
Effects of Organizational Changes on Product
Metrics and Defects

Seiji Sato, Hironori Washizaki,
and Yoshiaki Fukazawa

Department of Computer Science
and Engineering

Waseda University
Tokyo, Japan

Email: r0d8h8i0h@asagi.waseda.jp,
{washizaki, fukazawa}@waseda.jp

Sakae Inoue, Hiroyuki Ono,
Yoshiiku Hanai, and Mikihiko Yamamoto

Fujitsu Limited
Kanagawa, Japan

Email: {inoue.sakae, ono.hiro, hanai.yoshiiku,
yamamoto.mikihi}@jp.fujitsu.com

Abstract—The development organization often changes dur-
ing software development. Derivative developments, forks, and
change of developers due to acquisition or open-sourcing are
some conceivable situations. However, the impact of this change
on software quality has yet to be elucidated. Herein we introduce
the concept of origins to study the effects of organizational
changes on software quality. A file’s origin is defined as its
creation and modification history. Using the concept of origins,
we analyze two open source projects, OpenOffice and VirtualBox,
which were each developed by a total of three organizations. We
conduct statistical analysis to investigate the relationship between
the origins, product metrics, the number of modifications, and
defects. Results show that files that are modified by multiple
organizations or developed by later organizations tend to be
faultier due to the increase in complexity and modification
frequency.

Keywords—Organizational change, product metrics, defects

I. I NTRODUCTION

A software program is not always developed by a single
organization. Several organizations may co-develop software,
or a different organization may take over the development
before the software is completed. Derivative developments,
forks, and a change of developers due to an acquisition or
open-sourcing are some conceivable situations.

Organizational changes may reduce software quality. This
is because an organizational change significantly changes the
structure of the organization, and the change in the structure
leads to reduction of the software quality. Conway’s Law
[1], [2] states that software design reflects the structure of
its development organization. Because different organizations
have different structures, an organizational change may lead
to discrepancies. Furthermore, Mockus et al. [3] showed that
developers leaving a project create gaps in tacit knowledge,
reducing the software quality. Therefore, an organizational
change, which often involves replacing many of the developers,
can cause a significant loss of software quality.

If a software file is developed by several organizations, the
organizations can be divided into those that modified the file
and those that did not. This work uses this characteristic to
propose a method to analyze the effects of changing the de-
velopment organization. We introduce a metric calledorigins,

which is defined as the creation and modification history of a
file.

In our study, we hypothesize that organizational changes
affect the reliability of the software, hence the number of de-
fects. Therefore, we examine the relationship between origins
and defects. We additionally hypothesize that the relationship
between origins and defects is caused by the change of the
code complexity, which is measured by product metrics related
to maintainability, and the modification frequency. Previous
works have shown that product metrics [4], [5], [6], [7], [8] and
code modifications [9], [10], [11] are good indicators of soft-
ware faults. Hence, we investigate the relationships between
origins, product metrics, the number of file modifications, and
defects.

Some origins may lower software quality. Previous works
have found that recently changed modules and frequently
changed modules tend to have a lower quality [9], [10], [11].
Additionally, Lim [12] has shown that reused code (i.e., code
created previously and not modified) has less defects than new
code. From these works, we hypothesize that modules modified
by multiple organizations or developed by later organizations
tend to be of lower quality.

Thus, this work investigates the following research ques-
tions:

RQ1 Are files modified by multiple organizations or
developed by later organizations more faulty?

RQ2 How do product metrics relate to origins and
defects?

RQ3 How does the number of modifications relate to
origins, defects, and product metrics?

Figure 1 shows the relationships between origins, product
metrics, the number of modifications, and defects, that the
research questions investigate.

To address the above-mentioned research questions, we
propose origin and the method to analyze software by using
origin. In our study, we analyze two open source projects,
OpenOffice1 and VirtualBox2, and find the relationships be-

1http://www.openoffice.org/
2https://www.virtualbox.org/

Fig. 1: Relationships between the origins, product metrics,
the number of modifications, and defects investigated by the
research questions

tween origins, product metrics, the number of modifications,
and defects.

1) A method to analyze the effects of organizational changes
on software whose development organization has changed
several times.

2) Analysis of practical two open source projects to find the
concrete relationships between origins, product metrics,
the number of modifications, and defects. More precisely,
a) An investigation on the relationship between origins

and defects, finding that files modified by multiple
organizations or developed by later organizations are
faultier.

b) An investigation on the relationships between the
origins, product metrics, and defects, finding that files
modified by multiple organizations or developed by
later organizations are more complex, and consequently
have more defects.

c) An investigation on the relationships between the
origins, number of modifications, and defects, finding
that a difference in the original file causes a difference
in the number of modifications, which consequently
causes defects.

II. BACKGROUND

A. Effects of Organizational Change on Quality

As discussed in Section I, organizational changes can im-
pact software quality. Although several studies have employed
organizational metrics to analyze the organizational aspects of
software development, their focus differs from ours.

Nagappan et al. [13] used eight metrics mainly based
on organizational structure to demonstrate that organizational
metrics are superior to code churn, code complexity, code
coverage, code dependencies, and pre-release defect measures.
To investigate the influence of development by multiple or-
ganizations, they used a metric that measures the number
of different organizations involved in the development of a
module. However, this metric only observed the number of
organizations and did not consider the detailed changes of the
organizations.

To confirm the effectiveness of predicting fault proneness,
Mockus [3] used five metrics that focused on changes in the
developers within an organization. However, their method did
not evaluate changing organizations.

Graves et al. [10] constructed and evaluated fault predic-
tion models for three module categories: modules changed
by organization A, those changed by organization B, and
those changed by both. Although classifying the source code
based on which organizations modified it is similar to ours,
their method is not for cases where different organizations
successively developed the software. Furthermore, our method
is more generalized, and can deal with source code developed
by three or more organizations.

B. Motivating Example

Several software projects have had multiple organizational
changes while being developed. One example is OpenOffice,
which was developed by three organizations: Sun Microsys-
tems, Oracle Corporation, and Apache Software Foundation.
(Strictly speaking, OpenOffice originated from StarOffice,
which was developed by StarDivision.) OpenOffice was ini-
tially developed by Sun, and was transferred to Oracle after
Oracle acquired Sun. Later, Oracle contributed OpenOffice
to the Apache Software Foundation. These organizational
changes may have affected the software quality. Although we
hypothesize that modules modified by multiple organizations
or developed by later organizations are of lower quality (Sec-
tion I), a method to analyze this scenario has not been reported,
and the influence of multiple organizations on software quality
has yet to be elucidated.

III. A NALYSIS OF SOFTWARE QUALITY USING ORIGINS

A. Origin of a File

To analyze the impact of development organizational
changes, determining which modules are affected by this type
of change is important. Three types of files exist once a
different organization takes over software development: files
that are created by the organization, files that are modified
by the organization, and files that are not modified by the
organization. An organizational change will impact the first
two types of files (created or modified), but not the latter
(unmodified). Created files are affected because newly created
modules are based on existing software, and many of the
existing modules are created by previous organizations.

Origins can be used to classify the software files by the
organization that created or modified them. Ifn organizations
successively developed the software, the origin of a file in the
software is denoted byOt1t2...tm , wheret1t2 . . . tm represents
the sequence of the organizations that modified the file, and
1 ≤ m ≤ n. Note that the organizations are ordered sequen-
tially, and that the first term in the sequence of organizations
corresponds to the organization that created the file. Deleted
files are not considered here because they are not included in
the final product.

Figure 2 shows an example of the origins involving three
organizations. For simplicity, we denote the origin asO123

rather thanOOrganization1Organization2Organization3 . After
the first organization develops the software, there is only one
origin, O1, which is created by that organization. After the de-
velopment by the second organization, there are three origins:
O1 (created by the first organization and not modified by the
second organization),O12 (created by the first organization and
modified by the second organization), andO2 (created by the

second organization). Furthermore, after the third organization
develops the software, there are total of seven origins.

Section III-B1 describes how our method obtains the origin.

Fig. 2: Origins when three organizations are involved in
software development

B. Analysis of Origins, Product Metrics, and Defects

As previously discussed, because the modification history
varies by organization, origins differ. Thus, the origin can
possess different characteristics in terms of quality. We have
analyzed the effects of the origin on the product metrics and
file defects in software projects.

Figure 3 shows the analysis process. (i) First, the origins,
product metric values, defect existence, and the number of
file modifications in the target software are determined. To
analyze the defects, we use the defects reported after a revision
where the product metrics and origins are obtained so that the
effects of the origins can be investigated. (ii) Second, the data
is combined. (iii) Third, the metric values, defect existence, and
the number of modifications of files are classified by origin.
(iv) Fourth, statistical analysis of the relationships between the
origins, product metrics, defects, and number of modifications
is conducted.

1) Determination of the Origins:Although any number of
organizations can be involved in software development, for
simplicity, here we assume there are only three organizations.
We call these organizationsorg1, org2, and org3, which
correspond to the order in which they developed the software.

Figure 2 shows that seven origins are possible with three
organizations. The origins of the software files are obtained
by the following procedure. Table I shows the summary of the
following descriptions, and Figure 4 shows an example.

1) Prepare three snapshots of the source code directory,
which correspond to the final products oforg1, org2, and
org3. Let them bedir1, dir2, anddir3, respectively.

2) Run diff3 between each two pair combination of the three
directories (three total), as shown in the first column of
Table I. When running diff between two directories, e.g.,
dir1 anddir2, one of four messages is outputted for each
file: “Identical” if if the file is the same in both directories;
“Differ” if the file is in both directories, but is modified;
“Only in dir1” if the file is only in dir1; and “Only in
dir2” if the file is only in dir2. The possible results are
shown in the second column of the table. These results
can be classified into one of nine sets as shown in the

3http://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html

third column of the table: e.g., if the diff result for a file
betweendir1 anddir2 is “Only in dir2,” that file can be
classified into eitherO2 or O23, so it is classified into
O2 ∪O23.

3) Take the intersection of the nine sets obtained in the
previous step to find the origins. For example,O23 can
be obtained by taking the intersection ofO2 ∪ O23,
O23 ∪O123, andO2 ∪O3 ∪O23.

TABLE I: Pair of sets, diff results, and corresponding sets

Pair of directories
which the file is in Diff Result a Set

dir1, dir2

Identical O1 ∪ O13

Differ O12 ∪ O123

Only in dir2 O2 ∪ O23

dir1, dir3

Identical O1

Differ O12 ∪ O13 ∪ O123

Only in dir3 O2 ∪ O3 ∪ O23

dir2, dir3

Identical O1 ∪ O2 ∪ O12

Differ O13 ∪ O23 ∪ O123

Only in dir3 O3

aNote that the diff result column does not include all possible results
because file deletion is not considered.

Fig. 4: An example of the determination of an origin

2) Product Metrics: As mentioned in Section I, we need
product metrics designed to measure the maintainability of
a piece of software to evaluate the complexity of the code.
Additionally, as we analyze the relationship with defects,
we also use product metrics related to reliability. Here we
adopt the GQM approach [14]. GQM approach is a systematic
approach to define metrics by associating them with specific
goals. We set the goals of our model as evaluating reliability
and maintainability. Table II shows the GQM model. Every
metrics is considered better if the value is lower. The metrics
are from a static analysis tool called Adqua [15]. Because
some of the metrics are originally defined in function or class
units, we redefine them in file units in order to analyze them
with origins, defects, and modifications, which are defined in
file units. For example, “number of public methods” (M1) is
originally the number of public methods in a class, but is
redefined as the total number of methods in the classes in
a file.

To measure these product metrics automatically, we created
our own tool using a metrics measurement application called
Understand [16].

Fig. 3: Analysis Process

TABLE II: GQM model used in this study. All metrics are defined in file units.

Goal Question Metric ID

Evaluate Reliability
(Maturity)

Is there no unnecessary accessibility to internal
elements?

Number of public methods M1
Number of public attributes M2

Is the memory space initialized appropriately? Number of static objects which are not initialized explicitly M3

Evaluate Maintainability
(Analyzability)

Is the code size appropriate? Physical lines of code M4
Is the hierarchical structure appropriate? Depth of inheritance tree M5
Is the abstraction appropriate? Lack of cohesion in methods M6

Are elements concealed appropriately?
Number of global variables M7
Number of public static attributes M8

Evaluate Maintainability
(Changeability)

Are there no complex sentences? Number of lines with multiple statements M9

Evaluate Maintainability
(Stability)

Are effects of external changes limited?

Rate of methods which call methods in other classes M10
Number of methods in other classes which this class calls M11
Number of functions using global variables defined in other files M12
Number of methods using public static attributes defined in other files M13
Number of functions and methods defined in other files which this file
calls

M14

Number of global variables defined in other files which this file uses M15

Are effects of changes on the outside limited?
Number of global variables used in other files M16
Number of public static attributes used in other files M17
Number of functions and methods defined in other files which call
functions/methods defined in this file

M18

IV. EMPIRICAL EVALUATION

We analyzed practical software projects using our ap-
proach. Here we describe the details of the target project,
defect and modification data, and comment deletion.

A. Target Projects

We chose OpenOffice and VirtualBox as target projects.
Both are open source projects developed by three organiza-
tions. In order, they are Sun Microsystems, Oracle Corporation,
and Apache Software Foundation for OpenOffice, and Innotek,
Sun Microsystems, and Oracle Corporation for VirtualBox.
OpenOffice is written in C++ and Java and has about 27,000
files, while Virtualbox is written in C and C++ and has about
10,000 total files.

After investigating the repositories of these projects, we

determined which revisions to use as the snapshots fordir1,
dir2, anddir3. We used some of the newest revisions to obtain
defect information (Table III). Note that each revision ofdir1
anddir2 is the last revision of each organization.

B. Defect Data and the Number of Modification

To analyze the influence of the origins on defects, we
collected defect information from the Subversion repositories
of the target projects. In the OpenOffice repository, the commit
messages of most of the defect-correcting revisions have the
defect numbers registered in Bugzilla. Therefore, we consid-
ered the files modified in those revisions to be faulty. We
also included revisions that have “fix” or “correct” in their
commit messages so that we do not skip those that do not
have defect numbers in their commit messages. In contrast, the
commit messages in the VirtualBox repository do not contain

TABLE III: Revision numbers used for each snapshot

Project dir1 dir2 dir3 Defect Information
OpenOffice 264235a 275822a 1413471b 1414017 - 1488548 (830 Revisions)b

VirtualBox 8036 28800 41510 41511 - 46354 (4844 Revisions)
aOpenOffice.org repository
bApache OpenOffice repository

defect numbers. Therefore, we only used “fix” and “correct” as
indicators. The above-mentioned methods are used in previous
work [17], [18], [19].

For the number of modifications, we simply counted the
occurrence of files in all revisions.

C. Deletion of Comments

Some files have header comments that contain owner
information. However, the header comments change when the
owner organization changes, causing a change to the origin
despite the fact that no changes have been made to the actual
source code. To avoid this, we ignored comments and blank
lines when obtaining the origins.

V. RESULTS

Here we show the statistical analysis results of the case
study, and discuss our findings with respect to the three
research questions.

A. RQ1: Are files modified by multiple organizations or de-
veloped by later organizations more faulty?

As stated in Section I, files modified by multiple organiza-
tions or developed by later organizations may have a lower
quality. To investigate this, we determined the relationship
between origins and defects.

Table IV summarizes the number of files in each project,
which is classified by the origin and the existence of defects.
Figure 5 plots the results as bar charts.O3 and O123 in
OpenOffice, andO23 andO123 in VirtualBox have relatively
high rate of faulty files. In both projects, all of these files
involve many organizations and/ororg3. These results indicate
that files modified by multiple organizations or developed by
later organizations can be considered to be faultier.

TABLE IV: Number of files in each project

Project Origin Total No With Defect Ratio
Defect Defects (With Defects / Total)

OpenOffice

O1 13,604 13,316 288 2.12%
O2 250 248 2 0.80%
O3 1,728 1,491 237 13.7%
O12 461 453 8 1.74%
O13 8,234 7,865 369 4.48%
O23 409 392 17 4.16%
O123 2,104 1,836 268 12.7%

VirtualBox

O1 1,905 1,830 75 3.94%
O2 3,793 3,558 235 6.20%
O3 3,191 2,457 734 23.0%
O12 237 128 109 46.0%
O13 155 82 33 28.7%
O23 735 238 497 67.6%
O123 639 180 459 71.8%

(a) Number of files in
OpenOffice

(b) Number of files in Virtu-
alBox

Fig. 5: Number of files classified by the origins. Black
and white bars represent files without and with defects,
respectively.

To further clarify this, we classified the origins by the num-
ber of organizations and by the last organization to modify the
file. Table V summarizes the results. From the results above,
we conclude that files modified by multiple organizations or
developed by later organizations tend to be faultier.

B. RQ2: How do product metrics relate to origins and defects?

In Section V-A, we demonstrated that origins have a
relationship with defects. As mentioned in Section I, when
we surmise the cause of the relationship, product metrics is a
reasonable candidate. Therefore, we conducted an analysis to
investigate the relationships of product metrics to origins and
defects.

We first analyzed the relationship between product metrics
and origins. We employed box plots of the product metric for
each origin, and conducted a Wilcoxon rank sum test for each
pair of the origins to test the statistical significance of the
differences between the origins. We used the Wilcoxon rank
sum test because the Kolmogorov-Smirnov test for each origin
of each product metric indicated that none of the samples could
be assumed to have a normal distribution.

Among all the product metrics, the most significant one
is M14 (Number of functions and methods defined in other
files which this file calls). Figure 6 shows the box plots of
the metric values classified by the origins. We plotted the
box plots without outliers and with outliers to make it easier
to see the differences between the origins. Table VI shows
the relationship between the samples of the metric values in
each pair of origins. For almost all pairs of origins that show

TABLE V: Number of files in each project classified by the origin category

Project Number of Last Origin Total No Defect With Defects Defect Ratio
Organizations Organization (With Defects / Total)

OpenOffice

1 - O1, O2, O3 15,582 15,055 527 3.38%
2 - O12, O13, O23 9,104 8,710 394 4.33%
3 - O123 2,104 1,836 268 12.7%
- 1 O1 13,604 13,316 288 2.12%
- 2 O2, O12 711 701 10 1.41%
- 3 O3, O13, O23, O123 12,475 11,584 891 7.14%

VirtualBox

1 - O1, O2, O3 8,889 7,845 1,044 11.7%
2 - O12, O13, O23 1,087 448 639 58.8%
3 - O123 639 180 459 71.8%
- 1 O1 1,905 1,830 75 3.94%
- 2 O2, O12 4,030 3,686 344 8.54%
- 3 O3, O13, O23, O123 4,680 2,957 1,723 36.8%

statistical significance, the p-value isp < .001. The only
exception is betweenO13 and O123 of M14 in VirtualBox
(p < .01). Several trends are observed for each project.

OpenOffice O1, O2, andO3 have small metric values.
O12, O13, and O23 have medium metric
values.O123 has large metric values.

VirtualBox O1, O2, O3, and O12 have small metric
values.O13 has medium metric values.O23

andO123 have large metric values.

In both projects, the origins with many organizations or later
organizations tend to be more complex, while in VirtualBox
O12 does not show the tendency andO23 is more complex
thanO123.

TABLE VI: Relationship between the values of M14 for each
pair of origins.< / >: Differences between the samples in the
origin on the left hand side and those on right hand side side
are statistically significant. The former is smaller/larger than
the latter. - : Differences between the samples in each origin
are not statistically significant.

(a) Relations in OpenOffice

Origin on the
left hand side

Origin on the right hand side
O1 O2 O3 O12 O13 O23 O123

O1 - - > < < < <
O2 - - - < < < <
O3 < - - < < < <
O12 > > > - - - <
O13 > > > - - - <
O23 > > > - - - <
O123 > > > > > > -

(b) Relations in VirtualBox

Origin on the
left hand side

Origin on the right hand side
O1 O2 O3 O12 O13 O23 O123

O1 - > > - < < <
O2 < - < < < < <
O3 < > - - < < <
O12 - > - - < < <
O13 > > > > - < <
O23 > > > > > - >
O123 > > > > > < -

Similar to Section V-B, we classified the origins by the
number of organizations and by the last organization, and
conducted the same analysis. Figure 7 shows the boxplot
without outliers, and shows that files modified by multiple
organizations or developed by later organizations tend to have
high metric values.

(a) Metric values of OpenOffice
with outliers

(b) Metric values of OpenOffice
without outliers

(c) Metric values of VirtualBox
with outliers

(d) Metric values of VirtualBox
without outliers

Fig. 6: Box plots of M14 classified by origins

In almost all other metrics, both projects exhibit similar
trends as above. Therefore, files modified by multiple organi-
zations or developed by later organizations tend to be more
complex.

Additionally, we conducted analysis to examine the rela-
tionship between product metrics and defects. We compared

(a) Metric values of OpenOffice
classified by the number of or-
ganizations

(b) Metric values of OpenOffice
classified by the last organiza-
tion

(c) Metric values of VirtualBox
classified by the number of or-
ganizations

(d) Metric values of VirtualBox
classified by the last organiza-
tion

Fig. 7: Box plots of M14 without outliers classified by the
origin categories

the product metrics values between the files with defects to
those without defects. Most of the metrics have higher values
in the files with defects than those without defects in both
projects.

From the above results, we conclude that the product
metrics are affected by origin, and consequently affect defects.
More specifically, files modified by multiple organizations or
developed by later organizations tend to be more complex, and
have more defects.

C. RQ3: How does the number of modifications relate to
origins, defects, and product metrics?

In the previous sections, we examined the relationships be-
tween origins, product metrics, and defects. Here we examine
the number of modifications and its relationship to the others.

We first analyzed the number of modifications of the files
for each origin. Figure 8 shows the results as box plots.
In VirtualBox, files modified by multiple organizations or
developed by later organizations tend to be modified many
times, and in OpenOffice,O1, O12, O13, and O123 have
high modification counts. This indicates that the relationships
between origins and defects, and origins and product metrics
may be intermediated by the number of modifications.

Therefore, to determine whether the number of modifi-
cations is correlated with the existence of defects, we cal-
culated the rank correlation coefficient between these two.
ρ = −.013 for OpenOffice andρ = .570 for VirtualBox,

(a) Number of modifications
of files in OpenOffice

(b) Number of modifications
of files in VirtualBox

Fig. 8: Number of modifications of files classified by the
origins

demonstrating that the impact of the number of modifications
is not negligible in VirtualBox. We also calculated the rank
correlation coefficient using the number of defects instead
of the existence of defects, but the difference is negligible.
Accordingly, for VirtualBox, we calculated the partial rank
correlation coefficient between each origin and defects, and
between the number of modifications and defects, using each
origin and the number of modifications as the control variables,
respectively.|ρ| < .2 for each origin, and.5 < ρ < .6
for the number of modifications, indicating that the number
of modifications is the main factor to affect the defects in
VirtualBox.

Additionally, we calculated the Spearman’s rank correlation
coefficient between the number of modifications and each
product metric value to determine whether they are related.
However, for all of the metrics, the absolute values of the rank
correlation coefficients are low (most are less than .1, and the
others are .1 to .3) in both projects, suggesting that the origins
are the main factor to affect the complexity of code.

From the above results, we conclude that the number of
modifications is related to origins and defects depending on
the project, but relates slightly with the product metrics.

Figure 9 shows the relationships between all four factors.
The files modified by multiple organizations or developed by
later organizations, namely those that suffer from organiza-
tional changes tend to have complex structures. Additionally,
those files tend to be modified more frequently. Due to the
complex structure and high modification frequency, those files
tend to have faults.

VI. T HREATS TOVALIDITY

A. Threats to Internal Validity

• In the analysis, files with testing code are measured and
included. These files often have extreme product metric
values, which may affect the analysis results.

• There are probably more factors besides those we have
used in our analysis (origins, product metrics, the number

Fig. 9: Relationships between the factors

of modifications, and defects).
• The development periods of the organizations in our

analysis target projects have large differences, which may
significantly impact the analysis and should be consid-
ered.

• Since our approach uses diff to detect origins, code
movements and renames are considered to be changes
even though they are not.

B. Threats to External Validity

We conducted analysis on two open source projects,
OpenOffice and VirtualBox. Because of the number of projects
and their similarity (both are open source projects and are
developed by Sun and Oracle), the generality is not clear.
Therefore, it is desirable to add more projects in analysis.
However, these projects are sufficiently practical, and signifi-
cantly famous. Additionally, Sun and Oracle were involved in
different stages of software development. For example, Sun is
the first developer in OpenOffice, but is the second developer in
VirtualBox. Therefore, these projects are appropriate projects
to analysis.

VII. C ONCLUSIONS

In our study, we defined the origin of a file and conducted
statistical analysis using two open source software projects.
We found that files found that files modified by multiple
organizations or developed by later organizations tend to be
faultier. The relationships between origins, product metrics,
and defects indicate that these files tend to be complex,
and consequently, have increased faultiness. Furthermore, the
relationships between the number of modifications and other
factors show that the number of modifications is related to ori-
gins and defects. Thus, the origins affect defects by changing
the product metrics values and number of modifications.

These results suggest that an organizational change affects
software quality, and developers need to pay attention to the
quality of files modified by multiple organizations or developed
by later organizations. This is especially true for developers in
an organization developing software handed-down from many
previous organizations..

In the future, we aim to exclude files for testing from
analysis, to evaluate additional factors, and to analyze more
projects with various development organizations.

REFERENCES

[1] M. Conway, “How do committees invent?”Datamation, vol. 14, no. 4,
pp. 28–31, 1968.

[2] J. O. Coplien, “A generative development-process pattern language,” in
Pattern languages of program design, J. O. Coplien and D. C. Schmidt,
Eds. ACM Press/Addison-Wesley Publishing Co., 1995, pp. 183–237.

[3] A. Mockus, “Organizational volatility and its effects on software
defects,” in FSE ’10 Proceedings of the eighteenth ACM SIGSOFT
international symposium on Foundations of software engineering, 2010,
pp. 117–126.

[4] L. C. Briand, J. Ẅust, J. W. Daly, and D. V. Porter, “Exploring the
relationship between design measures and software quality in object-
oriented systems,”J. Syst. Softw., vol. 51, no. 3, pp. 245–273, May
2000.

[5] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,”IEEE
Trans. Softw. Eng., vol. 31, no. 10, pp. 897–910, Oct. 2005.

[6] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict com-
ponent failures,” inProceedings of the 28th international conference on
Software engineering, ser. ICSE ’06. ACM, 2006, pp. 452–461.

[7] Y. Shin, R. Bell, T. Ostrand, and E. Weyuker, “Does calling structure
information improve the accuracy of fault prediction?” inMining
Software Repositories, 2009. MSR ’09. 6th IEEE International Working
Conference on, May, pp. 61–70.

[8] R. Subramanyam and M. Krishnan, “Empirical analysis of ck met-
rics for object-oriented design complexity: implications for software
defects,”Software Engineering, IEEE Transactions on, vol. 29, no. 4,
pp. 297–310, April.

[9] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus,
“Does code decay? assessing the evidence from change management
data,” IEEE Trans. Softw. Eng., vol. 27, no. 1, pp. 1–12, Jan. 2001.

[10] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting
fault incidence using software change history,”IEEE Transactions on
Software Engineering, vol. 26, no. 7, pp. 653–661, July 2000.

[11] A. Hassan and R. Holt, “The top ten list: dynamic fault prediction,” in
Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on, Sept. 2005, pp. 263–272.

[12] W. Lim, “Effects of reuse on quality, productivity, and economics,”
Software, IEEE, vol. 11, no. 5, pp. 23–30, Sept.

[13] N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational
structure on software quality: an empirical case study,” inICSE ’08 Pro-
ceedings of the 30th international conference on Software engineering,
2008, pp. 521–530.

[14] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric
approach,” inEncyclopedia of Software Engineering. John Wiley &
Sons, Inc., 1994.

[15] H. Washizaki, R. Namiki, T. Fukuoka, Y. Harada, and H. Watanabe, “A
framework for measuring and evaluating program source code quality,”
in Proceedings of the 8th international conference on Product-Focused
Software Process Improvement, ser. PROFES ’07. Springer-Verlag,
2007, pp. 284–299.

[16] Scientific Toolworks, Inc., “Understand,” http://www.scitools.com/,
1996.

[17] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting
faults from cached history,” inProceedings of the 29th international
conference on Software Engineering, ser. ICSE ’07. IEEE Computer
Society, 2007, pp. 489–498.

[18] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases,” inProceedings of the International Confer-
ence on Software Maintenance (ICSM’00), ser. ICSM ’00. IEEE
Computer Society, 2000, pp. 120–.

[19] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?”SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, May 2005.

