
Evaluation of Understandability of UML Class Diagrams by Using Word Similarity

Yuto Nakamura

Nomura Research Institute, Ltd.

n_y_1121@ruri.waseda.jp

Kiyohisa Inoue

Dept. Computer Science, Waseda University

inoue.k@ruri.waseda.jp

Kazunori Sakamoto

Dept. Computer Science, Waseda University

kazuu@ruri.waseda.jp

Hironori Washizaki and Yoshiaki Fukazawa

Dept. Computer Science, Waseda University

{washizaki, fukazawa}@waseda.jp

Abstract—UML class diagrams representing the static

structure of the relations between different concepts existing in

a problem are widely used in model-based software

development. However, no effective measures of a class

diagram’s understandability yet exist. We have devised

quantitative measures of a class diagram’s understandability

and evaluated their validity. We obtained strong correlations

between the domain experts’ subjective evaluations of the

understandability of a class diagram and the measurements of

our methods. These results indicate that our measures can
effectively quantify the understandability of class diagrams.

Keywords-Software Metrics; Software Evaluation; Software

design metrics; UML class diagrams; Maintainability;

Understandability.

I. INTRODUCTION

Unified Modeling Language (UML) [1] is a useful
modeling language that standardizes the notation of various
models being used for object-oriented development.
Knowledge sharing is supposed to be easier if the reader of
the UML diagrams understands the notation of the UML
models. The class diagram in the definition of the UML
represents the concepts existing in the problem and a static
structure of the relations between these concepts.

The class diagram is understood by evaluating the
validity of the relations between the classes. In particular,
this is achieved by comparing the relations between the
concepts described in the class diagram with the relations
between the concepts that the reader tacitly possesses. When
both structures are similar, the reader normally believes that
the relational structure of the class diagram is valid and that
its understandability is high. When the structures are
dissimilar, the reader may feel that the validity and
understandability of the diagram are poor.

In light of this, the following self-review method has
been suggested [2]: Read “word A and word B have a
relationship” by using the class names of a related edge. If
you feel uncomfortable, you should review the layout of the
responsibilities. However, a correlation between the validity
evaluation of the class relations like mentioned above, and
the understandability of the class diagram have not yet been
elucidated.

A wide variety of metrics, i.e., objective standards for
measuring the quality of software, have been proposed for a
class diagram. For example, there are CK Metrics [3] that
can measure the sum of the complexities of the class’s
operation (WMC) and lack of cohesion of methods (LCOM),
etc. However, there is no metric for measuring the
understandability of a class diagram. There is an article [5],
but the correlation between the qualitative evaluation of the
models covering various qualities and the complexity of the
structure based on uniting the classes [4] is rather weak.

If valid metrics of the class diagram’s understandability
were to be defined, they would be useful for estimating the
time-cost involved in understanding a class diagram, for
creating objective reviews based on the understandability of
the diagram, for selecting the best models from among all the
others for the same problem, and for detecting the parts of
the class diagram in which the understandability is poor.

Our fundamental hypothesis is as follows: if the
similarity of two words is a high degree, the reader of the
class diagram will recognize the close relation between them.
Furthermore, if two closely related words are near each other
on the class diagram, the understandability of the class
diagram will be high. The above hypothesis led us to propose
three metrics for the understandability of a class diagram.
We evaluated their validity and the hypothesis by analyzing
the correlation between the subjective evaluations of
understandability and measurements given by the metrics.

II. METRICS CONCERNING UNDERSTANDABILITY OF THE

CLASS DIAGRAM

A class diagram has three aspects, as Fig. 1 shows, the
class structure and package structure as a macro view, the
attributes, and the operations as the micro views.

We shall now define the fundamental hypothesis. If two
words are similar, the reader of a class diagram would
naturally recognize the close relation between them. And
also, if the relation between two elements on the class
diagram is close, the reader would expect the words of the
elements are similar. That is, if the relation is close and the
two words are similar, the reader would easily understand the
class diagram. The above hypothesis can be recast into three
versions based on the three aspects of the class diagram.

H1）Class Structure Hypothesis
If the following two detailed hypotheses hold for the

entire class diagram, the class diagram will be easily
understandable.

 The similarity between two class names increases as the
relation between the two classes in the class diagram is
strengthened in terms of the class’s static relational
structure.

 The similarity between two class names decreases as the
relation between two classes in the class diagram
weakens in terms of the class’s static relational structure.
Fig. 1.1 and 1.2 have similar classes. However, Fig. 1.1

seems to have a higher level of understandability, because
the “RunningRecord” class and “Course” class in Fig. 1.1 are
not similar class names, and also are indirectly connected
with each other in the class diagram. On the other hand, the
“Course” class and “Record” class in Fig. 1.2 are also not
similar class names, but are directly connected with each
other in the class diagram.

H2）Package Structure Hypothesis
If the following detailed hypotheses hold for the entire

class diagram, the understandability will be high.

 The similarity between two package names increases as
the relation between the two packages in the class
diagram is strengthened in terms of the package’s static
relational structure.

 The similarity between the two package names decreases
as the relation between two packages in the class diagram
weakens in terms of the package’s static relational
structure.
Fig. 1.1 has a higher level of understandability than Fig.

1.2, because the “RunningManagement” package and
“Running” package in Fig. 1.1 are similar package names,
and also are directly connected with each other in the class
diagram. On the other hand, the “Management” package and
“Running” package in Fig. 1.2 are not similar package names,
but are directly connected with each other in the class
diagram.

H3）Attributes and Operations Hypothesis
If the attributes and operations with similar names are put

into one class, the cohesion of that class will be high.
Furthermore, the understandability increases with the degree
of cohesion.

In Fig. 1.1, the class name, attributes, and operations in
the “Running” class, such as (Running, speed), (Running,
accelerate) and (speed, stop) are closely related to each other.
If H3 were true, the “Running” class would have high
cohesion and understandability. In contrast, the cohesion and
understandability of Fig. 1.2 are lower than in Fig. 1.1
because the relation between "Record" and "error" in Fig. 1.2
seems weak.

In order to measure the understandability of the class
diagram by using the above hypotheses, we need to devise
methods for analyzing the class structures and measuring the
word similarities. The class structure can be analyzed by
using graph theory. The way of measuring the word
similarity is defined in the next paragraph.

A. Word Similarity

People can naturally decide whether two words are
similar in meaning. However, they do so qualitatively, not
quantitatively. To dispense with personal biases, we shall
measure the similarity between two words by using the
PathLength method defined in WordNet::Similarity [7].
WordNet::Similarity is created from the WordNet [6]
thesaurus.

First, the PathLength method looks for common upper
concepts and determines the shortest path between two
words. Next, the word similarity between word x and word y
Wsim(x,y) is defined by taking the reciprocal of the number
of nodes (the shortest path distance + 1) on the shortest path:

.
Fig. 2 shows an example of a similarity measurement

between “running” and “record”.

Figure 1.Three aspects of class diagram (Left: Figure. 1.1, Right: Figure. 1.2)

Figure 2. Word similarity between “running” and “record”

Class diagrams frequently describe “compound words”,
which are a combination of two or more words.

A similarity measure for compound words consists of a
number of steps. 1) The compound words cwa and cwb are
divided into resolution words cwa= {wa1 , …, wam} and cwb=
{wb1 , …, wbn} by using a capitalization naming rule 1 ,
respectively. The number of resolution words in cwa is |cwa|
= m. 2) The pair of the word in cwa and the word in cwb with
the highest Wsim is added to the sum of Wsim. 3) The
selected words in cwa and cwb in the 2nd step are removed
from cwa and cwb, respectively. 4) The 2nd and 3rd steps are
repeated n (The smaller number of resolution words) times
until a smaller number of resolution words. It means Eq. (1)
is calculated repeatedly. 5) The average value CWsim
(compound word similarity) is computed by dividing the
sum of Wsim by the larger number of resolution words:

.

. (1)

 . (2)

To calculate Eq. (1), which accurately reflects the
information concerning the compound words, a resolution
word is removed from the after term’s choice after it is used
once. Moreover, dividing the sum by the larger number of
resolution words is meant to reflect the information
concerning the words excluded from Eq. (2).

The following sentence shows an example of measuring
the CWsim of "sensorID" and "getSensorID". Table 1 lists
the Wsim measurements of all the pairs of resolution words.

TABLE I. WSIM MEASUREMENTS OF RESOLUTION WORDS

1 This rule is well known as the "Camel Case". The naming rule

that the writer observes may be different depending on where he

belongs. However, “Camel Case” may be the most common

naming rule. Thus, a capitalization naming rule was adopted for

our resolution method.

 The smaller number of resolution words is 2. Thus, two
pairs of resolution words that have high Wsim are needed
and one pairs’ words should be different from the other
pairs’ words. In the example, the correct pairs are {(Sensor,
Sensor), (ID, ID)}. The larger number of resolution words is
3. Therefore, we get CWsim by dividing the sum of the
selected pairs’ Wsims by 3:

.

B. Class Relational Structure Understandability

Definition. C represents a set of classes in a class
diagram, |C| represents the number of classes, and a class
used as the element is defined as cx (x = 1, …, |C|). div
represents the distance of the shortest path between two
classes that can be reached by using the tracing relation
while taking the reference direction into consideration.

For example, the value of div between the
“RunningRecord” class and the “Course” class in Fig. 1.1 is
2 and the value of div between the “Record” class and the
“Course” class in Fig. 1.2 is 1.

Regarding H1, we define the expected similarity between
two class names on the basis of the shortest distance of the
class’s static relational structure as ESim (expected similarity
in terms of relational distance). ESim represents the strength
of relation in terms of the class’s static relational structure.
The equation is as follows:

Here, 0 < ESim(cx,cy) <= 1/2. ESim approaches 1/2 as the

shortest distance between two classes decrease.
CWsim(cx,cy) represents the similarity between two class

names. The difference between ESim(cx,cy) and CWsim(cx,cy)
is normalized so that the understandability will be higher
when the difference approaches 1 and the understandability
will be lower when the difference approaches 0. We define
the normalized difference as the relational distance
understandability (RDU):

.
The class relational structure understandability (CRSU) is

defined by taking the average of the RDUs for the entire
class diagram. The equation is as follows:

.
If H1 is valid, the CRSU should have the following

characteristics: as the CRSU approaches 1, the
understandability of the class diagram to the reader increases.
Moreover, as the CRSU approaches 0, the understandability
decreases.

TABLE II. DATA USED IN MAKING CRSU MEASUREMENT IN FIG. 1.1

 Get Sensor ID

Sensor 0.05 1 0.0769

ID 0.0625 0.0769 1
cx cy Div ESim CWsim RDU

Course Running 1 0.5 1 0.5

Running RunningRecord 1 0.5 0.5 1

Course RunningRecord 2 0.333 0.125 0.791

Process of CRSU measurement. We developed a
system that automatically measures the CRSU. Fig. 3 shows
an overview of the system. Let us give an example for
measuring the CRSU in Fig. 1.1. Table 2 lists the data from
the CRSU measurements.

Figure 3. Overview of CRSU measuring system

Step1. Get XMI data from the CASE tool and input the
data. The class diagram expressing Fig. 1.1 is drawn up
using the CASE tool, and the class diagram must be output
in the XMI [8] format. It is necessary to perform this process
manually.

Step2. Extract class names and relational structure. By
analyzing the XMI data obtained in step 1, the system
acquires the class names and relations between the classes.
When the class names are in Japanese, the class names are
translated into English by using a translation service [9].
Translations are sometimes necessary because WordNet uses
only English words. We decided to use a translation service
because it would remove as much of the personal biases of
the translation as possible.

Step3. Generate and analyze the graph. A directed graph
is generated from the results of step 2 reflecting the direction
of the reference and the direction of the dependency, and the
distance of the shortest path between the two classes where
the route exists is calculated. When the direction of the
reference is not clearly described in the relation, the system
treats the relation as an interactive one. Furthermore, the
system treats all kinds of relations in the same way.

Step4. Measure the word similarity. Paragraph 2.2
discusses the methods for measuring the “word similarity”
and “compound word similarity”.

Step5. Calculate the CRSU using the results from Steps 3
and 4. The CRSU is calculated by using the defining
equation in paragraph 2.2.1. In this case, CRSU =
(0.5+1+0.7917) /3 = 0.7639. The CRSU of Fig. 1.2 is about
0.6944. When comparing Figs. 1.1 and 1.2 again, we see that
both diagrams have similar classes, but different class
structures. Fig. 1.1 does not have any doubtful relations and
seems valid. In contrast, the relation between the “Course”
class and “Record” class in Fig. 1.2 does not seem to be very
close. Therefore, the validity of Fig. 1.2 is doubtful.

The CRSU measurements seem to correspond to the
reader’s evaluations. Therefore, we can say that in the case
of Fig. 1, the CRSU is appropriate as a measure of
understandability for the class diagram and that hypothesis
H1 is valid.

C. Package Relational Structure Understandability

P represents a set of packages in the class diagram, and
|P| represents the number of packages. A package is defined
as px (x = 1, …, |P|). div represents the distance of the
shortest path between two packages that can be reached by
tracing the relation in the direction of the dependency.

For example, the value of div between the
“RunningManagement” package and the “Running” package
in Fig. 1.1 is 1 and the value of div between the
“Management” package and the “Running” package in Fig.
1.2 is 1.

Regarding H2, we denote the expected value of the
similarity between two package names on the basis of the
shortest distance in the static relation-structure as the
expected similarity in terms of relational distance (ESim):

.
Here, 0 < ESim(px,py) <= 1/2. ESim approaches 1/2 as the

shortest distance between two packages gets smaller.
CWsim(px,py) represents the similarity between two

package names. The difference between ESim(px,py) and
CWsim(px,py) is normalized so that the level of
understandability increases as the difference approaches 1.
We denote the normalized difference as the relational
distance understandability (RDU). The equation is:

.
The package relational structure understandability

(PRSU) is defined as the average RDU for the entire class
diagram. The equation is:

.
If H2 is valid, the PRSU should have the following

characteristics: the understandability should improve as the
PRSU increases. Moreover, the understandability decreases
when the PRSU decreases.

The PRSU of Fig. 1.1 is 1, and the PRSU of Fig. 1.2 is
about 0.6429. The package dependency between “Running”
and “RunningManagement” in Fig. 1.1 seems more valid
than that of Fig. 1.2. The PRSU values correspond to the
reader’s instinctive assessments of the package structure. As
a result, it seems that the PRSU and hypothesis H2 are
appropriate in the case of Fig. 1.

D. Class Cohesion based on Word Similarity

C represents a set of the classes in the class diagram, |C|
represents the number of classes, and a class is defined as cx

(x = 1, …, |C|). Ax represents a set of the attributes of cx, |Ax|
represents the number of attributes of cx, and an attribute is
defined as ax (x = 1, …, |Ax|). Mx represents a set of the

operations of cx, |Mx| represents the number of operations of
cx, and an operation is defined as mx (x = 1, …, |Mx|).

Regarding H3, we define three equations: simCA
(average similarity between the class name and attribute
names), simCM (average similarity between the class name
and operation names), and simAM (average similarity
between the attribute names and operation names):

.
The averages are also calculated for all items in the entire

class diagram. Note that the classes without item values are
ignored in these calculations:

.
By summing these three equations, we arrive at class

cohesion based on word similarity (CCS):

.
Fig. 1.1 has a CCS of 1.11667, and Fig. 1.2 has one of

0.4442. The CCS values correspond to the reader’s
qualitative assessment of class cohesion. Therefore, it seems
that CCS and H3 are appropriate in the case of Fig. 1.

III. EVALUATION

We used the three metrics on 29 models extracted at
random from the 41 models submitted to the Tokai regional
preliminaries of the ET Robot Contest 2008 [10] to save the
effort of drawing class diagrams from submitted models.
There is the detail of the extracted models in the appendix.
The participating teams created the UML diagrams while
developing the control software for a robot that automatically
traces lines in the course. They competed on the speed of a
robot and the quality of the model of the created software.

Robotics domain experts evaluated the models according
to constant criteria with the consensus-building. There were
professors of software engineering, developers of embedded
device and engineers of quality evaluation. They tried to
objectively evaluate the models to remove their bias. Theirs
evaluations ranged through letter grades, with “A” meaning
excellent and “D” meaning poor, for 5 “Writing of the
model” items and 6 “Content of the model” items.

We show the histogram of the all models and the
extracted models about the numbers of classes and subjective
evaluation in Fig.4, 5, 6 and 7 to show the random extraction.

Figure 4. histogram of all models (x-axis: numbers of classes, y-axis:

numbers of models)

Figure 5. histogram of randomly extracted models (x-axis: numbers of

classes, y-axis: numbers of models)

Figure 6. histogram of all models (x-axis: subjective evaluation, y-axis:

numbers of models)

Figure 7. histogram of randomly extracted models (x-axis: subjective

evaluation, y-axis: numbers of models)

We selected two items concerning the understandability
of the class diagram as suitable comparative contrasts with
our metrics:

 Easy to read (in “Writing of the model”): Does the reader
of the class diagram find the model easy to read? Is the
layout of the class diagram appropriate?

 Structure (in “Content of the model”): Are all classes and
relations between them valid?

A. Evaluation of CRSU

Fig. 8 shows a distribution chart with the CRSU on the x-
axis and the average of the subjective evaluation on the y-
axis. The average was calculated by converting the grade of
A into 4 points, B into 3, C into 2, and D into 1 point. The
model review especially valued “Content of the model”.
Therefore, the “Structure” item was weighted twice in our
evaluation. For example, if “Easy to read” is C and
“Structure” is B, the average is (2 + 3×2) / 2 = 4.

The correlation coefficient between the CRSU and the
subjective evaluation was 0.6400; therefore, there was a
strong correlation. The numerical formula in Fig. 8 is a
simple linear regression equation; the dependent variable is
the average of the subjective evaluation, and the independent
variable is the CRSU values.

In this paragraph, let us test the hypothesis that the
coefficient of the regression equation becomes 0 with
statistical hypothesis testing. The |t| value of the 1%
significance level in the amount of freedom 27 is 2.771,
whereas the |t| value of the regression expression is 4.328.
Thus, the hypothesis that the coefficient becomes 0 at a
significance level of 1% can be rejected, and the validity of
the regression equation is proven.

As a result, the subjective evaluation concerning the
understandability of the class diagram can be predicted by
substituting the CRSU measurements for the variable of the
regression equation.

Figure 8. Distribution chart (x-axis: CRSU, y-axis: subjective evaluation)

Here are two examples.

1) Class diagram with high CRSU and subjective

evaluations
Fig. 9 shows part of a class diagram that had scores

distributed near the approximate line in Fig. 8. The CRSU
measurements and the subjective evaluation were both high.
The CRSU measurements of the class diagram are 0.8434,

whereas the subjective evaluations are “B” for “Easy to see”
and “B” for “Structure”. A “B” grade means the class
diagram is sufficiently easy to understand and the relations
between classes are valid.

In Fig. 9, all of the classes related to the “LineTrace”
class are named "XXXPart". This naming rule may increase
the consistency of the class names and increase the similarity
between the class names. Furthermore, the relations between
the classes concerning “hardware” and “behavior” are valid.

Figure 9. Class diagram (high CRSU - high subjective evaluation)

2) Class diagram with low CRSU and subjective

evaluations
Fig. 10 shows part of a class diagram that was far from

the approximate line in Fig. 8 and for which the CRSU and
subjective evaluation were low. The CRSU measurements of
the class diagram are 0.7670, and the subjective evaluations
were a “D” for “Easy to see” and a “C” for “Structure”.

Figure 10. Class diagram (low CRSU - low subjective evaluation)

The coined word “Syatitaka” doesn't exist in the
WordNet thesaurus. The similarity of the class name
between the classes in which one edge of the relation is
"Syatitaka" becomes 0. Thus, the “Syatitaka” class decreases
the CRSU measurements. Moreover, the responsibility of the
“Syatitaka” class isn’t clear, and the “Structure” evaluation is
accordingly lower.

We shall discuss the measurement and the evaluation of
the CRSU in what follows:

1) Development phase of class diagram

In software development, the class diagram represents
the structure of the relations between the concepts in the
object problem. Its understandability can be evaluated by
using a thesaurus that compiles the relational structures of
general concepts not depending on a specific domain.

On the other hand, the class diagram has different roles in
the analysis and design phases. In the analysis phase, the
class diagram represents the concepts and their relational
structure between the concepts in the object problem. In the
design phase, however, the concepts and relations that are
not part of the problem are added in order to control the
computer. Therefore, experimentation is necessary when the
analysis phase and the design phase are separate.

2) Direction of references
The CRSU treats only the direction of the reference

described by the navigable property of the class diagram. We
thought the validity of the relational structure may be judged
from the classes that can be reached by the routes in the
reference direction, and the defined CRSU. However, there is
a possibility that the validity of the relational structure is
judged by not taking into account the reference direction.

If the reference direction is not taken into consideration,
i.e., all of the relations are treated as an interactive one, the
correlation coefficient is 0.2816. This value indicates that the
reader of the class diagram makes an allowance for the
reference direction when they understand the class diagram.
Fig. 11 shows the distribution chart of the subjective
evaluation and the CRSU when the reference direction is not
taken into account.

Figure 11. Distribution chart (x-axis: CRSU ignoring reference direction, y-

axis: subjective evaluation)

3) Comparison with other metric
The coupling factor (COF) is a measure of the static

complexity based on the coupling between classes of the
object-oriented software [4]. The COF is measured by
regularizing the number of single direction relations
excluding the inheritance and the dependency from 0 to 1
regardless of the scale of the class diagram. It is defined as:

.

C represents a set of classes in a class diagram, |C|
represents the number of classes, |NOR| represents the
number of single-direction relations excluding the
inheritance and dependency, and |NOS| represents the
number of sub classes.

The correlation coefficient between the COF value and
the subjective evaluation was -0.3880 in Fig. 12. The
negative correlation means the subjective evaluation
concerning the understanding decreases if the COF value,
measurements of the static complexity of the class diagram,
increases. By comparing the correlation coefficient of the
COF and CRSU, the CRSU has a stronger correlation than
that of the COF. This result shows that the CRSU is more
appropriate as a measure of the understandability than the
COF, because CRSU takes into account the class structure
and word similarity, but COF takes into account only the
class structure.

Figure 12. Distribution chart (x-axis: COF, y-axis: subjective evaluation)

B. Evaluation of PRSU

Fig. 13 shows the distribution chart of the average
subjective evaluation versus the PRSU measurements. The
correlation coefficient between the PRSU and the subjective
evaluation is -0.3219. The number of targeted class diagrams
is only nine because there are class diagrams that don't
possess a package structure.

The PRSU is inappropriate because the correlation is
weak and the distribution does not support our hypothesis.
We will collect more samples and evaluate the PRSU again.

Figure 13. Distribution chart (x-axis: PRSU, y-axis: subjective evaluation)

C. Evaluation of CCS

We measured the CCS measurements of 12 class
diagrams that accurately describe the attributes and
operations. Fig. 14 shows the distribution chart. The
correlation coefficient between the CCS and subjective
evaluation was 0.1564. The correlation is weak, and
therefore, the results do not prove the validity of the CCS.

From the results in paragraphs 3.2 and 3.3, we can
assume that the understandability of the class diagram is
more strongly influenced by the class structure than by the
package structure or class cohesion.

Figure 14. Distribution chart (x-axis: CCS, y-axis: subjective evaluation)

IV. PREVIOUS WORK

CK Metrics [3] were defined by Chidamber and Kemerer
in 1994. These metrics are the measures of the structures in
the object-oriented design. However, they don't measure the
class diagram's understandability.

SD Metrics [11] is a well-known metrics measure tool for
UML models. SD Metrics comprise 32 kinds of metrics for
the class diagram. Moreover, they can verify whether the
class diagram satisfies the design rules. For example, they
can verify whether the number of attributes and operations
that the class possesses is less than 60, and verify that the
class diagram does not have any unnamed classes. However,
they do not measure the understandability of the class
diagram.

There is a study on using a thesaurus to support the
requirements analysis [12]. The thesaurus was created by
domain experts extracting words from the software package.
In the case of our measurements, the class diagram of the
specific domain was measured by using a domain-free
thesaurus. However, the accuracy of our measurements
would have been higher if we had used a domain-specific
one.

José et al. [13] referred to the understandability of UML
Statechart diagrams. Their research showed the correlation is
strong between certain structural metrics concerning the
complexity and understandability of the Statechart diagram.

There was an attempt to predict a comprehensive
qualitative evaluation from the structural complexity of a
class diagram [5]. This paper shows that the correlation
between the subjective evaluations of various qualities by
domain experts and the COF was weak. This means that
there is a factor in the UML models’ evaluation that is more

essential than the class structure. We supposed that this
essential factor is the "word similarity".

V. CONCLUSION AND FUTURE WORK

We focused on the word similarity as calculated from the
WordNet thesaurus, and proposed three metrics concerning
the understandability of three aspects of the class diagram.
Furthermore, the three metrics were evaluated by analyzing
the correlation between the metrical measurements and the
subjective evaluations of the class diagram’s
understandability made by domain experts.

The correlation between the subjective evaluation and
class relational structure understandability (CRSU) was
strong. Therefore, hypothesis H1 and CRSU are valid. CRSU
would be useful for estimating the time-cost spent for
understanding the class diagram, and it could be used to
select a more understandable class diagram from among the
models concerning the same problem. Various usages will be
investigated.

The validity of class cohesion based on word similarity
(CCS) and package relational structure understandability
PRSU (PRSU) were not proven in this paper. We will
attempt to improve PRSU and CCS in the future.

Our future work is as follows:
1) Measurement and Evaluation of different domains
The candidate models in this study were for built-in

software. However, there is a possibility that different results
will be obtained for different domains. Therefore, we will
evaluate our metrics in different domains.

2) Validation of RDU
The validity of CRSU was proven in this paper, but the

validity of RDU was not proven because the subjective
evaluation that was used for the correlation analysis was for
the entire class diagram.

If the validity of RDU can be proven in a subjective
experiment, it can be used to detect the structural parts that
make the class diagram less understandable.

3）Propose comprehensive understandability metric
The class diagram includes not only the class names, but

also the role names, multiplicity, etc. We will study the
influence that such information has on the understandability
of the class diagram.

Moreover, the weights of the paths in the directed graph
will be set according to the kind of relation, and thus, we will
refine the proposed metrics.

REFERENCES

[1] Object Management Group: Unified Modeling Language
Specification, Version 1.5, OMG document formal/03-03-01, 2003.

[2] Reiko Arai: Self-review notebook for the Object-oriented design

using UML, D ART, pp. 199, 2005 (in Japanese).

[3] S.R. Chidamber and C.F. Kemerer: A Metric suite for Object-
Oriented Design, IEEE Trans. Software Eng, vol. 20, no. 6, pp. 476-

493, 1994.

[4] F.B. Abreu, M. Gonlao and R. Esteves: Toward the Design Quality
Evaluation of Object-Oriented Software Systems, Proc.5

th

International Conference on Software Quality, 1995.

[5] H. Washizaki, Y. Kobayashi, H. Watanabe, E. Nakajima, Y.
Hagiwara, K. Hiranabe and K. Fukuda: Experiments on quality

evaluation of embedded software in Japan robot software design

contest, International Conference of Software Engineering, pp. 551-

560, 2006.

[6] WordNet-Princeton University Cognitive Science Laboratory,

http://wordnet.princeton.edu/.

[7] Ted Pedersen - WordNet::Similarity, http://wn-
similarity.sourceforge.net/.

[8] Object Management Group: MOF 2.0/XMI Mapping, Version 2.1.1,

OMG document formal/07-12-01, 2007.

[9] Excite Translation, http://www.excite.co.jp/world/ (in Japanese).

[10] ET Robot Contest 2008,
http://www.etrobo.jp/ETROBO2008/index.html (in Japanese).

[11] SD Metrics - the design quality tool for UML Models,

http://www.sdmetrics.com/.

[12] J. Kato, M. Saeki, A. Ohnisihi, M. Nagata, H. Kaiya, S. Furumiya, S.

Yamamoto, and H. Horai: Supporting the development of a thesaurus
for requirements analysis, Technical report of IEICE, KBSE 103(217),

pp. 41-46, 2003 (in Japanese).

[13] 13. J.A. Cruz-Lemus, A. Maes, M. Genero, G. Poels and M.
Piattini: The Impact of Structural Complexity on the

Understandability of UML Statechart Diagrams, Working Papers of
Faculty of Economics and Business Administration, Ghent University,

Belgium, 2007.

APPENDIX

TABLE III. THE DETAIL OF EXTRACTED MODELS

Team ID Easy to read Structure Average of subjective evaluations #Classes #Association #Inheritance

1 1 4 2.5 31 19 12

2 4 8 6 26 27 2

3 1 4 2.5 12 16 0

4 4 6 5 19 20 7

5 3 6 4.5 13 30 0

6 3 4 3.5 26 17 11

7 4 6 5 27 41 6

8 2 4 3 17 34 2

9 2 4 3 14 32 0

10 2 4 3 16 16 6

11 3 4 3.5 13 15 2

12 3 4 3.5 11 18 2

13 2 4 3 13 16 3

14 3 6 4.5 16 15 9

15 3 4 3.5 12 8 3

16 2 6 4 16 14 5

17 3 4 3.5 12 8 3

18 3 4 3.5 9 14 0

19 1 4 2.5 11 15 3

20 4 8 6 46 13 29

21 3 8 5.5 25 25 6

22 2 4 3 27 48 5

23 1 2 1.5 8 8 0

24 4 4 4 11 18 0

25 3 4 3.5 14 12 5

26 2 4 3 16 38 0

27 2 4 3 8 16 0

28 2 4 3 31 48 12

29 2 4 3 14 19 2

