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Abstract—Although many programming languages and test
coverage criteria currently exist, most coverage measurement
tools only support select programming languages and coverage
criteria. Consequently, multiple measurement tools must be
combined to measure coverage for software which uses multiple
programming languages such as web applications. However, such
combination leads to inconsistent and inaccurate measurement
results.

In this paper, we describe a consistent and flexible framework
for measuring coverage supporting multiple programming lan-
guages, called Open Code Coverage Framework (OCCF). OCCF
allows users to add new extensions for supporting programming
languages and coverage criteria with low development costs.
To evaluate the effectiveness of OCCF, sample implementation
to support statement coverage and decision coverage for eight
programming languages (C, C++, C#, Java, JavaScript, Python,
Ruby and Lua) are demonstrated. Additionally, applications of
OCCF for localizing faults and minimizing tests are shown.

Index Terms—framework; test coverage; programming lan-
guages; fault localization; test-suite minimization;

I. INTRODUCTION

Test coverage, which is an important indicator for test
adequacy [1], has various criteria such as statement coverage,
decision coverage, condition coverage and condition/decision
coverage. For example, statement coverage is the ratio of
statements that have been executed at least once from all
the statements. Based on the purpose of software testing, the
developer selects the suitable criterion [2].

It is more difficult to measure coverage than software
metrics, such as McCabe complexity [3] and CK metrics [4],
because any three mechanisms to measure coverage (extending
interpreters or processors, inserting instrumentation code into
binary code, or inserting instrumentation code into source
code) are complex. In general, extending interpreters or pro-
cessors is more difficult than inserting instrumentation code
because interpreters or processors are such complex systems
that their extensions require significant efforts. Two insertion
mechanisms must analyze and transform source code or binary
code, while measuring software metrics must only analyze
source code.

Although many programming languages and coverage cri-
teria exist, most coverage-measurement tools support select
programming languages and coverage criteria. Consequently,
many tools exist to span various programming languages,
which leads to differences between existing tools [5]. These
differences prevent testers from accurately measuring coverage
because the tools support different coverage criteria and are
implemented with different ways, resulting in different values
for the same criteria. Such a problem is also recognized for
the software metrics to analyze solely the source code [6].

For example, EMMA supports statement coverage for Java,
while Coverage.py supports both statement coverage and
decision coverage for Python. Although a combination of
EMMA and Coverage.py can measure statement coverage of
a web application using Java and Python, the combination
cannot measure decision coverage. Moreover, EMMA divides
a ternary expression (condition ? true-expression
: false-expression) into two statements and can de-
termine whether both branches of the ternary expression
have been executed. On the other hand, Coverage.py cannot
determine whether both branches have been executed because
it does not divide ternary expressions.

To overcome the diversity of existing tools, we developed
a novel framework for consistently and flexibly measuring
the coverage supporting multiple programming languages,
called Open Code Coverage Framework (OCCF) [7], [8].
OCCF reduces the development costs of coverage-based tools
by providing reusable code as cold spots. OCCF provides
common features for all supported programming languages
to measure the four coverage criteria: statement coverage,
decision coverage, condition coverage and decision/condition
coverage. OCCF allows users to add extensions for supporting
new programming languages and coverage criteria.

In this paper, we describe the features and architectures of
OCCF. We also demonstrate code fragments to measure state-
ment coverage and decision coverage for eight programming
languages. Moreover, code fragments for reporting coverage,
localizing faults, and minimizing test cases based on coverage
are explained to evaluate the effectiveness of OCCF.



TABLE I
COMPARISON OF COVERAGE-MEASUREMENT TOOLS FOR FEATURES AND COVERAGE CRITERIA

Tool Instrumentation Minimal targets Free Coverage criteria
Statement Decision Condition Condition/Decision

Cobertura Binary Function X X X
EMMA Binary Function X X X
JCover Code Function X X
Clover Code Function X X
Agitar Binary Function X X
OpenCover Processor Function X X X
NCover Source Function X X
dotCover Binary Function X
gcov Binary(Compiler) File X X X
COVTOOL Code File X X
BullseyeCoverage Code Function X X X X
Intel Code Coverage Tool Binary(Compiler) Function X
Squish Coco Code Function X X X X
TCAT Code Function X
Parasoft Test Code Function X X X X
PurifyPlus Binary Function X X X X
Semantic Designs Code Function X X
CoverageValidator Code Function X X
ScriptCover Code File X X
undercover Binary Function X X X
Coverage.py Processor Module X X X
rcov Processor Function X X
SimpleCov Processor Function X X
Devel::Cover Processor Function X X X X
xdebug Code Function X X
LuaCov Processor File X X

TABLE II
COMPARISON OF COVERAGE-MEASUREMENT TOOLS FOR SUPPORTED PROGRAMMING LANGUAGES

Tool Languages
C/C++ C# Java Scala Groovy JavaScript Python Ruby Perl PHP Lua

Cobertura X
EMMA X
JCover X
Clover X X
Agitar X
OpenCover X
NCover X
dotCover X
gcov X
COVTOOL X
BullseyeCoverage X
Intel Code Coverage Tool X
Squish Coco X
TCAT X X
Parasoft Test X X X
PurifyPlus X X X
Semantic Designs X X X X
CoverageValidator X X X
ScriptCover X
undercover X X
Coverage.py X
rcov X
SimpleCov X
Devel::Cover X
xdebug X
LuaCov X

TABLE III
RELATION BETWEEN USER CODE, COMMON CODE AND EXTERNAL PROGRAM FOR EACH MODULE

Module User code (hot spot) Common code (clod spot) External program
AST generator Passing a file path of a parser and arguments for the parser Invoking the parser A parser library or

a compiler compiler
AST finder Finding AST nodes where instrumentation code is inserted Scanning ASTs –
AST inserter Passing the string of instrumentation code Inserting new nodes into ASTs –
Instrumentation code Implementing instrumentation code in each language – SWIG
Code generator Outputting special tokens not memorized in AST Outputting memorized tokens –



II. COMPARISON TO EXISTING COVERAGE TOOLS

Tables I and II compare existing coverage-measurement
tools by features and supported programming languages. An
’X’ in the tables indicates the tool has the feature to support
a criterion or programming language. To the best of our
knowledge, no free tool supports the four coverage criteria.
Few tools support the scripting languages such as JavaScript,
Python, Ruby and Lua. Consequently, these languages have
poor features and support few coverage criteria. Although
undercover is a free tool, which supports more than one
programming language, undercover targets only programming
languages working on Java Virtual Machine (Java VM). Non-
free tools, except Clover and Semantic Designs, support only
C/C++, C# and Java because these programming languages
are most common. Therefore, accurately measuring coverage
for web applications using scripting languages is difficult.

A new mechanism to reuse common code between various
programming languages beyond platforms such as Java VM
and .NET Framework must be developed to provide appropri-
ate tools with rich features that support many programming
languages. However, programming languages have different
grammars and features. In particular, compilers and processors
are developed in various ways. Thus, extending compilers or
processors is a very language-dependent approach.

III. OVERVIEW OF OCCF

To alleviate the current problematic state, we developed
OCCF, which inserts instrumentation code into source code.
The abstract syntax trees (ASTs) of source code for most
programming languages have similar structures. Thus, OCCF
provides a reusable common code to insert instrumentation
code through ASTs by utilizing the similarities. Currently,
we have developed parsers for C, C++, C#, Java, JavaScript,
Python, Ruby and Lua.

A. Approach for measuring test coverage

OCCF inserts instrumentation code into the source code
through ASTs. Coverage is measured by executing the pro-
gram after the insertion. Our approach generates the ASTs
from the source code and locates the nodes where the instru-
mentation code is inserted by analyzing the syntax and the
required part of the semantics. Our approach has commonality
among the measurement features because the insertion process
through the ASTs is similar for each programming language.

Lists 1 and 2 outline the source code written in C prior to
and after inserting the instrumentation code, respectively. The
stmt_record and decision_record functions save
which items are executed with the identities of the items.
The decision_record function returns the evaluation
value of the original conditional expression. OCCF inserts the
stmt_record into each statement and variable initializer to
measure the statement coverage. In addition, OCCF inserts the
decision_record into each conditional expression of the
control-flow statement and the stmt_record into each case
clause of the switch statement to measure decision coverage,
condition coverage and condition/decision coverage.

1 int main() {
2 int a = 0;
3 printf("test");
4 if (a == 0) { puts("a == 0"); }
5 else { puts("a != 0"); }
6 }

List 1. Sample code written in C prior to inserting the instrumentation code

1 int main() {
2 int a = stmt_record(0) ? 0 : 0;
3 stmt_record(1); printf("test");
4 if (decision_record(0, a == 0)) {
5 stmt_record(2); puts("a == 0");
6 }
7 else {
8 stmt_record(3); puts("a != 0");
9 }

10 }

List 2. Sample code written in C after inserting the instrumentation code

The potential drawback to the instrumentation code is
changing timing behaviour by processing to collect coverage
information. However, this drawback exist not only in our
approach but also other approaches because saving execution
logs requires a computational cost. Moreover, the execution
environment always affect the timing behaviour. Consequently,
this drawback might be ignored.

B. Approach for absorbing the differences between program-
ming languages

Lists 3, 4 and 5 show the fragments of ANTLR BNF
grammars for C, Java and Python, respectively. To measure
decision coverage, the instrumentation code should be inserted
into the conditions of if statements. if statements belong to
statement or compound_stmt elements. The conditions
of the three programming languages are the expression
element in the selection_statement element for C, the
statement element in the parExpression element for
Java, and the if_stmt element in the test element for
Python. In this way, these programming languages have similar
elements with different names. Consequently, OCCF absorbs
the differences between programming languages by adding
element names for each programming languages as hot spots.

1 statement
2 : labeled_statement
3 | compound_statement
4 | expression_statement
5 | selection_statement | ... ;
6

7 selection_statement
8 : ’if’ ’(’ expression ’)’ statement (’else’ statement)?
9 | ’switch’ ’(’ expression ’)’ statement ;

List 3. Fragment of BNF grammar related to an if statement for C

1 statement
2 : ’if’ parExpression statement (’else’ statement)?
3 | expression ’;’ | ... ;
4

5 parExpression
6 : ’(’ expression ’)’ ;

List 4. Fragment of BNF grammar related to an if statement for Java



1 compound_stmt
2 : if_stmt | while_stmt | for_stmt | try_stmt
3 | with_stmt | funcdef | classdef | decorated
4

5 if_stmt
6 : ’if’ test ’:’ suite (’elif’ test ’:’ suite)*
7 (’else’ ’:’ suite)? ;

List 5. Fragment of BNF grammar related to an if statement for Python

C. Architecture of OCCF

Fig. 1. Overview and measurement process of OCCF

Fig. 2. Architecture of the instrumentation component in OCCF

Figure 1 overviews the measurement process of OCCF. In
addition to the core component, called the instrumentation
component, OCCF has three tools: the coverage-report, fault-
localization and test-suite minimization tools. The instrumen-
tation component consists of four modules: the AST generator,
AST finder, AST inserter and code generator as shown in
Figure 2.

OCCF adopts the general architecture of a coverage-
measurement tool that employs the insertion approach of
the instrumentation code into source code. Adding the four
modules for each programming language allows developers
to add new extensions using their preferred parsers because
OCCF does not require a language-independent AST.

The process to measure coverage has the following six
steps. 1) The AST generator produces the ASTs from the
given source code. 2) The AST finder locates the AST nodes
where the instrumentation code is inserted. 3) The AST
inserter adds the instrumentation code into the ASTs. 4) The

code generator produces the source code from the ASTs. 5)
A testing framework executes test cases with the generated
source code and outputs the measurement information. 6) The
coverage-report tool displays the measurement results.

OCCF saves the pair of identifiers which are assigned with
each inserted node and the information about its location
on source code to a file named “.occf coverage inf”. The
instrumentation code passes execution traces to the coverage-
report tool via a file or a shared memory. The coverage-report
tool judges which program elements are executed or not by
analyzing “.occf coverage inf” and execution traces from a
file or a shared memory. Although shared memory accesses
are faster than file accesses, the instrumentation code must be
executed when the coverage-report tool are running.

OCCF provides common code for language-independent
processing that manipulates the ASTs using similar structures
and provides a design to aid in writing user code for language-
dependent processing. Table III lists the relations between the
common code, user code and external program. Although the
architecture of OCCF reduces the development and mainte-
nance costs, OCCF only targets procedural programming lan-
guages and impure functional programming languages owing
to its insertion approach.

IV. IMPLEMENTATION OF OCCF

OCCF is developed with C# 4.0 and runs on .NET Frame-
work and Mono. OCCF utilizes LINQ to XML [9] to simplify
the OCCF source code. LINQ to XML is a powerful library
based on LINQ technology to manipulate XML, and provides
scanning methods that return lazy lists of various XML
elements such as descendant elements. OCCF is published as
a NuGet package 1. Additionally, a set of parsers for the AST
generators and the code generators, called Code2Xml [10], is
published separately as another NuGet package 2.

Figure 3 shows a class diagram of core classes in OCCF.
The Occf.Core namespace indicates the instrumentation
component. The Occf.Core.CoverageInformation
and Occf.Core.TestInformation namespaces
contain the entity classes related to coverage information
about measurement targets such as statements and
test information about test cases, respectively. The
Occf.Core.Tools.Cui namespace contains the
executable programs as tools. The Occf.Core namespace
depends on the Occf.Core.CoverageInformation
Occf.Core.TestInformation namespaces, while the
Occf.Core.Tools.Cui namespace depends on the other
namespaces because the tools are developed with OCCF.

The classes in Figure 3 are common code provided by
OCCF. To add extensions for supporting new programming
language, developers can extend the LanguageSupport
abstract class, which depends on the AstFinder and
AstInserter abstract classes. OCCF automatically loads
the classes that extend the LanguageSupport abstract class

1https://nuget.org/packages/OpenCodeCoverageFramework
2https://nuget.org/packages/Code2Xml



because these abstract classes should be extended for each
programming language. Developers can write code reusing
the classes in the Occf.Core namespace to develop new
coverage-based tools.

Fig. 3. Class diagram of the core classes in OCCF

V. IMPLEMENTATION OF EXTENSIONS FOR SUPPORTING
EIGHT PROGRAMMING LANGUAGES

Below we describe code fragments for methods to find
statements and if conditions for C, C++, C#, Java, JavaScript,
Python, Ruby and Lua. The method extracts statement ele-
ments, except for blocks, labeled statements and empty state-
ments because the exceptions do nothing when executing and
the child statements in their elements are also extracted. Al-
though more elements must be extracted to measure decision
coverage, for simplicity, our methods only extract conditions
of if statements. Developers can customize coverage criteria
by changing these methods (e.g., filtering specific statements).

We use a compiler compiler and existing parser libraries to
implement parsers in the Code2Xml package We use ANTLR
[11], which is a compiler compiler to implement parsers for
C, Java, JavaScript and Lua. We also use three parser libraries:
srcML [12] for C++, the parser module in the Python standard
library for Python and ruby parser [13] for Ruby.

Our parsers with ANTLR memorize tokens of the original
source code in the ASTs to easily convert the ASTs into
source code. The AntlrCodeToXml abstract class is used
to implement the code generator. Although we use existing
parser libraries for C++, Python and Ruby instead of ANTLR,
these parser libraries also provide mechanisms to convert
the ASTs into source code, allowing developers to focus on
implementing the AST finder and the AST inserter, including
instrumentation code for each programming language. The fol-
lowing code fragments are very simple and similar because the
grammars for programming languages have similar structures.

A. Methods to find statements and if conditions for C
OCCF uses ANTLR and the BNF grammar 3 to implement

a C parser. Lists 6 and 7 show code fragments in OCCF for
C.

3/Code2Xml.Languages/C/CodeToXmls/C.g on our GitHub repos

The statement element consists of more detailed
statement elements such as labeled_statement and
compound_statement. Because labeled_statement
and compound_statement have statement as child
elements, this FindStatements method excludes these
elements to avoid redundantly inserting instrumentation code.
The selection_statement element indicates if and
switch-case statements. This FindBranches method ex-
tracts only the if statements with the Where methods.

1 public override IEnumerable<XElement>
2 FindStatements(XElement root) {
3 return root.Descendants("statement")
4 .Select(e => e.FirstElement())
5 .Where(e => e.Name() != "labeled_statement")
6 .Where(e => e.Name() != "compound_statement");
7 }

List 6. Method to find statements for C

1 public override IEnumerable<XElement>
2 FindBranches(XElement root) {
3 return root.Descendants("selection_statement")
4 .Where(e => e.FirstElement().Value == "if")
5 .Select(e => e.NthElement(2));
6 }

List 7. Method to find if conditions for C

B. Methods to find statements and if conditions for C++
OCCF uses SrcML to implement the C++ parser. Lists 8

and 9 show code fragments in OCCF for C++.
This FindStatements method extracts all statements

except for blocks, labels and empty statements. The C++
parser names blocks, labeled statements and empty statements,
which makes the FindStatements method very simple.
This FindBranches is simpler than the method for C
because the if element indicates just if statements.

1 public override IEnumerable<XElement>
2 FindStatements(XElement root) {
3 return root.Descendants("block")
4 .SelectMany(e => e.Elements())
5 .Where(e => e.Name() != "block")
6 .Where(e => e.Name() != "label")
7 .Where(e => e.Name() != "empty_stmt");
8 }

List 8. Method to find statements for C++

1 public override IEnumerable<XElement>
2 FindBranches(XElement root) {
3 return root.Descendants("if")
4 .Select(e => e.Element("condition"));
5 }

List 9. Method to find if conditions for C++

C. Methods to find statements and if conditions for C#
OCCF uses ANTLR and the BNF grammar 4 to implement

a C# parser.
Lists 10 and 11 show code fragments in OCCF for C#.

This FindStatements method extracts statements, in-
cluding declaration_statement, because C# allows a
mixture of variable declarations and other statements. This
FindBranches is similar to the method for C++.

4/Code2Xml.Languages/CSharp/CodeToXmls/cs.g on our GitHub repos



1 public override IEnumerable<XElement>
2 FindStatements(XElement root) {
3 var decls = root.Descendants("declaration_statement");
4 var stmts = root.Descendants("embedded_statement")
5 .Where(e => e.FirstElement().Name() != "block");
6 return stmts.Concat(decls);
7 }

List 10. Method to find statements for C#

1 public override IEnumerable<XElement>
2 FindBranches(XElement root) {
3 return root.Descendants("if_statement")
4 .Select(e => e.Element("boolean_expression"));
5 }

List 11. Method to find if conditions for C#

D. Methods to find statements and if conditions for Java

OCCF uses ANTLR and the BNF grammar 5 to implement
the Java parser. Lists 12 and 13 show code fragments in OCCF
for Java.

This FindStatements method excludes labeled state-
ments that use the ’:’ character because this grammar does not
give a name to the labeled statement. This FindBranches
method digs the parExpression element because this
element contains ’(’ and ’)’ characters.

1 public override IEnumerable<XElement>
2 FindStatements(XElement root) {
3 return root.Descendants("statement")
4 .Where(e => e.FirstElement().Name() != "block")
5 .Where(e => e.NthElementOrDefault(1)
6 .SafeValue() != ":")
7 .Where(e => e.FirstElement().Value != ";");
8 }

List 12. Method to find statements for Java

1 public override IEnumerable<XElement>
2 FindBranches(XElement root) {
3 return root.Descendants("statement")
4 .Where(e => e.FirstElement().Value == "if")
5 .Select(e => e.Element("parExpression"))
6 .Select(e => e.NthElement(1));
7 }

List 13. Method to find if conditions for Java

E. Methods to find statements and if conditions for JavaScript

OCCF uses ANTLR and the BNF grammar 6 to implement
the JavaScript parser. Lists 14 and 15 show code fragments
in OCCF for JavaScript. Similar to the method for C++, this
FindStatements and FindBranches methods are very
simple.

1 public override IEnumerable<XElement>
2 FindStatements(XElement root) {
3 return root.Descendants("statement")
4 .Select(e => e.FirstElement())
5 .Where(e => e.Name() != "statementBlock")
6 .Where(e => e.Name() != "labeledStatement")
7 .Where(e => e.Name() != "emptyStatement");
8 }

List 14. Method to find statements for JavaScript

5/Code2Xml.Languages/Java/CodeToXmls/Java.g on our GitHub repos
6/Code2Xml.Languages/JavaScript/CodeToXmls/JavaScript.g on our

GitHub repos

1 public override IEnumerable<XElement>
2 FindBranches(XElement root) {
3 return root.Descendants("ifStatement")
4 .Select(e => e.Element("expression"));
5 }

List 15. Method to find if conditions for JavaScript

F. Methods to find statements and if conditions for Python

OCCF uses the Python standard library to implement the
Python parser. Lists 16 and 17 show code fragments in OCCF
for Python. This parser distinguishes between statements with
a block called compound_stmt, and statements without a
block, called small_stmt.

1 public override IEnumerable<XElement>
2 FindStatements(XElement root) {
3 return root.Descendants("compound_stmt")
4 .Concat(root.Descendants("small_stmt"))
5 }

List 16. Method to find statements for Python

1 public override IEnumerable<XElement>
2 FindBranches(XElement root) {
3 return root.Descendants("if_stmt")
4 .SelectMany(e => e.Elements("test"));
5 }

List 17. Method to find if conditions for Python

G. Methods to find statements and if conditions for Ruby

OCCF uses the ruby parser. Lists 18 and 19 show code frag-
ments in OCCF for Ruby. This FindStatements method
only excludes blocks because Ruby does not have labeled
statements. This parser also removes empty statements.

1 public override IEnumerable<XElement>
2 FindStatements(XElement root) {
3 return root.Descendants("block")
4 .SelectMany(e => e.Elements())
5 .Where(e => e.Name() != "block");
6 }

List 18. Method to find statements for Ruby

1 public override IEnumerable<XElement>
2 FindBranches(XElement root) {
3 return root.Descendants("if")
4 .Select(e => e.FirstElement());
5 }

List 19. Method to find if conditions for Ruby

H. Methods to find statements and if conditions for Lua

OCCF uses ANTLR and the BNF grammar 7 to implement
the Lua parser. Lists 20 and 21 show code fragments for
Lua. This FindStatements method extracts stat and
laststat elements because this grammar distinguishes be-
tween statements and last statements in functions such as
return and break. Lua does not allow empty statements
such as those which have only ’;’.

7/Code2Xml.Languages/Lua/CodeToXmls/Lua.g on our GitHub repos



1 public override IEnumerable<XElement>
2 FindStatements(XElement root) {
3 return root.Descendants("stat")
4 .Concat(root.Descendants("laststat"))
5 }

List 20. Method to find statements for Lua

1 public override IEnumerable<XElement>
2 FindBranches(XElement root) {
3 return root.Descendants("stat")
4 .Where(e => e.FirstElement().Value == "if")
5 .Select(e => e.NthElement(1));
6 }

List 21. Method to find if conditions for Lua

VI. IMPLEMENTATION OF COVERAGE-BASED TOOLS

In this section, we show code fragments of three tools: the
coverage-report, fault-localization and test-suite minimization
tools. These tools help develop coverage-based tools.

A. Coverage-report tool

The coverage-report tool reads coverage information and
coverage data. The coverage information indicates what state-
ments exist in the specific source code by inserting the
instrumentation code into the source code. The coverage data,
which is generated when executing test cases, indicates which
statements are executed in testing.

List 22 shows the code fragment of the tool. covInfo
determines the measurement results by merging coverage
information and coverage data. nExe and nAll are variables
denoting the number of executed statements and all statements,
respectively.

1 var executedAndNot = covInfo.StatementTargets
2 .Where(e => e.Tag.StartsWith(tag))
3 .Halve(e => e.State == CoverageState.Done);
4 var nExe = executedAndNot.Item1.Count;
5 var nAll = nExe + executedAndNot.Item2.Count;
6 Console.WriteLine("Statement Coverage: "
7 + nExe * (100.0 / nAll) + "% : " + nExe + " / " + nAll);
8 Console.WriteLine("Not executed statements:");
9 foreach (var element in executedAndNot.Item2)

10 Console.Write(element.Position.SmartPositionString);

List 22. Code fragment to report coverage

B. Fault-localization tool

The fault-localization tool reads coverage information, test
information, coverage data and test results. The test informa-
tion indicates which test cases execute which statements, and
it is generated when the instrumentation code is inserted into
the source code. The test results indicate whether the test case
passed or failed. The tool calculates and reports the risk values
for each statement with the formula proposed by Jones et al.
[14]. Note that the tool allows users to change the formula by
modifying the IronPython script file.

List 23 shows the code fragment of the
tool. Merging test information and test results
provides testInfo. passedTestCases and
executedAndPassedTestCases are variables that indi-
cate a set of passed test cases and a set of passed and executed

test cases, respectively. In contrast, failedTestCases
and executedAndFailedTestCases are variables that
indicate a set of failed test cases and a set of failed and
executed test cases, respectively. CalculateRisk is a
method to calculate risk values using the formula defined in
the IronPython script file.

1 foreach (var stmt in covInfo.StatementIndexAndTargets) {
2 var index = stmt.Item1;
3 var stmtInfo = stmt.Item2;
4 var passedTestCases = testInfo.TestCases
5 .Where(t => t.Passed);
6 var executedAndPassedTestCases = passedTestCases
7 .Where(t => t.Statements.Contains(index));
8 var failedTestCases = testInfo.TestCases
9 .Where(t => !t.Passed);

10 var executedAndFailedTestCases = failedTestCases
11 .Where(t => t.Statements.Contains(index));
12

13 var executedAndPassedCount =
14 executedAndPassedTestCases.Count();
15 var passedCount = passedTestCases.Count();
16 var executedAndFailedCount =
17 executedAndFailedTestCases.Count();
18 var failedCount = failedTestCases.Count();
19 var risk = CalculateRisk(
20 executedAndPassedCount, passedCount,
21 executedAndFailedCount, failedCount);
22 Console.WriteLine(stmtInfo.Position + ": " + risk);
23 }

List 23. Code fragment to localize fault based on coverage

C. Test-suite minimization tool

The test-suite minimization tool reads coverage information
and coverage data. The tool calculates a set of statements
executed for each test case. To detect duplicated test cases,
the tool judges whether a set of statements executed by a test
case is a subset of statements executed by another test case.

1 Func<TestCase, TestCase, bool> isDuplicated = (tc, tc2) =>
2 tc.Statements.IsSubsetOf(tc2.Statements);
3 foreach (var tc in testInfo.TestCases) {
4 var dups = testInfo.TestCases
5 .Where(tc2 => tc2 != tc && isDuplicated(tc, tc2));
6 Console.WriteLine(tc.Name + " is duplicated with:");
7 foreach (var dup in dups) {
8 Console.WriteLine(dup.Name);
9 }

10 }

List 24. Code fragment to minimize test cases based on coverage

List 24 shows the code fragment of the tool.
isDuplicated is a function object to judge such
duplications. The tool allows users to change the judging
criterion by utilizing other coverage criteria.

VII. RELATED WORK

Qian et al. [15] surveyed coverage-based tools, and found
17 tools to compare three features: (1) code coverage measure-
ment, (2) coverage criteria and (3) automation and reporting.
Section 2 showed 26 tools based on their results with an
emphasis on supported programming languages and coverage
criteria. Although they did not show the problem with current
coverage-measurement tools, we show it by comparing exist-
ing tools. Muhammad et al. [16] also surveyed 47 research
papers related to test coverage and reported three frameworks
including OCCF to measure test coverage. They found that



only OCCF assisted in adding extensions for supporting new
programming languages.

Higo et al. [17] proposed a framework for measuring
software metrics supporting multiple programming languages,
called MASU. MASU constructs language-independent ASTs,
which contain necessary information to measure software
metrics such as CK metrics. Unlike OCCF, which measures
coverage by analyzing and transforming source code, MASU
just analyzes source code. Moreover, it is easier to add exten-
sions for supporting new programming language with OCCF
because OCCF uses different ASTs for each programming
language.

Rajan et al. proposed the idea of specifying the measuring
elements using the description style of pointcut, which is
used in Aspect-oriented programming languages [18]. They
demonstrated their tool that supported C#. Their description
style can specify measurement elements such as method calls,
if statements, exception handlers and variables. Because the
description style was specialized for C#, it cannot be used for
programming languages with different paradigms. However,
OCCF can measure various coverage including such coverage
by adding user code to extract elements to be measured.

VIII. LIMITATIONS

Supportable programming languages: The approach of
inserting instrumentation code into source code cannot be
applied to several non-procedure-oriented languages. When
OCCF cannot insert instrumentation code into a location
where the instrumentation code is executed just before exe-
cuting target program elements, OCCF cannot support such
programming languages. Moreover, OCCF cannot support
programming languages which have no feature to save exe-
cution traces (e.g. whitespace). However, OCCF can support
major programming languages because most of programming
languages is not under these constraints.

Measurement environment: OCCF requires source code
to measure test coverage. In particular, source code where in-
strumentation code is inserted must be compiled and executed
to measure test coverage. Moreover, OCCF is implemented
using .NET Framework such that users of OCCF and devel-
opers of extensions for OCCF must use a .NET environment
such as .NET Framework and Mono. However, test coverage
is usually utilized in white-box testing, and thus, testers can
easily acquire source code and the development environments.
Moreover, we can freely install .NET Framework and Mono
on Windows, Mac OS and Linux.

IX. CONCLUSION

We proposed OCCF to reduce the development costs by
extracting the commonalities from multiple programming lan-
guages using ASTs. We showed the implementation of exten-
sions for supporting eight programming languages: C, C++,
C#, Java, JavaScript, Ruby, Python and Lua as well as the
implementation of three coverage-based tools to confirm the
effectiveness of OCCF.

In the future, we plan to improve OCCF to support
non-procedure-oriented languages such as impure functional
programming languages. Moreover, we intend to semi-
automatically generate all the components using a wizard and
the required user input through the GUI to further reduce the
developmental costs.
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APPENDIX
PLAN FOR OUR LIVE DEMONSTRATION

In this appendix, we describe our plan for a live demon-
stration. Although our ultimate goal is advance testing tool
technologies, we have four objectives for this live demonstra-
tion.

• To discuss the problems of current coverage-measurement
tools

• To encourage framework or tool developers to employ
OCCF

• To aid testing-tool and programming language developers
by explaining how to implement extensions for support-
ing programming-language with OCCF

• To explain how to develop coverage-based tools using
OCCF

We have already successfully developed three testing tools
with OCCF. This demonstration of OCCF should help testing
tool developers realize lost cost development of new coverage-
based tools. Below is an explanation of how we will achieve
each objective.

A. Problems of current coverage measurement tools

We will compare existing coverage-based tools and discuss
issues with the current state by highlighting the following:

• Free tools support less coverage criteria than non-free
tools.

• Non-free tools support only popular programming lan-
guages.

• Few or no tools support scripting languages and new
programming languages.

Additionally, we will demonstrate how the current situation
causes problems with concrete examples.

B. Architecture and design of OCCF

We will show the architecture and design of OCCF as
well as discuss the maintainability and expandability to add
extensions for supporting new programming-language and
to develop new coverage-based tools. In particular, we will
explain the loose coupling of each component. We will show
that we published NuGet packages to release OCCF as a set
of separate components and show how to import OCCF or
partial components in a project by showing Visual Studio with
the plug-in of NuGet Package Manager, as shown in Figure 4.

C. Implementation of exntensions for supporting
programming-language in OCCF

To aid in the understanding of our measurement approach,
which inserts instrumentation code, we will implement exten-
sions for several programming languages. We will explain the
similarities between the grammar structures of most program-
ming languages by comparing the grammars and select sub-
tress of ASTs. Then we will demonstrate how utilizing these
similarities to reduce the development costs to support multiple
programming languages. Finally, we will write sample code to
support some programming languages in OCCF using Visual
Studio.

Fig. 4. Screenshot when importing OCCF with NuGet Package Manager

D. Implementation of coverage-based tools using OCCF

To demonstrate that OCCF works well to support different
programming languages, we will implement the coverage-
measurement, fault-localization and test-suite minimization
tools. We will explain how to develop coverage-based tools
with OCCF by writing sample code with OCCF using Visual
Studio, as shown in Figure 5.

Additionally, we will introduce a non-free tool, which
utilizes OCCF to support Java in our joint research with a
company. Because the original tool measured test coverage
supporting only C and C++, we extended the tool using OCCF
to support Java. To use OCCF from the tool, we added new
classes which were designed with Template Method pattern.
Our classes insert the instrumentation code providing the
structure information of analyzed source code to the tool.

Fig. 5. Screenshot when writing sample code using Visual Studio to develop
coverage-based tools


