a robot that automatically 
traces lines in the course. They competed on the speed of a 
robot and the quality of the model of the created software. 

Robotics domain experts evaluated the models according 
to constant criteria with the consensus-building. There were 
professors of software engineering, developers of embedded 
device and engineers of quality evaluation. They tried to 
objectively evaluate the models to remove their bias. Theirs 
evaluations ranged through letter grades, with “A” meaning 
excellent and “D” meaning poor, for 5 “Writing of the 
model” items and 6 “Content of the model” items. 

We show the histogram of the all models and the 
extracted models about the numbers of classes and subjective 
evaluation in Fig.4, 5, 6 and 7 to show the random extraction. 

 
Figure 4. histogram of all models (x-axis: numbers of classes, y-axis: 

numbers of models) 

 
Figure 5. histogram of randomly extracted models (x-axis: numbers of 

classes, y-axis: numbers of models) 

 
Figure 6. histogram of all models (x-axis: subjective evaluation, y-axis: 

numbers of models) 

 
Figure 7. histogram of randomly extracted models (x-axis: subjective 

evaluation, y-axis: numbers of models) 



We selected two items concerning the understandability 
of the class diagram as suitable comparative contrasts with 
our metrics: 

 Easy to read (in “Writing of the model”): Does the reader 
of the class diagram find the model easy to read? Is the 
layout of the class diagram appropriate? 

 Structure (in “Content of the model”): Are all classes and 
relations between them valid? 

A. Evaluation of CRSU 

Fig. 8 shows a distribution chart with the CRSU on the x-
axis and the average of the subjective evaluation on the y-
axis. The average was calculated by converting the grade of 
A into 4 points, B into 3, C into 2, and D into 1 point. The 
model review especially valued “Content of the model”. 
Therefore, the “Structure” item was weighted twice in our 
evaluation. For example, if “Easy to read” is C and 
“Structure” is B, the average is (2 + 3×2) / 2 = 4. 

The correlation coefficient between the CRSU and the 
subjective evaluation was 0.6400; therefore, there was a 
strong correlation. The numerical formula in Fig. 8 is a 
simple linear regression equation; the dependent variable is 
the average of the subjective evaluation, and the independent 
variable is the CRSU values.  

In this paragraph, let us test the hypothesis that the 
coefficient of the regression equation becomes 0 with 
statistical hypothesis testing. The |t| value of the 1% 
significance level in the amount of freedom 27 is 2.771, 
whereas the |t| value of the regression expression is 4.328. 
Thus, the hypothesis that the coefficient becomes 0 at a 
significance level of 1% can be rejected, and the validity of 
the regression equation is proven. 

As a result, the subjective evaluation concerning the 
understandability of the class diagram can be predicted by 
substituting the CRSU measurements for the variable of the 
regression equation. 

 

Figure 8. Distribution chart (x-axis: CRSU, y-axis: subjective evaluation) 

 

Here are two examples. 

1) Class diagram with high CRSU and subjective 

evaluations  
Fig. 9 shows part of a class diagram that had scores 

distributed near the approximate line in Fig. 8. The CRSU 
measurements and the subjective evaluation were both high. 
The CRSU measurements of the class diagram are 0.8434, 

whereas the subjective evaluations are “B” for “Easy to see” 
and “B” for “Structure”. A “B” grade means the class 
diagram is sufficiently easy to understand and the relations 
between classes are valid. 

In Fig. 9, all of the classes related to the “LineTrace” 
class are named "XXXPart". This naming rule may increase 
the consistency of the class names and increase the similarity 
between the class names. Furthermore, the relations between 
the classes concerning “hardware” and “behavior” are valid. 

 

Figure 9. Class diagram (high CRSU - high subjective evaluation) 

 

2) Class diagram with low CRSU and subjective 

evaluations  
Fig. 10 shows part of a class diagram that was far from 

the approximate line in Fig. 8 and for which the CRSU and 
subjective evaluation were low. The CRSU measurements of 
the class diagram are 0.7670, and the subjective evaluations 
were a “D” for “Easy to see” and a “C” for “Structure”.  

 
Figure 10. Class diagram (low CRSU - low subjective evaluation) 

 

The coined word “Syatitaka” doesn't exist in the 
WordNet thesaurus. The similarity of the class name 
between the classes in which one edge of the relation is 
"Syatitaka" becomes 0. Thus, the “Syatitaka” class decreases 
the CRSU measurements. Moreover, the responsibility of the 
“Syatitaka” class isn’t clear, and the “Structure” evaluation is 
accordingly lower. 

We shall discuss the measurement and the evaluation of 
the CRSU in what follows: 

1) Development phase of class diagram 



In software development, the class diagram represents 
the structure of the relations between the concepts in the 
object problem. Its understandability can be evaluated by 
using a thesaurus that compiles the relational structures of 
general concepts not depending on a specific domain. 

On the other hand, the class diagram has different roles in 
the analysis and design phases. In the analysis phase, the 
class diagram represents the concepts and their relational 
structure between the concepts in the object problem. In the 
design phase, however, the concepts and relations that are 
not part of the problem are added in order to control the 
computer. Therefore, experimentation is necessary when the 
analysis phase and the design phase are separate. 

2) Direction of references 
The CRSU treats only the direction of the reference 

described by the navigable property of the class diagram. We 
thought the validity of the relational structure may be judged 
from the classes that can be reached by the routes in the 
reference direction, and the defined CRSU. However, there is 
a possibility that the validity of the relational structure is 
judged by not taking into account the reference direction.  

If the reference direction is not taken into consideration, 
i.e., all of the relations are treated as an interactive one, the 
correlation coefficient is 0.2816. This value indicates that the 
reader of the class diagram makes an allowance for the 
reference direction when they understand the class diagram.  
Fig. 11 shows the distribution chart of the subjective 
evaluation and the CRSU when the reference direction is not 
taken into account. 

 

Figure 11. Distribution chart (x-axis: CRSU ignoring reference direction, y-

axis: subjective evaluation) 

 

3) Comparison with other metric 
The coupling factor (COF) is a measure of the static 

complexity based on the coupling between classes of the 
object-oriented software [4]. The COF is measured by 
regularizing the number of single direction relations 
excluding the inheritance and the dependency from 0 to 1 
regardless of the scale of the class diagram. It is defined as: 

 

. 

C represents a set of classes in a class diagram, |C| 
represents the number of classes, |NOR| represents the 
number of single-direction relations excluding the 
inheritance and dependency, and |NOS| represents the 
number of sub classes. 

The correlation coefficient between the COF value and 
the subjective evaluation was -0.3880 in Fig. 12. The 
negative correlation means the subjective evaluation 
concerning the understanding decreases if the COF value, 
measurements of the static complexity of the class diagram, 
increases. By comparing the correlation coefficient of the 
COF and CRSU, the CRSU has a stronger correlation than 
that of the COF. This result shows that the CRSU is more 
appropriate as a measure of the understandability than the 
COF, because CRSU takes into account the class structure 
and word similarity, but COF takes into account only the 
class structure. 

 

Figure 12. Distribution chart (x-axis: COF, y-axis: subjective evaluation) 

B. Evaluation of PRSU 

Fig. 13 shows the distribution chart of the average 
subjective evaluation versus the PRSU measurements. The 
correlation coefficient between the PRSU and the subjective 
evaluation is -0.3219. The number of targeted class diagrams 
is only nine because there are class diagrams that don't 
possess a package structure. 

The PRSU is inappropriate because the correlation is 
weak and the distribution does not support our hypothesis. 
We will collect more samples and evaluate the PRSU again. 

 

Figure 13. Distribution chart (x-axis: PRSU, y-axis: subjective evaluation) 



C. Evaluation of CCS 

We measured the CCS measurements of 12 class 
diagrams that accurately describe the attributes and 
operations. Fig. 14 shows the distribution chart. The 
correlation coefficient between the CCS and subjective 
evaluation was 0.1564. The correlation is weak, and 
therefore, the results do not prove the validity of the CCS. 

From the results in paragraphs 3.2 and 3.3, we can 
assume that the understandability of the class diagram is 
more strongly influenced by the class structure than by the 
package structure or class cohesion. 

 
Figure 14. Distribution chart (x-axis: CCS, y-axis: subjective evaluation) 

IV. PREVIOUS WORK 

CK Metrics [3] were defined by Chidamber and Kemerer 
in 1994. These metrics are the measures of the structures in 
the object-oriented design. However, they don't measure the 
class diagram's understandability. 

SD Metrics [11] is a well-known metrics measure tool for 
UML models. SD Metrics comprise 32 kinds of metrics for 
the class diagram. Moreover, they can verify whether the 
class diagram satisfies the design rules. For example, they 
can verify whether the number of attributes and operations 
that the class possesses is less than 60, and verify that the 
class diagram does not have any unnamed classes. However, 
they do not measure the understandability of the class 
diagram. 

There is a study on using a thesaurus to support the 
requirements analysis [12]. The thesaurus was created by 
domain experts extracting words from the software package. 
In the case of our measurements, the class diagram of the 
specific domain was measured by using a domain-free 
thesaurus. However, the accuracy of our measurements 
would have been higher if we had used a domain-specific 
one. 

José et al. [13] referred to the understandability of UML 
Statechart diagrams. Their research showed the correlation is 
strong between certain structural metrics concerning the 
complexity and understandability of the Statechart diagram. 

There was an attempt to predict a comprehensive 
qualitative evaluation from the structural complexity of a 
class diagram [5]. This paper shows that the correlation 
between the subjective evaluations of various qualities by 
domain experts and the COF was weak. This means that 
there is a factor in the UML models’ evaluation that is more 

essential than the class structure. We supposed that this 
essential factor is the "word similarity". 

V. CONCLUSION AND FUTURE WORK 

We focused on the word similarity as calculated from the 
WordNet thesaurus, and proposed three metrics concerning 
the understandability of three aspects of the class diagram. 
Furthermore, the three metrics were evaluated by analyzing 
the correlation between the metrical measurements and the 
subjective evaluations of the class diagram’s 
understandability made by domain experts. 

The correlation between the subjective evaluation and 
class relational structure understandability (CRSU) was 
strong. Therefore, hypothesis H1 and CRSU are valid. CRSU 
would be useful for estimating the time-cost spent for 
understanding the class diagram, and it could be used to 
select a more understandable class diagram from among the 
models concerning the same problem. Various usages will be 
investigated. 

The validity of class cohesion based on word similarity 
(CCS) and package relational structure understandability 
PRSU (PRSU) were not proven in this paper. We will 
attempt to improve PRSU and CCS in the future. 

Our future work is as follows: 
1) Measurement and Evaluation of different domains 
The candidate models in this study were for built-in 

software. However, there is a possibility that different results 
will be obtained for different domains. Therefore, we will 
evaluate our metrics in different domains. 

2) Validation of RDU 
The validity of CRSU was proven in this paper, but the 

validity of RDU was not proven because the subjective 
evaluation that was used for the correlation analysis was for 
the entire class diagram. 

If the validity of RDU can be proven in a subjective 
experiment, it can be used to detect the structural parts that 
make the class diagram less understandable. 

3）Propose comprehensive understandability metric 
The class diagram includes not only the class names, but 

also the role names, multiplicity, etc. We will study the 
influence that such information has on the understandability 
of the class diagram. 

Moreover, the weights of the paths in the directed graph 
will be set according to the kind of relation, and thus, we will 
refine the proposed metrics. 
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APPENDIX 

 
TABLE III. THE DETAIL OF EXTRACTED MODELS 

Team ID Easy to read Structure Average of subjective evaluations #Classes #Association #Inheritance 

1 1 4 2.5 31 19 12 

2 4 8 6 26 27 2 

3 1 4 2.5 12 16 0 

4 4 6 5 19 20 7 

5 3 6 4.5 13 30 0 

6 3 4 3.5 26 17 11 

7 4 6 5 27 41 6 

8 2 4 3 17 34 2 

9 2 4 3 14 32 0 

10 2 4 3 16 16 6 

11 3 4 3.5 13 15 2 

12 3 4 3.5 11 18 2 

13 2 4 3 13 16 3 

14 3 6 4.5 16 15 9 

15 3 4 3.5 12 8 3 

16 2 6 4 16 14 5 

17 3 4 3.5 12 8 3 

18 3 4 3.5 9 14 0 

19 1 4 2.5 11 15 3 

20 4 8 6 46 13 29 

21 3 8 5.5 25 25 6 

22 2 4 3 27 48 5 

23 1 2 1.5 8 8 0 

24 4 4 4 11 18 0 

25 3 4 3.5 14 12 5 

26 2 4 3 16 38 0 

27 2 4 3 8 16 0 

28 2 4 3 31 48 12 

29 2 4 3 14 19 2 

 


