
Building Software Process Line Architectures
from Bottom Up

Hironori Washizaki

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

washizaki@nii.ac.jp

Abstract. In this paper, we propose a technique for establishing pro-
cess lines, which are sets of common processes in particular problem
domains, and process line architectures that incorporate commonality
and variability. Process line architectures are used as a basis for deriving
process lines from the perspective of overall optimization. The proposed
technique includes some extensions to the Software Process Engineering
Metamodel for clearly expressing the commonality and variability in the
process workflows described as UML activity diagrams. As a result of ap-
plying the proposed technique to hardware/software co-design processes
in an embedded system domain, it is found that the proposed technique
is useful for defining consistent and project-specific processes efficiently.

1 Introduction

Process tailoring is an approach for defining project-specific processes by adding,
removing or modifying the activities and the required inputs/outputs of a base
process model to develop high-quality system/software efficiently. Project-specific
processes are a collection of interrelated, concrete activities along the time line
of the project, which take into consideration the characteristics of the spe-
cific project. Conventional tailoring approaches can be divided into two major
types[1]: component-based approaches and generator approaches. The former
tries to build a project-specific process based on existing process parts, but it
lacks a way to address the overall compatibility and consistency of the derived
processes. The latter tries to build a project-specific process by instantiating a
typical process architecture, but it lacks a way to reuse process fragments.

In this paper, we propose a new process-tailoring technique which solves the
problems with component-based and generator approaches by building a Process-

Line Architecture (hereafter PLA) and deriving project-specific processes from
the PLA. A process line is a set of similar processes within a particular domain,
and is an application of the idea of product lines to processes. Process lines were
proposed by Romback[2] and Jaufman[1], but parts of the definition and tech-
nical system are still not well-defined, and not sufficient for creating a concrete
framework. Other similar ideas have also been proposed, including process li-
braries[3] and families[4]; however, these are not always oriented toward overall
optimization, and do not lead to generally-applicable process-model structures.



2 Process Line Architecture

We define a Process Line as “a set of processes in a particular domain or for a
particular purpose, having common characteristics and built based upon com-
mon, reusable process assets (such as PLAs, requirements)”. The relationship
between process lines and PLA is shown in Figure 1.

A PLA is “a process structure which reflects the commonality and variability
in a collection of processes that make up a process line from the perspective of
overall optimization”. We mean “overall optimization” as preparing a PLA with
general utility rather than defining separate but similar optimized processes.
By deriving individual process from the PLA, the fixed amount of additional
effort required in the future can be reduced, and timeliness of completion can be
improved. Commonality in a PLA is represented by the core process, which is
made up of the common parts of the set of processes. Variability is represented by
the variation points and process variants. Variation points are activities (or the
inputs/outputs or roles that effect activities) which can be changed according
to the characteristics of a specific project. Process variants are the concrete
candidate activities (or inputs/outputs, etc.) that are applied to the variation
points. Processes that are specialized for a particular but similar project can
be defined and applied effectively by combining, extending and reusing the core
process and variants in a particular problem domain.���� ������� ��	
�� ����������������������������������� �����	��������	����

���� ��!�"#� $�%#��� !�&�'
(�)* ���+ ��#,���� $ � �������-./ 01 �# "2 ���������

345647893456486:7; :6789-</ -=/->/?������' "�
?������ ' "�%��@ #��#��� ?������ ->/2�"��%#�

Fig. 1. Process line framework and bottom-up building activities

It is difficult to adequately analyze commonality and variability in a domain
from scratch without missing anything; this is to say a “top-down” approach. So
we propose the following “bottom-up” technique (shown in Figure 1) for building
a PLA using existing knowledge on process definitions and applications in the
well-known problem domain. We define Process Line Engineering as “a system
of interrelated strategic and systematic approaches for building, applying and
managing process lines”. Based on this concept, the following activities (1)–(3)
are in the domain engineering, and (4) is in the application engineering.
(1) Several existing processes in the selected problem domain are gathered to-
gether. These processes, sharing common parts, can be combined to form the
process line P .



(2) Commonality of P (the gathered collection of process) is defined as the
core process including variation points. Variability is defined as a set of variants
defined for each variation point in the core process. In describing below how
the PLA is built by our technique, we use some new, original extensions to
the Software Process Engineering Metamodel (SPEM[5]) to clearly express the
commonality and variability in the process workflows. These cannot be expressed
with traditional SPEM. The procedure is described as follows:

(a) Make the smallest process in P a core process, pc. Then apply (b) to all of
the remaining processes in P (pi ∈ P −{pc}). We assume that pc’s workflow
is composed of a set of interrelated activities and conditional branches along
the time line, denoted as pc = ec1 → ... → eck → ... → ecm. Similarly, we
denote the pi’s workflow as pi = ei1 → ... → eij → ... → ein.

(b) All activities and conditional branches eij in the pi’s workflow are com-
pared with all elements in the pc workflow, eck. If these elements are not the
same, the following (c)–(g) are performed. The sameness, specialization and
generalization relation between two process elements can be identified by
comparing the activity details, pre/post-conditions, inputs/outputs, roles,
and environments including tools. In our technique, the above-mentioned
comparison is conducted manually. As our future work, we will try to use
tool-supported techniques such as a technique proposed by Ocampo [6].

(c) If eij is a specialized element of eck, we create the generalization relationship
denoted as eck⊳−eij , label eck with a ≪variationPoint≫ stereotype, label
eij with ≪variant≫, and add eij to pc. Conversely, if eck is a specialized
element of eij , exchange eij for eck in pc and perform the same way.

(d) If there is no element which specializes or generalizes eij , and the element
preceding eij (i.e. eij−1) on the pi’s workflow is equal to ecl in pc, set a tran-
sition from ecl to eij . Label eij with an ≪optional≫ stereotype, and add
eij to pc. When actually defining a concrete process with a selection of the
above-mentioned optional element, we will proceed the element ecl+1 after
proceeding from ecl to eij . In other words, the obtained process architec-
ture with the optional element provides two different workflow definitions:
ecl → ecl+1 or ecl → eij → ecl+1.

(e) If there is no element which specializes or generalizes eij , and the element
preceding eij (i.e. eij−1) already have the ≪variant≫ or ≪optional≫
stereotype, set a transition from eij−1 to eij and add eij to pc.

(f) If a ≪variant≫ or ≪optional≫ element was added in (c) or (d), add tran-
sitions to appropriate elements within pc for each of that element’s original
transitions. When doing this, if there are two or more outgoing transitions
for one element, not including conditional branch elements, draw a dashed
line over these transitions and annotate the line with a constraint {xor} to
show clearly that one transition must be selected when the concrete process
is defined.

(g) If a ≪variant≫ or ≪optional≫ element ex was added in (c) or (d), and ex

requires that other ≪variant≫/ ≪optional≫ elements (ey) must be pre-

ceded, add a dependency relationship from ex to ey, denoted as ex

≪requires≫
· · · >



ey. These dependency relationships and the exclusive selection relationships
described above are important for maintaining process consistency.

(3) The project characteristics as predictable requirements for a process line are
defined corresponding to the commonality and variability built into the PLA.
Feature Diagram[7] can be used to define the requirements that accompany
the commonality and variability. Feature diagrams are a way of expressing re-
quirements having both variability/commonality and consistency, by allowing
substitution and selection of logical units called features, which are functional
or qualitative requirements.
(4) By reusing the PLA derived through the above procedure and the require-
ments including commonality/variability for the process line, project-specific
processes that maintain consistency can be defined efficiently. For example, if
the requirements on the process line are expressed by a feature diagram, and the
part of the PLA which handles each feature is recorded (i.e. there is traceabil-
ity between PLA and feature diagram), a customized consistent process can be
derived easily by selecting features. Moreover, the PLA can be used as a basis
for comparing similar processes.

3 Application to Hardware/Software Co-design

As an example, we consider building a process line for hardware/software co-
design process in embedded system development. When defining this process, it
is necessary to decide, on a per project basis, variations like when the hardware
architecture specification will be decided, and whether the division and mapping
of specifications will be iterated. As such, we tried building a PLA from the
bottom up as described in the previous section.
(1) As representative but partially different processes for hardware/software co-
design, we collected the Wolf process (denoted as pW [8]), the Axlesson process
(pA[9]), and the process from the Kassners (pK [10]). The workflow of each process
is shown with an activity diagram based on SPEM in Figure 2. Due to space
limitation, roles and inputs/outputs have been omitted from each diagram.
(2) The PLA workflow derived from the analysis for variability and commonal-
ity in these three processes is shown on the left side of Figure 3. Figure 3 clearly
shows the core process with variation points, variants, optional elements, and ex-
clusive transitions. For example, an activity ‘‘Specification definition’’ in
the core process is labeled as a variation point, and can be substituted with a vari-
ant ‘‘Executable behavior specification definition’’ that expresses more
detail. In addition, there are several conditional branches that implement itera-
tion cycles in the process; these are optional elements.
(3) The project characteristics were analyzed as requirements corresponding to
the variability/commonality in the PLA. A feature diagram on the right side in
Figure 3 shows the result. We have related the optional and substitute features
to the optional elements and variants in the PLA.
(4) Using the resulting PLA and feature diagram, various processes including
the original three processes can be derived in a consistent and efficient way



ABCDEFGHIHJKLM
NFGIEFGH FGOPKDHODQGHJHRHODKBM

ASJDHTKMDHLGFDKBMUHJDKML FMIVHGKCKOFDKBM
WFGDKDKBMKMLNFGIEFGHIHJKLM ABCDEFGHIHJKLM
AXHOKCKOFDKBMIHCKMKDKBM NFGIEFGH FGOPKDHODQGHJHRHODKBM

NFGIEFGHIHJKLM ABCDEFGHIHJKLMASJDHTKMDHLGFDKBMUHJDKML FMIVHGKCKOFDKBM
WFGDKDKBMKMLYZHOQDF[RH \HPFVKBGJXHOKCKOFDKBM IHCKMKDKBM AHRHODKML PFGIEFGHFGOPKDHODQGH

ASJDHTKMDHLGFDKBM
AOPHIQRKML]FXXKML

^QMODKBMFRKDSXFGDKDKBMKML_RRBOFDKBM
UHJDKML FMIVHGKCKOFDKBMNFGIEFGHIHJKLM

` a `b `cAXHOKCKOFDKBMIHCKMKDKBM

Fig. 2. Collected process workflows

based on the requirements. For example, for a short-term project where the de-
cision on hardware specifications is late, and performance and reliability might
be sacrificed due to an extremely short development period, we will simply se-
lect the ‘‘Late’’ feature on the feature diagram. This defines a process where
iteration cycles are excluded, and the ‘‘Hardware architecture selection’’

activity is done after ‘‘Allocation’’. This newly defined process is consistent;
for example, ‘‘Functional partitioningn’’ will be included and located be-
fore ‘‘Allocation’’ according to the dependence relationship. Without using
a PLA and feature diagram, it would not be easy to quickly define a similar,
new and consistent process based on various project characteristics.

4 Conclusion and Future Work

In this paper, we have defined terminology and a framework for the develop-
ment of process lines, and shown a technique for building practical process-line
architectures that allows consistent, project-specific processes in a given prob-
lem domain to be defined efficiently. Also, in order to express the common-
ality/variability in PLA workflows, we have proposed a notation which is an
extension to SPEM. Finally, by building a PLA and feature diagram for hard-
ware/software co-design process, we showed that consistent project-specific pro-
cesses can be derived easily based on the proposed technique. In the future, we
plan to explicitly handle factors such as resource limitations, inputs and outputs,
and pre- and post-conditions in the proposed technique.



ddefghfijkk lmnopjfqrnsntfe
hug

vwnohxhofjhuiynxh
ihjhui

ddefghfjhuizuhij
kk zfgjhjhuihi{dduwjhuifrkk |piojhuifrhj} wfgjhjhuihi{ ddefghfijkk ~rruofjhuidduwjhuifrkk �fwwhi{ ddgn�phgnvkk

�mug� �mug� �mug�
dduwjhuifrkk dduwjhuifrkk dduwjhuifrkk dduwjhuifrkk�nvjhi{fiy enghxhofjhuidduwjhuifrkk �otnyprhi{�}vjn� hijn{gfjhui�fgy�fgn ynvh{i�uxj�fgn ynvh{i

�fgy�fgnfgothjno
jpgn vnrnojhuiddefghfjhuizuhij

kk
�wnohxhofjhuiynxh
ihjhui

����� ��������� ������� ���������������
������������� �������� ������������ ��������� ¡ ¢���

£�¤� ��������¤���������¡���� ����������¥� ��������������������
¦����¥� ��¡ �§�����§������� ������� ¨� ��¥� ��¡¦��§�������¨�©����� ©�� ��¡���������������ª�������� ��¡

£�¤� ������ ����������� ��������«« ¬®̄ °±¬² ³³

Fig. 3. Obtained co-design process line architecture and its feature diagram

References

1. O. Jaufman and J. Munch: Acquisition of a Project-Specific Process, Proc. 6th
International Conference on Product Focused Software Process Improvement, 2005.

2. D. Rombach: Integrated Software Process and Product Lines, Post-Proceedings of
the Software Process Workshop 2005, LNCS Vol.3840, 2005.

3. P. Mi et al.: A Knowledge-based Software Process Library for Process-Driven Soft-
ware Development, 7th Knowledge-Based Software Engineering Conference, 1992.

4. Y. Matsumoto: Japanese Software Factory, in Encyclopedia of Software Engineering,
(ed.) J.J. Marciniak, John Wiley & Sons, 1994.

5. OMG: Software Process Engineering Metamodel Specification, Version 1.1, 2005.
6. A. Ocampo, R. Bella and J. Munch: Software Process Commonality Analysis, Soft-

ware Process Improvement and Practice, Vol.10, No.3, 2005.
7. J.C. Trigaux and P. Heymans: Modelling variability requirements in Software Prod-

uct Lines, Technical report PLENTY project, 2003.
8. W.H. Wolf: Computer as Components: Principles of Embedded Computing System

Design, Morgan Kaufmann, 2001.
9. J. Axelsson: Hardware/Software Partitioning of Real-Time Systems, IEE Collo-

quium on Partitioning in Hardware-Software Codesigns, 1995.
10. K.C. Kassner and K.G. Ricks: Hardware/Software Co-Design of Embedded Real-

Time Systems from an Undergraduate Perspective, Workshop on Computer Archi-
tecture Education, 2005.


