
Reusability Metrics for Program Source Code
Written in C Language and Their Evaluation

Hironori Washizaki1, Toshikazu Koike2, Rieko Namiki3, and Hiroyuki Tanabe3

1 Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan
GRACE Center of National Institute of Informatics, 2-1-2, Hitotsubashi, Chiyoda-ku,

Tokyo, 101-8430 Japan
washizaki@waseda.jp

2 Yamaha Corporation, 10-1 Nakazawacho, Naka-ku, Hamamatsu-shi, Shizuoka,
430-0904 Japan

toshikazu koike@gmx.yamaha.com
3 Ogis-RI Co., Ltd., MS-Shibaura Bldg., 13-23, Shibaura 4, Minato-ku, Tokyo, Japan

{Namiki Rieko, Tanabe Hiroyuki}@ogis-ri.co.jp

Abstract. There are various approaches to quantitatively and statically
measuring the reusability of program source code; however, empirical
demonstrations of the effectiveness of such approaches by considering
actual reuse in actual development projects or of the magnitude of their
effect on actual reusability have not been reported in depth. In this pa-
per, we identified a set of metrics that are thought to be effective for
measuring the reusability of C language program source code. Subse-
quently, for ten projects involved in development with existing software
modification and adoption, during which conventional source code in an
old project are extensively reused and adopted to a new project, we com-
pared values of the static metrics identified and the reuse results before
and after the development. Statistical analysis demonstrated that some
of our metrics are effective for actual software development, and we ac-
curately determined the magnitude of their effect on actual reusability.
More concretely, it was found that when the percentage of files used out-
side the belonging directory is small and the number of function calls is
small, the complexity of source code as the material of reuse and fac-
tors that are affected by the source code are limited, indicating high
reusability.

1 Introduction

Reuse of common parts in some form (such as functions and directories) can re-
duce the development cost of new software[1]. Reusability is the extent to which a
system or module-unit parts can be reused in a different environment. This qual-
ity characteristic is not regulated directly in the standard quality model specified
in ISO9126-1[2]; however we have to consider its importance, particularly with
respect to development efficiency within the same problem domain.

It has been said that you cannot control what you cannot measure[3]. A soft-
ware metric is a measurement scale and the method used for measurement of

some property of software. Metrics for objectively evaluating the ease of reuse of
target objects are essential for systematically controlling and conducting “devel-
opment for reuse” and “development by reuse.” Moreover, it is difficult to apply
such reusability metrics in the actual development of software with satisfactorily
high practicality, understandability, and persuasiveness unless the effectiveness
of these metrics has been proven by accurate and empirical evaluation tests.

In this paper, we proposed a set of metrics for statically measuring (i.e.,
analyzing without executing programs) the reusability of C language program
source code, and statistically evaluated the effectiveness of our metrics using a
certain scale of actual metric values. The objective of our study is to provide a
validated way for evaluating the ease of reuse of program source code accurately,
without any other software materials such as documents and specifications.

The remainder of this paper is organized as follows. Next section introduces
related works and problems in reusability measurement. Section 3 describes our
reusability metrics and reuse rates for further evaluation. In section 4, we report
on the results of empirical evaluations of our metrics by using ten projects data.
In the last section, we draw a conclusion and state future works.

2 Problems of Reusability Measurement

Though many metrics have been proposed, it is generally difficult to select an
appropriate one among them or to interpret the measurement results without
appropriate models and goals[4, 5]. Various metrics for measuring the reusability
of software have conventionally been proposed, mainly for program source code,
including our previous researches[6–14].

In most cases, the effectiveness of metrics is evaluated by dividing a certain
size of samples into a superior group and an inferior group from particular view-
points (e.g., reuse results[8] and qualitative evaluation[14, 15]) and by comparing
the distribution tendencies of the values of metrics between these groups.

However, data used in the evaluation by conventional metrics are based on
the rough frequency of reuse of the partial or entire programs being examined
and on qualitative evaluation, which inevitably depends on individuals. There-
fore, whether the advantages of highly reusable program elements (or an entire
program) are exploited in the programs being examined has not been accurately
demonstrated through the consideration of concrete and detailed reuse results
[Problem A].

In addition, for a similar reason, it has been difficult to analyze differences in
the magnitude of the effect on reusability among individual metrics [Problem B].
Although there has been an approach to qualitative analysis and weighting, i.e.,
summarizing opinions from multiple specialists, when using multiple metrics[19],
the effectiveness of this approach in actual software development has not yet been
verified. Hence, the magnitude of the effects of individual metrics on reusability
have not been quantitatively clarified.

3 Reusability Metrics and Reuse Results

We qualitatively identified multiple metrics considered to be effective for measur-
ing reusability and compared their actual values with concrete and detailed reuse
results. Thus, the effectiveness of individual metrics was accurately evaluated,
resolving Problem A.

For the above comparison, regression analysis was carried out using reuse
results as the objective variable and the actual values of individual metrics as
explanatory variables, and the effect of individual metrics on actual reusabil-
ity was accurately determined. As a result, Problem B was also resolved. In
the following subsections, the proposed reusability metrics and reuse results are
explained.

3.1 Definition of reusability metrics

Satisfactory understandability and persuasiveness cannot be obtained in the use
of metrics unless the metrics themselves have been systematically derived follow-
ing a particular policy and theory. In this paper, we adopted the Goal-Question-
Metric (GQM) method[16]. The GQM method is a goal-oriented method for
mapping a goal to a metric by using a question which must be evaluated in
order to determine whether the goal has been achieved or not.

In working towards the goal of the accurate determination of reusability for
supporting development for reuse and development by reuse, the questions to
be examined were combined stepwise with the metrics used for projecting the
properties of software to measures, thus obtaining multiple metrics. Although
the process depended on human work, several specialists repeatedly reviewed and
modified the hierarchy of the goal, questions, and metrics for as long as about
one year, ensuring a reasonable certain level of plausibility and persuasiveness.

Table 1 summarizes the obtained metrics and the questions used to derive
them. Seven metrics are derived from the four questions in the table. Each metric
represents the complexity of the dependence or the complexity of the application
programming interface (API) of the target itself.

For the six metrics other than MFl04, the smaller the value, the more positive
the response to the corresponding question, which consequently indicates high
reusability. For MFl04, it is considered that there is an appropriate range of
values that give high reusability.

Because MFn05, MFn07, and MFn06 are metrics that evaluate functions, it
is necessary to summarize measurement results by summation or other means
in the case of evaluating upper unit levels, such as modules and the entire sys-
tem. MFl and MMd are intended for source code files and modules (directories
for C language), respectively, and similarly to MFn, these metrics require the
summarization of results when upper unit levels are targeted.

MMd03 and MFn07 could be interpreted as variations of conventional infor-
mation flow-based complexity metric called “fan-out”[17]; however MMd03 and
MFn07 provide concrete ways to measure external dependencies at the module
level and the function level, respectively. Similarly, MMd01, MFl02, MFn05 and

Table 1. List of reusability metrics obtained by qualitative identification

Question Metric
ID Name Definition and interpretation

Is not API too
complex?

MMd01
Percentage
of externally
used files

Definition: The percentage of files used outside the
belonging directory among all files within the direc-
tory (module).

Number of files used outside the belonging directory
Number of all files in the directory

Interpretation: The smaller the value, the more lim-
ited the use of API by external modules, indicating
high reusability of the directory (module).

MFl02

Number
of exter-
nally used
functions

Definition: The number of functions defined within
the file and used outside the directory (module) to
which the file belongs. Even when the same function
is used multiple times, it is counted as 1.
Interpretation: The smaller the value, the more lim-
ited the use of API by external modules, indicating
high reusability of the file.

Is not the module
dependent on too
many other mod-
ules?

MMd03
Number of
dependent
modules

Definition: The number of modules on which the
target module depends. When the target module uses
functions of other modules, the former is considered
to depend on the latter.
Interpretation: The smaller the value, the smaller
the number of dependent modules, indicating high
reusability of the module.

Is the division
and allocation of
responsibilities
appropriately?

MFl04

Percentage
of functions
without
parameters

Definition: The percentage of functions without pa-
rameters among all functions in the file.
Interpretation: The greater the value, the smaller
the amount of (dependent) data required for use, indi-
cating high reusability of the file. Note that a too high
value (e.g., 1.0) indicates difficulty in providing data
from outside and thereby difficulty in setting, which
may decrease reusability.

Are external
components that
affect functions
appropriately
limited?

MFn05
Number of
parameters

Definition: The number of parameters declared
within the argument list of the function.
Interpretation: The smaller the value, the smaller
the amount of (dependent) data required for use, in-
dicating high reusability of the function. Note that a
too small value (e.g., 0) indicates difficulty in provid-
ing data from outside and thereby difficulty in setting,
which may decrease reusability.

MFn06

Number of
readings
of external
variables

Definition: The number of readings of external vari-
ables (for C language, external global variables) by the
function. When the same single variable is read twice,
it is counted as 2.
Interpretation: The smaller the value, the more lim-
ited the dependent external variables, indicating high
reusability of the function.

MFn07
Number of
function
calls

Definition: The number of function calls
Interpretation: The smaller the value, the more lim-
ited the dependent functions, indicating high reusabil-
ity of the function.

MFn06 are somewhat related to conventional complexity metrics “fan-in”[17]
and IF4[18]; however these metrics derived in our study are fine-grained and
specific to answer corresponding questions in the obtained GQM model.

3.2 Definition of reuse rate

A specific and detailed analysis of the extent of reuse can be accurately performed
by evaluating the reuse rate, i.e., the percentage of components reused without
modification (or completely reused) out of the entire adopted components, rather
than simply by evaluating the frequency and amount of reuse. Here we define
“reuse” and “adopt” in the followings.

– “Reuse” means the use of original components without any modification in
the development of other programs.

– “Adopt” means the use without modification, the use with modification, or
the use of extracted components; therefore conceptually, “adopt” includes
“reuse”.

On the basis of the above concept, we defined the reuse rate that can be mea-
sured in the context of development with software modification and adoption,
and used it to represent the reuse results.

In our study, the reuse rate is defined as the ratio of the number of compo-
nents reused without modification to that of components adopted in some way
during the development of a new project by adopting the entire product of an
existing project. A higher reuse rate indicates that the reuse of the product of
the original existing project as the reuse source was much easier in such reuse
and modification-based new development (i.e. derivative development).

In Figure 1, for example, an existing project as the reuse source is composed
of several components, such as A, B, C, D, and E, among which, A, B, and
C are assumed to be reused in a new project. Whereas A and B are adopted
with some modification, for example, because of a difference in functional or
nonfunctional requirements, C is reused without modification; therefore, C is
counted in calculating the reuse rate in accordance with the definition of reuse.
D and E in the existing project are not adopted at all and are excluded from
the calculation of the reuse rate because it is difficult to specify the reason for
not adopting D or E, i.e., whether it is because functional or nonfunctional
requirements differ in the new project and the existing project (namely, reuse
itself is not needed) or because D and E are difficult to adopt in the new project.

On the basis of the above concept, we defined the following three reuse rates:
line, function, and file.

Line reuse rate =

Total number of lines in the files reused in
the new project from the existing project
Total number of lines in the files adopted in
the new project from the existing project

A B C D E ・・・Existing
project
as reuse
source

A’ B’ C

New

X

New

Y ・・・New
project

Reused without modification Modified

Fig. 1. Concept of reuse rate

Function reuse rate =

Total number of functions in the files reused in the new
project from the existing project
Total number of functions in the files adopted in the
new project from the existing project

File reuse rate =

Total number of files reused in the new
project from the existing project
Total number of files adopted in the new
project from the existing project

Given that component in Figure 1 denote files, three files are adopted in
the new project, one of which is reused without modification. Therefore, the file
reuse rate is 1/3.

4 Evaluating Effectiveness of Reusability Metrics

We statistically evaluated whether the above-mentioned seven reusability metrics
were effective for the actual measurement of reusability using a certain size of
obtained values and reuse results.

In the following subsections, we explain the projects used to obtain the val-
ues of the metrics and reuse results, the process of evaluation based on the
comparison of the obtained values and reuse results, and the obtained results.

4.1 Target projects

Data on metrics and reuse results were selected. Specifically, ten existing projects
on embedded software development for some instruments (P1–P10) in the same
domain were first selected from various projects in a company, in which corre-
sponding succeeding developments (P1’–P10’) based on P1–P10 were conducted
and from which the above-mentioned three reuse rates (as reuse results) could
be obtained. In the company, Px’ could be recognized as an extension and new

release of corresponding Px. There was no significant and architectural change
between Px’ and Px; however it can be said that the software environment of
Px’ is changed from that of Px because these are different projects with different
functional and non-functional requirements. These projects contain relatively re-
cent and reliable data and were selected so that the greatest reuse rate differences
could be obtained with the aim of acquiring statistically significant results.

The reuse rates from the above existing projects, P1–P10, to the new deriva-
tive projects P1’–P10’, respectively, were calculated and used as reuse results.
Program source code of P1–P10 were used as the target of application of the
reusability metrics. Our expectation is that the higher the reusability of P1–P10,
the more components of P1–P10 have been reused in P1’–P10’.

Here, the files of the existing projects include files that were not reused at
all in the new projects subsequently developed. Table 2 summarizes the project
data. The directories, files and lines that were not reused in the subsequent devel-
opments were excluded from evaluation targets because it was unclear whether
the reason for the lack of reuse was the difference in the dynamic/static charac-
teristics of the target projects or because reuse was not needed in the functional
requirements.

Table 2. Data on scale of ten projects (P1–P10)

N. directories N. files N. effective LOC

Total amount 213 10,298 5,291,096

Reused 173 7,940 3,734,614

4.2 Evaluation process

The process and result of evaluation are chronologically described below. Because
there were many parameters that affected the results of our statistical analysis,
we carefully examined each step as follows: 1) selection of measurement level,
2) selection of reuse rate and data format of metric value, and 3) selection of
explanatory variables (metrics).

Selection of measurement level First, multiple linear regression analysis us-
ing the reuse rate as the objective variable and all our metrics as the explanatory
variables was carried out for all the reuse rates and the different three measure-
ment levels: file, directory, and system. In this analysis, the objective variable
was subjected to the logit transformation[20] because it was proportional data
originally so that it is preferable to average the roughness of variation in raw
data. For the explanatory variables, three types of data, i.e., raw data, propor-
tional data, and log data, were used, as described later.

For the measurement levels of file and directory, no statistically significant
differences were observed regarding all the reuse rates. This implies that the
features that affect the reusability of the developed projects exist at the level

of the project itself (namely, the entire system) and that no features that can
be observed as statistically significant differences exist in the levels of file and
directory.

New projects may require the addition of functions and other items. There-
fore, it is appropriate to measure the reusability of the entire system rather than
that of some component levels, which depend on individual requirements.

Selection of reuse rate and data format of metric value From the above
results, the measurement level was fixed at the system, and multiple regression
analysis was carried out for all combinations of the reuse rate and the actual
metric value in each data format. The following three types of metric data format
were examined:

– Raw data
– Proportional data obtained by normalizing the raw data using an appropriate

parameter
– Log data obtained by a log transformation to average the roughness of vari-

ation in raw data.

The analytical results revealed that the combination of the function reuse
rate and the proportional data of metric values has the highest contribution rate
that is adjusted for degrees of freedom and therefore this combination is valid.
This is considered to be because raw data are strongly affected by the scale of
the project, whereas proportional data have been normalized in accordance with
the scale.

Table 3 shows correlation coefficients for all of combinations among the pro-
portional data of seven metric values and the three reuse rates. In the table, it
can be seen that the correlation coefficients between the function reuse rate and
several metrics proportional data are high compared with other combinations.

Figure 2 shows scattergrams for the function reuse rate and each of seven
reusability metrics. From the figure, it is thought that MMd01 and MFn07 are
strongly correlated to the function reuse rate compared with other five metrics.

Selection of explanatory variables (metrics) In the above analyses, all
seven metrics were used as the explanatory variables; however, the number of
target projects is ten, which is small relative to the number of explanatory vari-
ables (the number of target projects should preferably be at least double the
number of explanatory variables). Therefore, the reliability of the regression
equation obtained by multiple regression analysis may be low.

When all seven metrics were used as the explanatory variables, the contri-
bution rate after adjustment for degrees of freedom was 0.812, and the obtained
regression equation had positive partial regression coefficients for five of the seven
explanatory variables.

Table 3. Correlation coefficient for each combination among the proportional data of
seven metric values (MMd01, MFl02, MMd03, MFl04, MFn05, MFn06 and MFn07)
and the three reuse rates (LR, FnR and FlR)

MMd01 MFl02 MMd03 MFl04 MFn05 MFn06 MFn07 LR FnR FlR
MMd01 1
MFl02 0.693 1
MMd03 0.332 -0.012 1
MFl04 0.744 0.429 0.491 1
MFn05 -0.719 -0.354 -0.586 -0.956 1
MFn06 0.538 0.968 -0.15 0.299 -0.19 1
MFn07 0.518 0.733 -0.177 -0.11 0.163 0.721 1
LR -0.792 -0.561 0.009 -0.328 0.299 -0.446 -0.699 1
FnR -0.792 -0.768 0.125 -0.357 0.275 -0.693 -0.792 0.944 1
FlR -0.761 -0.715 0.14 -0.38 0.328 -0.639 -0.701 0.915 0.964 1

LR: Line reuse rate after the logit transformation
FnR: Function reuse rate after the logit transformation
FlR: File reuse rate after the logit transformation

Fig. 2. Scattergrams of the function reuse rate and the seven metrics

As explained above, the six metrics other than MFl04 shown in Table 1
were derived by assuming that the smaller the value, the higher the reusability.
The above analytical result was in disagreement with this assumption. This
may be because there was originally some correlation among the seven metrics
we adopted. As a result, multicollinearity occurred in the multiple regression
analysis.

To solve this problem, appropriate explanatory variables were interactively
selected using a statistical analysis tool so that no multicollinearity was observed,
and we obtained the combination that gave the highest contribution rate after
adjustment for degrees of freedom. It was clarified that the best regression equa-
tion with a contribution rate of 0.827 after adjustment for degrees of freedom
was obtained when MMd01, MMd03, and MFn07 were selected.

Tables 4 and 5 summarize the basic statistics of the analysis and the statistics
for each explanatory variable selected, respectively. In Table 4, the variance ratio
is high and the level of significance is 1%, indicating that the obtained regression
equation is valid. From Table 5, the partial regression coefficients are negative
for MMd01 (proportional data) and MFn07 (proportional data), which is in
agreement with the initial assumption that the smaller the metric value, the
higher the reusability.

Here, the partial regression coefficient for MMd03 (proportional data) is pos-
itive. This may be because the three explanatory variables used in multiple
regression analysis were not completely independent. However, MMd03 has the
smallest standardized partial regression coefficient among the three explanatory
variables and thereby has the smallest effect on the objective variable; hence, its
effect is considered to be negligible.

Figure 3 shows a scattergram of the function reuse rate estimated from the ob-
tained regression equation with three reusability metric values (MMd03, MMd01
and MFn07), and the actual function reuse rate for ten projects. In Figure 3,
the multiple correlation coefficient is as high as 0.941. The estimated function
reuse rate at the level of the system obtained using the regression equation is in
good agreement with the actual function reuse rate.

Table 4. ANOVA table of basic statistics after selecting explanatory variables

Factor Sum of Degree of Dispersion Dispersion Test
squares freedom ratio

Regression 10.713 3 3.571 15.34 Level of significance = 1%
Residual error 1.397 6 0.233

Total 12.11 9

4.3 Summary of evaluation results

The results of the evaluation of effectiveness are summarized below.

Table 5. Statistics for each explanatory variable selected

Variable
Partial regres-
sion coefficient

Standard
error

t-value
Standard partial re-
gression coefficient

Tolerance

Constant term 3.446 1.769 1.948
MMd03 (proportional data) 0.362 0.207 1.744 0.284 0.723
MMd01 (proportional data) -8.453 2.31 -3.66 -0.687 0.546
MFn07 (proportional data) -1.029 0.48 -2.14 -0.386 0.594

1. Program source code are reused at the level of function.
For reuse results based on the reuse rate, the function reuse rate was most
strongly related to the values of reusability metrics. This is considered to be
because C language program source code are mostly reused at the level of
function.

2. Ease of reuse can be estimated from the data at the level of the entire system.
As the level of reusability measurement, the entire system is more suitable
for the evaluation of reuse rate than individual components. This is probably
because the features and tendencies that affect the reusability of projects are
at the level of the entire project.
In other words, such features and tendencies do not necessarily exist in in-
dividual files or directories of the entire system; in the experiments such
features and tendencies are not concentrated in particular files and directo-
ries of the system.

3. The more limited the externally used files, the higher the reusability (MMd01).
Multiple regression analysis and the correlation analysis shown in Figure 2
revealed that when the percentage of externally used files in the directories of
the system is smaller, namely, the API and interfaces that are used externally
at the level of directory are more limited, the function reuse rate at the level
of the system tends to be higher.
For example, let us consider directories Ma and Mb, as shown in Figure
4. The values of MMd01 are 3/5 = 0.6 and 1/5 = 0.2 for Ma and Mb,
respectively. In this case, the number of externally used files in Mb is smaller,
or more limited, than that in Ma; a system composed of such directories with
limited entrance will be more reusable. A directory in which only one file is
used by external modules, similarly to Mb, is considered to be a result of
applying the Facade pattern[21], which defines an unified and higher-level
interface to a set of interfaces in a subsystem.

4. The smaller the number of function calls, the higher the reusability (MFn07).
Multiple regression analysis and the correlation analysis shown in Figure
2 also revealed that when the number of function calls in each function is
smaller, namely, the function under evaluation is called more often than it
makes calls, and is closer to the end of call, the function reuse rate at the
level of the system tends to be higher.
In Figure 5, for example, the values of MFn07 are 3, 1, and 0 for fa(), fb(),
and fc(), respectively. In this case, fa() mainly has the role of calling other

Fig. 3. Scattergram of function reuse rate at the level of the system for 10 projects after
the logit transformation (X-axis, estimated values obtained using regression equation;
Y-axis, metric values); multiple correlation coefficient = 0.941.

Directory (module) Ma

Source file

Used in function calling, etc.

Mb

Fig. 4. Example of measuring MMd01 (percentage of externally used files)

Function
fa() fb() fc()

Call

Fig. 5. Example of measuring MFn07 (number of function calls)

functions, whereas fc() is just called by other functions. Therefore, a system
having more such fc() end functions in the call chain has greater reusability.

5. Ease of reuse is more significantly affected by the percentage of files used by
external modules (MMd01) than by the number of function calls (MFn07).
Furthermore, multiple regression analysis revealed that the percentage of
files used by external modules significantly affects reusability.
On the other hand, the effect on reusability of the number of dependent
modules (MMd03) remains unclear and will be examined in the future; cur-
rently we cannot find any significant correlation between MMd03 and the
function reuse rate.

As mentioned above, these evaluations were carefully carried out through
several regression analyses, in which three types of detailed data were used for
reuse results as the objective variable. Therefore, the validity of the proposed
reusability metrics was accurately evaluated, thus resolving Problem A. In ad-
dition, the magnitude of effect on reuse results was individually analyzed and
determined for three reusability metrics, thus resolving Problem B.

According to the above-mentioned goal, these validated metrics could be
used for supporting development for reuse and development by reuse, such as
estimating the effort necessary for reusing existing source code.

4.4 Threats to Validity

We used the reuse rate between corresponding two projects as a proxy for
reusability of original program source code. We believe that the reuse rate de-
fined in the subsection 3.2 reflects the reusability; however there might be several
other factors affecting the reuse rate, such as requirement changes. It could be
a threat to internal validity; in the future, we will inspect the similarity of re-
quirements among target 20 projects.

Regarding threats to external validity, the evaluation was done on projects on
embedded software development for some instruments in the same domain. We
expect that the characteristics of all projects used in our experiments, such as the
data on scale shown in Table 2, could help readers utilize the evaluation results.
Moreover the evaluation was limited to derivative developments involving the
reuse of entire architecture; in the future we will consider the generalizability of

the obtained results by applying the metrics to completely new developments
involving reuse of existing components.

5 Conclusion and Future Work

For C language program source code, a set of metrics considered to be effective for
measuring reusability were qualitatively identified. Through accurate analyses
using several types of data on reuse results, it was statistically clarified that
three of the identified metrics tend to have different effects on actual reusability.
In these analyses, we defined the reuse rate, which can more accurately reflect
the actual state of reuse than the frequency of reuse.

The main contribution of this paper is the development of procedures for
accurately evaluating the validity and effectiveness of reusability metrics and
for analyzing the magnitude of their individual effects on actual reusability.
As a result, a set of reusability metrics, the effectiveness of which has been
evaluated and which can be used for C language program source code, were
proposed together with an evaluation of the magnitude of their individual effects
on reusability.

The followings are future works.

– Further review and expand the metrics (particularly MMd03) by increasing
the number of project data and repeating the analysis, and analyze the
generality of the metrics. Moreover it is necessary to consider the effect of
various files (such as XML files[22]) on implicit module dependencies.

– Expand the definition of the reuse rate, which is used for comparison with
metric values during the evaluation of their validity, so that the reuse rate can
be applied even when original existing projects do not necessarily correspond
to new derivative projects on a one-on-one level (e.g., the reuse rate when a
project product is reused by various new projects).

– Analyze the relationship between metric values and other reuse result data
such as the frequency of reuse in a certain time frame.

– Examine the applicability of the metrics, the validity of which has been
verified, to source code written in other program languages considering that
the questions used to derive the reusability metrics are independent of the
program language.

– The reusability metrics proposed in this paper could constitute part of a
practical framework (such as [6, 7]) for measuring the internal quality in-
cluding reusability.

References

1. Jeffrey S. Poulin, “Measuring Software Reuse: Principles, Practices, and Economic
Models,” Addison-Wesley, 1996.

2. ISO/IEC 9126-1: 2001, Information technology – Software product evaluation: Qual-
ity Characteristics and Guidelines for their use

3. Tom DeMarco, “Controlling Software Projects: Management, Measurement & Es-
timation,” Yourdon Press, 1982.

4. Norman Fenton, Robin Whitty and Yoshinori Iizuka, “Software Quality Assurance
and Measurement: A Worldwide Perspective,” Thomson Computer Press, 1995.

5. Linda M. Laird and M. Carol Brennan, “Software Measurement and Estimation: A
Practical Approach,” John Wiley & Sons, 2006.

6. Hironori Washizaki, Rieko Namiki, Tomoyuki Fukuoka, Yoko Harada and Hiroyuki
Watanabe, “Practical Framework for Evaluating Quality of Program Source code,”
IPSJ Journal, Vol.48, No.8, pp.2637-2650, 2007.

7. Hironori Washizaki, Rieko Namiki, Tomoyuki Fukuoka, Yoko Harada and Hiroyuki
Watanabe, “A Framework for Measuring and Evaluating Program Source Code
Quality”, Proc. 8th International Conference on Product-Focused Software Process
Improvement (PROFES 2007), LNCS, Vol.4589, pp.284-299, 2007.

8. Ayatomo Kanno and Tadashi Yoshizawa, “Techniques for Assuring Software Quality
towards 21st Century,” JUSE Press, Ltd., 1994.

9. Guttorm Sindre, Reidar Conradi and Even-Andre Karlsson, “The REBOOT Ap-
proach to Software Reuse,” Journal of Systems and Software, Vol.30, No.3, 1995.

10. William Frakes and Terry Carol “Software Reuse: Metrics and Models,” ACM
Computing Surveys, Vol.28, No.2, pp.415-435, 1996.

11. Letha H. Etzkorn, William E. Hughes and Carl G. Davis, “Automated Reusability
Quality Analysis of OO Legacy Software,” Information and Software Technology,
Vol.43, No.5, pp.295-308, 2001.

12. Satoshi Nakajima, Shigeki Suguta and Yuji Hotta, “Evaluation of Metrics for Reuse
of C++,” Object-Oriented Symposium, 1998.

13. Hironori Washizaki, Hirokazu Yamamoto and Yoshiaki Fukazawa, “A Metrics Suite
for Measuring Reusability for Software Components,” Proc. of the 9th IEEE Inter-
national Symposium on Software Metrics (Metrics 2003), IEEE CS, pp.211-223,
2003.

14. Masayuki Hirayama and Makoto Sato, “Evaluation of Usability of Software Com-
ponents,” IPSJ Journal, Vol.45, No.6, pp.1569-1583, 2004.

15. Katsuro Inoue, Reishi Yokomori, Tetsuo Yamamoto, Makoto Matsushita and Shinji
Kusumoto, “Ranking Significance of Software Components Based on Use Relations,”
IEEE Transactions on Software Engineering, Vol.31, No.3, pp.213-225, 2005.

16. Victor R. Basili and David M. Weiss, “A Methodology for Collecting Valid Software
Engineering Data,” IEEE Transactions on Software Engineering, Vol.10, No.6, 1984.

17. Sallie M. Henry and Dennis G. Kafura, “Software Structure Metrics Based on
Information Flow,” IEEE Transactions on Software Engineering, Vol.7, No.5, 1981.

18. Martin Shepperd and Darrel Ince, “Metrics, outlier analysis and the software design
process,” Information and Software Technology, Vol.31, No.2, 1989.

19. Kilsup Lee and Sung Jong Lee, “A Quantitative Software Quality Evaluation
Model for the Artifacts of Component Based Development,” Proc. 6th Interna-
tional Conference on Software Engineering, Artificial Intelligence, Networking and
Paralle/Distributed Computing, and 1st ACIS International Workshop on Self-
Assembling Wireless Networks, 2005.

20. Winifred Diana Ashton, “The logit transformation with special reference to its
uses in bioassay”, Hafner Pub. Co., 1972.

21. Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software,” Addison-Wesley, 1994.

22. Siim Karus and Harald Gall: “A study of language usage evolution in open source
software,” 8th Working Conference on Mining Software Repositories (MSR), 2011.

