
Predicting the Release Time Based on a Generalized
Software Reliability Model (GSRM)

Kiyoshi Honda
Waseda University

Tokyo, Japan
Email: khonda@ruri.waseda.jp

Hironori Washizaki
Waseda University

Tokyo, Japan
Email: washizaki@waseda.jp

Yoshiaki Fukazawa
Waseda University

Tokyo, Japan
Email: fukazawa@waseda.jp

Abstract—Development environments have changed drastical-
ly, development periods are shorter than ever and the number
of team members has increased. Especially in open source
software(OSS), a large number of developers contribute to OSS.
OSS have difficulties in predicting or deciding when it will release.
In order to assess recent software developments, we proposed
a generalized software reliability model (GSRM) based on a
stochastic process, and compared GSRM with other models. In
this paper, we focus on the release dates of OSS and the growth
of faults(issues).

I. INTRODUCTION

Software reliability is a critical component of computer
system availability. Software reliability growth models can
be used as an indication of whether enough faults have
been removed to release the software. The logistic curve
and Gompertz curve[4] are well-known software reliability
growth curves. However, these curves cannot account for the
dynamics of software development. Developments are affected
by various elements of the development environment, such as
the skills of the development team and changing requirements.

Here, we propose a model (GSRM) that can describe
several development situations that involve random factors,
such as the skills of teams and development environments,
to provide a time range in which the development will end.
Earlier studies only use linear stochastic differential equations;
however, our research indicates that non-linear stochastic dif-
ferential equations lead to more elaborate equations that can
model situations more realistically. Moreover, we aim to reveal
the development of open source software(OSS).

II. PROPOSAL METHOD
We focus on the determination when OSS release in the

point of view of the growth of issues. Especially we use two
methods which are below.

A. Separating development terms into each versions.
B. Using GSRM and predicting the number of issues and

release dates.

A. Separating terms
The upper side graph of figure 1 indicate the growth of

issues about ”foundation,”[5] which is a front-end framework,
divided by each versions. The shapes of curves are significantly
sharped when the new version released. Therefore we scope
the changing points of versions and separate them into each

0In our paper[2] we merely given proposal only generalized software
reliability model (GSRM) and applied to empirical software. On the other
hand, in this paper we target open source software and apply it.

versions, and apply our model(GSRM). The reason for sepa-
rating them is to approximate GSRM more precisely and treat
more naturally. and predict the release dates and the numbers
of issues.

Fig. 1. The number of issues and development days about ”foundation.”

B. Generalized Software Reliability Model
For our software reliability model, we extend a nonlinear

differential equation that describes fault content as a logistic
curve to an Ito type stochastic differential equation. We start
with the following equation, which is called the logistic
differential equation.

dN(t)/dt = N(t)(a+ bN(t)) (1)

N(t) is the number of detected faults by time t, a defines
the growth rate, and b is the carrying capacity. If b = 0, then
the solutions of this equation become exponential functions.
We extend equation (1) to a stochastic differential equation
because actual developments do not correctly obey equation
(1) due to numerous uncertainties and dynamic changes. We
consider such dynamic elements to be time-dependent and
to contain uncertainty, and express them using a. The time-
dependence of a can be used to describe situations such as
skill improvements of development members and increases of
growth rate. The uncertainty of a can describe parameters such
as the variability of development members and environment.
We analyze the growth of software with a focus on the test
phase by simulating the number of detected faults. We assume
software development to have the following properties.



TABLE I. THIS COMBINATIONS OF α(t) AND γ(t).

γ1(t) = N(t)σdw(t) γ2(t) = σdw(t) γ3(t) = 1/N(t)σdw(t)
α1(t) = a1(const.) The number of detected faults per unit time

is constant, and the uncertainty increase near
the end. This model is similar to a logistic
curve. (Model 1-1)

The number of detected faults per unit time
is constant, and the uncertainty is constant at
any given time. (Model 1-2)

The number of detected faults per unit time
is constant, and the uncertainty is greater at
the start of the project than at the end (e.g.
the team matures over time). (Model 1-3)

α2(t) = a2(t < t1)
α2(t) = a3(t ≥ t1)

The number of detected faults per unit time
changes at t1, and the uncertainty increases
near the end (e.g. new members join the
project at time t1). (Model 2-1)

The number of detected faults per unit time
changes at t1, and the uncertainty is constant
at any given time. (Model 2-2)

The number of detected faults per unit time
changes at t1, and the uncertainty is greater
at the start of the project than at the end.
(Model 2-3)

α3(t) ∝ t Both the number of detected faults per unit
time and the uncertainty increase near the
end (e.g. increasing manpower with time).
(Model 3-1)

The number of detected faults per unit time
increases, and the uncertainty is constant at
any given time. (Model 3-2)

The number of detected faults per unit time
increases, and the uncertainty is greater at the
start of project than at the end. (Model 3-3)

1) The total number of faults is constant.
2) The number of faults that can be found varies de-

pending on time.
3) The number of faults that can be found contains

uncertainty, that can be simulated with Gaussian
white noise.

Considering these properties, we extend equation (1) to an Ito
type stochastic differential equation with a(t) = α(t)+σdw(t)
as shown below.

dN(t) = (α(t) + σ2/2 + βN(t))N(t)dt+N(t)σdw(t) (2)

α(t) + σ2/2 + σdw(t) is the differential of the number of
detected faults per unit time, γ(t) = N(t)σdw(t) is the
uncertainty term, σ is the dispersion, and β is the non-linear
carrying capacity term. This equation has two significant terms,
α and dw; α affects the end point of development, and dw
affects the growth curve through uncertainties. In particular,
the stochastic term is dependent on N(t), which means that
uncertainties depend on the number of detected faults. We
compare 3 different types of dependencies of γ(t) on N(t).
(a):γ1(t) = N(t)σdw(t). (b):γ2(t) = σdw(t)(γ(t) does not
depend on N(t)). (c):γ3(t) = 1/N(t)σdw(t)(γ(t) depends on
the inverse ofN(t)). We summarize the types of α(t) and of
the coefficient of dw(t) and the corresponding situations in
Table I.

Summarizing the above, we can apply the reliability growth
models to nine types of development situations. Existing mod-
els can describe only one of these situations with additional
limitations, but GSRM can describe several of these situations.
This is primarily because existing models cannot handle time-
dependent growth rates without any limitations, while GSRM
can handle the time-dependence, and only the appropriate type
of situation needs to be selected as input.

III. APPLICATION TO OSS

We discuss the differences between GSRM and the NHPP
models using actual development data of OSS named as
”foundation”[5] in a given situation as the growth rate is
time-independent. The reason for this limitation is because
the NHPP model cannot be applied to other time-dependent
situations. We compare GSRM with a general NHPP model
on data sets obtained from a github site[6]. In Table II, we
show the issues and the days each versions and the residual
sum of squares(RSS) and the Akaike’s Information Criterion
(AIC) about models. This results show GSRM is better than
NHPP in the view point of predictions. Predicted numbers of

issues and days by GSRM are more precisely than those of
NHPP.

TABLE II. COMPARISON OF GSRM WITH OTHER MODELS.

Actual Data NHPP GSRM
Version 2 Issue 536 526 899

Days 258 245 854
RSS - 50388 25929
AIC - 2108 1936

Version 3 Issue 1066 1170 32555
Days 242 306 23102
RSS - 182119 44708
AIC - 2306 1965

Version 4 Issue 1974 2203 5897
Days 265 323 2017
RSS - 720089 302405
AIC - 2865 2634

IV. RELATED WORKS

The software reliability models had ever been used on
water fall development, however Fujii et al. developed a
quantitative software reliability assessment method in incre-
mental development processes, which is one of agile software
developments, based on the familiar non-homogeneous Poisson
processes.[1] Fujii et al. did not use only the number of faults
but also the software metrics and showed software reliability
prediction through a case study.

V. CONCLUSION

Using GSRM, we were able to successfully predict the re-
lease dates and the number of issues about OSS. However NH-
PP can more precisely approximate the growth of issues than
GSRM. For future work, we will adjust the time-dependence
of models. In this paper, for comparing GSRM with NHPP and
the lack of data we limited time-dependence of development,
thus GSRM could not more precisely approximate the growth
of issues.

REFERENCES

[1] T. Fujii, et al. Towards quantitative software reliability assessment in
incremental development processes. ICSE ’11, 2011.

[2] K. Honda, et al. A generalized software reliability model considering
uncertainty and dynamics in development. PROFES ’13 2013.

[3] C. Stringfellow et al. An empirical method for selecting software
reliability growth models. ISSRE ’07, 2007.

[4] S. Yamada, et al. S-shaped reliability growth modeling for software error
detection. Reliability, IEEE Transactions on 1983.

[5] http://foundation.zurb.com/
[6] https://github.com/zurb/foundation


