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ABSTRACT

Patterns are useful knowledge about recurring problems and
solutions. Detecting a security problem using patterns in
requirements models may lead to its early solution. In or-
der to facilitate early detection and resolution of security
problems, in this paper, we formally describe a role-based
access control (RBAC) as a pattern that may occur in stake-
holder requirements models. We also implemented in our
goal-oriented modeling tool the formally described pattern
using model-driven queries and transformations. Applied to
a number of requirements models published in literature, the
tool automates the detection and resolution of the security
pattern in several goal-oriented stakeholder requirements.
Categories and Subject Descriptors: D.4.6 Security
and Protection: Access Control

General Terms: Algorithms, Design, Languages, Security.
Keywords: Security Patterns, RBAC, Goal Models, Model
Transformations.

1. INTRODUCTION

Patterns have been proposed to categorise knowledge of
recurring problems in software design and give advices on
how to resolve them [1]. It has been widely accepted that a
pattern language should also be created to categorise secu-
rity problems in software designs [2].

Fixing errors earlier in requirements costs much less than
fixing accumulated errors in design and implementation [3].
For security problems, therefore, one may ask a relevant
question “Can we detect security problems and even resolve
them early before it is too late?”

This question has led to active research on the repre-
sentation and analysis of security requirements [4, 5, 6].
Work in this area assumes that security requirements can
be elicited by arguing thoroughly about vulnerability in ex-
isting requirements models, such as trust assumptions [7],
anti-goals [8], misuse cases [9], abuse frames [10], risk anal-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

QoP’08, October 27, 2008, Alexandria, Virginia, USA.

Copyright 2008 ACM 978-1-60558-321-1/08/10 ...$5.00.

Haruhiko Kaiya
Shinshu University
Japan
kaiya@cs.shinshu-u.ac.jp
Zhenjiang Hu
GRACE Center, NIl
Japan

hu@nii.ac.jp

Hironori Washizaki
Waseda University
Japan
washizaki@waseda.jp

Nobukazu Yoshioka
GRACE Center, NII
Japan
nobukazu@nii.ac.jp

sysis [11, 12], etc. Yet little has been done to suggest sys-
tematical changes in requirements models to resolve these
vulnerabilities. Partly due to the fact that it is impossible to
detect and resolve once-for-all the vulnerabilities, especially
when not all problematic trust assumptions or anti-goals
may be detected. Therefore, a sound protection mechanism
should be open to incorporate new security patterns.

Capturing lessons learnt from the past as well-known se-
curity patterns, one may still need to enforce them to a re-
quirements model for a new software project. In this paper,
we propose to represent security patterns formally on basis
of existing requirements modeling languages, such that an
analysis tool can be developed to detect and resolve secu-
rity problems in the modelled requirements. For such auto-
mated analysis, it is a reasonable assumption for stakeholder
requirements to be modelled using a formal language: once
requirements have been modelled as such, the tool could
guarantee all instances of the security pattern can be de-
tected and necessary changes can be suggested.

To illustrate, we tried a single security pattern for re-
curring problems in role-based access control. Although it
should be possible to define the pattern on different for-
mal requirements modeling languages, we chose the goal-
oriente requirements modeling language i*/Tropos [13, 14],
for two reasons. One, it is widely used in early requirements
engineering which leads to many published models in the
literature. Second, we have developed the support using
Eclipse modeling framework, which enables the techniques
presented here.

Our main contribution is to show that such formally de-
fined security pattern can be directly used to detect and
resolve the security problem on requirements models pub-
lished in the literature. The key techniques used are model-
driven query and transformation [15] and model-driven de-
velopment of requirements models [16], both are integrated
in our requirements engineering tools'.

The remainder of the paper is organised as follows. Sec-
tion 2 explains key techniques used, including a language for
modeling stakeholder requirements, model-driven software
development and model-driven transformations; Section 3
focuses on enforcing a role-based access control pattern, and
reports several applications of the tool. Section 4 discusses
related work and Section 5 highlights several interesting di-
rections in our future work.
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2. BACKGROUND

In this section, we first use a metamodel for representing
stakeholder requirements, then explain necessary concepts
of model transformation.

2.1 Stakeholder requirements models

As a modeling language, the distributed intentions (i*)
language [13] and its variants support early analysis of stake-
holder requirements. These i* models serve as a starting
point to further specification of software systems, through a
systematic methodology and processes, Tropos [14].

The Tropos approach models early stakeholders’ require-
ments as intentions. The strategic dependencies (SD) be-
tween stakeholder roles reflect the corresponding dependen-
cies between their intentions. The strategic rationale (SR)
of a stakeholder role is represented by refinement relation-
ships among the intentions within the stakeholder role, such
as AND/OR decompositions or MAKE (++) /HELP (+)
/HURT (—) /BREAK (——) contributions. When refine-
ments are done thoroughly, intentions at the bottom can
be further operationalised into concrete tasks at the design
stage.

Intentions of stakeholder roles can be further classified
into goals, softgoals, tasks, resources. The stategic depen-
dencies can be further classified into ownership, permission,
and delegation, through an extension by Secure i*[6]. In this
paper, to illustrate the model transformations concepts, we
use a simplified metamodel that can be extended to any so-
phisticated metamodels with proper conceptual mappings.
A security pattern defined in one refined i* language may
not be automatically reusable in another sibling language,
it is thus better to define them in a modeling language that
is as general as possible. On the other hand, if a security
pattern requires a particular concept (such as roles in this
paper), then we cannot sacrifice the expressiveness for gen-
erality. A proper tradeoff of the language issue is however
beyond the scope of this paper.

2.2 Model queries and transformations

Simply put, model transformation is a transformation where

both the source and the target conform to modeling lan-
guages (or metamodels). For example, the source model
may be a UML class diagram, whereas the target model
may be Java classes. In this case, model transformation is
a mechanism for model-driven code generation. For those
familiar with XML transformations such as XSLT, model
queries are similar to XPath or XQuery, where certain sub-
models need to be selected for the transformation.

In many other cases, model transformations can be used
not only for model-driven software development, for exam-
ple, to convert a certain XML Schema into another. Even
though the notions of model query and transformation are
for general models, its application in model-driven software
development has pushed its limit to support various differ-
ent kinds of software artefacts, especially for those speci-
fied in OMG metamodels. Through the inception of model-
driven query and transformation frameworks for OMG mod-
els, such as ATL? and QVT [15], one can now define the
OMG metamodel transformation declaratively.

In this work, we will basically define a security pattern
with two parts. The first half handles detection of secu-
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rity problems, by specifying a matching pattern on basis of
the modeling language, thus supported model-based query.
The second half handles resolution of the identified security
problems, by transforming a submodel in the source into
another in the target (both source and target are in the
same modeling language), thus supported by model-based
transformation. We will present concrete example of such
transformation using the security pattern in the context of
next section.

3. ENFORCING A SECURITY PATTERN

In this section, we first explain the concept of role-based
access control and the rationale to use security patterns for
complex activities; then we show the representation of such
a security pattern and its enforcement, illustrated by a pub-
lished example.

3.1 Role-based access control (RBAC)

RBAC model became a NIST standard and ANSI INCITS
359-2004 [17], which enables one to represent separation of
duty (SoD). When deployed, it can enforce that every sub-
ject user are not assigned mutually conflicting authorization
roles.

User | MemberOf | Role isAuthorizedFor  [protectionObject
id * x|id * i #| id
name name name

Right
accessType
checkRights

Figure 1: The RBAC pattern by E. Fernandez

Fernandez et al proposed a pattern for RBAC [2] as shown
in Figure 1. The pattern corresponds to the core RBAC [17],
that is, the access right to objects is not assigned directly
to users, but to assigned to roles instead. A user must be a
member of a role when he/she wants to access the objects
assigned to the role. Thus SoD can be represented as a
constraint of Member0f relationship.

The pattern shown in Figure 1 can be easily extended
for hierarchical RBAC or for dynamic separation of duty
(DSD). For hierarchical extension, one can simply intro-
duce a composite pattern for roles and part-of relationships
among users; for DSD, one can introduce a class “session”
for representing a temporary assignment of roles to users.

RBAC pattern by E. B. Fernandez enables us to use RBAC
in the design phase. However, it is not easy to find suit-
able and necessary situations to use RBAC in requirement
phase: we do not yet have requirements analysis techniques
for RBAC application.

Therefore, we explore requirements patterns for RBAC
next by using i* goal modeling.

Security

Figure 2: A template of the RBAC pattern in i*

Figure 2 illustrates a simple i* model, in which two stake-
holder roles were defined (i.e., A and B). Given that role A



delegates to role B a goal G2 in order to fulfil its own goal
G'1, and the goal G2 in role B is required to fulfil a Security
softgoal, denoted by a MAKE contribution). Then one must
make sure that G2 cannot be fulfilled by A. Otherwise, a
malicious stakeholder may play the role of A and do harm
to the security by performing the goal G2. As a counter
measure, one can add an additional requirement that when-
ever (31 is fulfilled, goal G2 cannot be fulfilled by role A,
denoted as a BREAK contribution from G to G2 inside the
strategic rationale of A. Using the augmented goal model, a
SAT-solver based reasoning algorithm can detect such ma-
licious case given that it is impossible to satisfy the G1 and
the G2 by the same role. Figure 3 shows the resulting i*
model after the security pattern is applied. It requires a
transformation to take into account the matching pattern
and create a goal and a contribution link corresponding to
the counter measure.

Security

Figure 3: i* model suggested by the security pattern

3.2 Representing a security pattern

In order to detect a security pattern, we must represent
the pattern in a structured way.

t
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Figure 4: An i* goal model that matches with the
security pattern in Figure 2: matched goals are bold.

We first analyse the context of the pattern, that is, when
does it apply? The following rules form such a context:
e stakeholder A has an intention G1, stakeholder B has
an intention G2;
e (1 strategically depends on G2;
e (G2 contributes to a Security softgoal through ++ or
+5

In banking applications, at least two roles, namely Cus-
tomer and Manager are involved. Figure 4 shows an exam-
ple context in the RBAC security pattern we are interested.
Here A = Manager, B=Customer, Gi=ManageAccount, G2
= ChangeBalance. Then a malicious attacker M plays the
role of stakeholder A, by sharing the same knowledge in

terms of intentions, while though G> is depended by G1, M
can carry out G by itself.

Figure 5 shows an example of such malicious attack sce-
nario where RBAC security pattern we are interested. Here
A = Manager, B=Customer, M =Attacker, which plays the
role of a Manager. Changing the balance on its own, the
attacker can fulfil the malicious goal: TransferMoney. As a

Customer Attacker plays-role of Manager

Transferhloney

Banking

hangeBalance
A4

Figure 5: The i* goal model about the attack sce-
nario based on the RBAC security pattern

result, due to the unavailability of permission control, the
malicious attacker can issue a card with arbitrary amount.
To prevent it from ever happening, a fix is to disallow the at-
tacker to change the balance of the account, either by with-
drawing, depositing or initialising a non-negative amount.
The prevention must be intentionally carried out through
an explicit requirement on stakeholder A such that when-
ever G1 is satisfied, G2 cannot be satisfied by A itself, see
Figure 6.
To sum up, the counter measure leads to the following
changes to the model:
e stakeholder A has an intention (1, stakeholder B has
an intention Ga;
e (5 strategically depends on Gg;
e (35 contributes to a security softgoal Security through
++ or +;
e A has an intention G2, and G1 contributes to G2 through
—— relationship.
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Figure 6: The i* goal model after applying the
RBAC security pattern in Figure 3 (cf. Figure 4).

3.3 Enforcing the security pattern

Given that we have informally defined the security pat-
tern, in order to enforce it, we need to describe it formally.



In this work, we use ATL to specify the security pattern
as a conditioned model transformation. The condition is
boolean, it is true only when the model matches the pattern.
In the true case, we perform a non-identical transformation,
otherwise, we perform an identical transformation.

1 module RBACSecurityPattern;

2 create OUT : G from IN: F;

3 rule Model {

4 from s: F!Model

5 to t:G!Model (name <—s.name,

6 stakeholders <—s.stakeholders ,

7 intentions <— s.intentions ,

g dependencies <—s.dependencies ,

9 decompositions <—s.decompositions ,

1C contributions<—s.contributions)

11 }

12 rule Stakeholder {

13 from s:F!Stakeholder

14 to t:G!Stakeholder (name<—s.name ,

15 intentions <— s.intentions)

16 }

17 rule Intention {

18 from s:F!Intention

19 to t:G!Intention (name <— s.name)

20 }

21l rule Decomposition {

22 from s: F!Decomposition

23 to t: G!Decomposition (

24 type <— s.type, — AND, OR

25 source <— s.source , target <— s.target)

26 }

27 rule Contribution {

28 from s:F!Contribution

29 to t:G! Contribution (

30 type <— s.type, —MAKE, HELP, HURT, BREAK

31 source <— s.source ,

32 target <— s.target)

33

34 rule Dependency {

35 from s:F!Dependency (

36 s.dependencyTo.rule—>select (e |
e.target.name = ’Security ’)—>isEmpty ()
or not (s.type ='MAKE or s.type=’
HELP’) )

37 to t:G!Dependency (

38 dependencyFrom <— s.dependencyFrom ,

39 dependencyTo <— s.dependencyTo,

40 dependencyType <— s.dependencyType)

41

42 rule Security {

43 from s: F!Dependency

44 (not s.dependencyTo.rule—>select (e |
e.target.name = ’Security ’)—>isEmpty
() and (s.type="MAKE or s.type='HELP

45 to t: G!Dependency (

46 dependencyFrom <— s.dependencyFrom ,

47 dependencyTo <— s.dependencyTo,

48 dependencyType<—s.dependencyType) ,

4 t1:G! Contribution (

5 source <—s.dependencyFrom ,

51 target <—t2,

52 type <— ’BREAK’) ,

53 t2:G!Intention (

54 name <— s.dependencyTo.name,

55 stakeholder <—

s.dependencyFrom.stakeholder)

56 }

An ATL transformation is specified based on a metamodel
specified using Eclipse Modeling Framework (EMF)S. In ear-
lier work, we have implemented an EMF specification for i*
goal models in the OpenOME tool, in which Model, Stake-
holder, Intention, Decomposition and Contribution are de-
fined formally as classes of the metamodel. In the ATL
specification of the model transformation, we first define

3http://www.eclipse.org/modeling/emf/

identical transformation rules for Model, Stakeholder, In-
tention, Decomposition, Contribution objects (lines 3-33),
because none of them are required to change. Here both
the input (“IN”) and the output (“OUT”) models belong to
the same metamodel, respectively represented by F and G
in line 2. Every ATL transformation rule has two parts, the
“from” part declares a matching model element whilst the
“to” part declares a targeting model element. If the iden-
tifical transformation rule copies an object, all fields of the
object need to be assigned (“«<”) with the corresponding
fields from the object in the input model.

In case the OCL condition in line 36 is false, the rule for
Dependency is none-identical because the target dependency
object contributes to a security intention. The condition is
true when there is a positive (MAKE or HELP) contribu-
tion to a security intention from the target intention of a
dependency (i.e., the “dependencyTo” field of the depen-
dency object).

The negation of the condition appears in the Security rule
(line 44), which specifies what to change after the enforcing
transformation resolve this security problem (lines 45-55).
Here a security intention is identified simply by the name
“Security”, whereas in other sitations the security intention
can be defined by a more complex condition. As a result
of the transformation (the “to” part), three objects will be
created in the output model. The first object (¢) is a copy of
the input dependency, whilst the other two objects introduce
a new BREAK contribution object (¢1) to a new intention
object (¢2) that is the copy of the target of the original
dependency object. Note that the ordering of ¢, t1 and t2
does not matter, e.g., t2 can be referenced in t1.

3.4 Applications

We have directly applied the above ATL query and trans-
formation on the running example, which transform Figure
4 to Figure 6. Then we applied the transformation on 12
examples taken from the OpenOME repository, 4 of them
exhibit security concerns [4, 18, 19, 20] and all the three
represented in i* language can apply the RBAC security
pattern, including Smartcard authentication [18, 19], Secure
and trust in healthcare case studies [4]. The high applicabil-
ity (75%) indicates that perhaps the RBAC security pattern
is quite common in i* modeling.

We can find several examples of i* models in literature
that can apply our security pattern. Gordijn et al proposed
a method for e-Service design using i* and e3value, and they
used an example of Internet radio service [21]. In the exam-
ple, rights society and musician played two roles, namely,
“Fee repartitioner” and “Rights holder”. Our pattern can
be applied to this structure if the repartitioning task is con-
tributing to a security softgoal. If either of them plays both
roles at the same time, such a repartition can never be jus-
tified. In addition to this example, we have also found sev-
eral examples in literatures, e.g., technical meeting manage-
ment [22], reimbursement of medical cost [23] and common
electric purse system [24], where our pattern can be applied
by adding security related softgoals. According to this sur-
vey, we find our pattern can prevent i* modelers from miss-
ing security related softgoals because several dependencies
in i* models are only partially matching our RBAC pattern.

4. RELATED WORK

Our approach is the first one to formally represent and en-



force a security pattern to goal-oriented requirements mod-
els by using i* and model-driven transformation. Nonethe-
less, our approach bares resemblance to several existing ap-
proaches including formal representation of security patterns
and goal-oriented analysis of non-security patterns.

There are several researches on describing security pat-
terns formally by using some formal language[25, 26]. Schu-
macher used a symbolic ontology representation language
F-Logic to define a knowledge base composed of security
ontology, mappings between security concepts and security
pattern elements, and inference rules among patterns[25];
although this approach might be useful for retrieving se-
curity patterns, there is no mechanism for enforcing those
patterns to the target software. Supaporn et al. proposed an
another approach to construct extended-BNF-based gram-
mars of security requirements from security patterns in order
to translate from security needs of any projects or organi-
zations to requirements[26]. Moreover, they also proposed
a prototyping tool for defining security requirements based
on the constructed grammars. However, the approach lacks
an ability to enforce security patterns to (not newly defined
but) existing requirements.

Several approaches analysed software patterns by using
goal-oriented (or related) modeling lauguages, such as Non-
Functional Requirements Framework (NFR) for any pat-

tern[27] and i* for architecture patterns[28]. These approaches

used formal modeling languages for capturing relations be-
tween non-functional properties and design decisions, or, re-
lations among architectural elements. On the contrary, we
used i* goal models for capturing security properties, before
and after applying security patterns.

S.  CONCLUSIONS AND FUTURE WORK

In this work, we showed that the ATL model query and
transformation framework is suffice to express and enforce
a RBAC security pattern in stakeholder requirements mod-
els. Such enforcing transformations of security patterns can
be seen as operationalizations of security requirement as-
pects [20]. In future work, we will use bi-directional trans-
formation [29] to synchronize the models before and after
enforcement.
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