
RefactoringScript: A Script and Its Processor for
Composite Refactoring

Linchao Yang
Waseda University

Tokyo, Japan
young@fuji.waseda.jp

Tomoyuki Kamiya
Waseda University

Tokyo, Japan
kamiya7140@akane.

waseda.jp

Kazunori Sakamoto
National Institute of

Informatics
Tokyo, Japan

exkazuu@nii.ac.jp

Hironori Washizaki
Waseda University

Tokyo, Japan
washizaki@waseda.jp

Yoshiaki Fukazawa
Waseda University

Tokyo, Japan
fukazawa@waseda.jp

Abstract—Refactoring is widely recognized as a method to
improve the internal qualities of source code. However, manual
refactoring is time-consuming and error prone. Consequently,
many tools to support automated refactoring have been
suggested, but most support only unit and simple refactoring,
making it difficult to perform composite refactoring (e.g.,
introducing a design pattern) where a refactoring set is applied at
one position or the same refactoring operation is applied at
multiple positions. In this paper, we propose a novel script
language and its processor to describe how and where to refactor
by a model expressing source code*1. Evaluations indicate that
our language and processor allow refactoring steps to be
described as scripts, which can be easily replayed and reused for
multiple projects.

Keywords: Refactoring; Code Manipulate;

I. INTRODUCTION
Refactoring, which is defined as “a technique to improve

the design of the internal structure of software without
changing its external behaviors”, has become commonplace in
recent years. Although the most common refactoring
techniques (e.g., extract and change field names) have been
organized into patterns, manual refactoring is time-consuming
and error prone. To resolve this problem, many automatic
refactoring tools and methods have been proposed.

 Here, we define the following two terms, basic refactoring
and composite refactoring, to specify two types of refactoring.
Basic refactoring refers to a simple refactoring that cannot be
decomposed further. This paper uses refactoring by Eclipse as a
standard example. On the other hand, composite refactoring
refers to a composite composed of a combination of basic
refactorings. Combinations include applying several
refactorings in one place, the same refactoring to several
places, or both.

Although many current tools support automatic execution
of basic refactoring, there is no mechanism to define and apply
composite refactoring. Vakilian et al.[8] proposed
Compositional Paradigm to implement composite refactoring
by setting the operations in detail. They also reported that
setting the dialog may hamper coding work, generating more
overhead costs and decreasing productivity. Mens et al.[7]

reported that even if options can be finely set, extensions and
settings to match the domain of the object are insufficient in
current tools. Therefore, an interface that can simplify the
setting work of detailed refactoring options and easily perform
refactoring is required. As suggested by Vakilian et al.[9] in
their survey on the trend of invoking refactoring operations in
Eclipse by examining the recordings, composite refactoring is
very common. Methods used to introduce a design pattern by
refactoring are summarized in [3].

Composite refactoring has a high execution cost because a
basic refactoring function via a keyboard or mouse must be
used to locate the target every time. Additionally, as the
numbers of locations and actions increase, performing each
basic function correctly becomes more difficult, increasing the
likelihood of an omission. Although many patterns have been
created for refactoring, many tools cannot record and reuse the
processes in the patterns. Therefore, it is difficult to apply
frequently used composite refactorings to other projects.
Eclipse can record and replay refactoring operations as a script,
but it is used to help programmers upgrade an older version of
a library once a newer version is distributed. It is impossible to
create a script arbitrarily and describe the steps of refactoring
freely.

In this paper, we propose a script and its corresponding
processor(called RefactoringScript) that can be used to describe
the processes of refactoring. RefactoringScript contains a script
language and a processor to perform refactoring. We address
the following research questions:

RQ1 Is it possible to script and apply refactoring
operations (applying places and actions) concisely
and accurately?

RQ2 Compared to the case without this tool, is composite
refactoring executed correctly?

RQ3 Compared to the case without this tool, is the cost
of composite refactoring reduced?

RQ4 Is it possible to reuse the refactoring operations in
other projects?

The contributions of this paper are:
• A RefactoringScript language to describe refactoring

operations

• A RefactoringScript processor to apply scripted
refactoring operations

*1 The preliminary idea of RefactoringScript has been originally published at
[11] in Japanese. In this paper we added the capacity of manipulating
statements to make RefactoringScript support more complicated refactoring.
Moreover we change the implement of interpreter from JRuby to Scala.

• Implementation of a RefactoringScript language and
its processor as an Eclipse plug-in

• Evaluation of a RefactoringScript language and its
processor to show its usefulness

In addition, we use Eclipse JDT to invoke refactoring
operations and Scala to develop the plug-in and the DSL.
Because Scala and Java can use each other’s libraries directly,
RefactoringScript is implemented with a low cost.

Our paper is organized as follows. Section II provides
motivating examples. Then Section III describes the proposed
RefactoringScript language and its processor, while Section IV
presents the results and discussion of our experimental
evaluation. Finally, Section V concludes the paper.

II. BACKGROUND
We consider three cases as motivating examples.

A. Renaming Relevant Elements
According to [9], a common combination is refactorings

regarding renaming a field and it related elements. For
example, after changing the field name, the names of the
accessor of the field (change the method names) must also be
changed (List 1).

However, current refactoring tools only change the
definition and references when performing rename refactoring
to a field. For example, if rename refactoring is invoked to
change the name of field “page” in List 1 to “pageCount”, the
name of the corresponding accessor is not changed. Hence,
programmers must also invoke the rename refactoring for the
accessor. Figure 1 is an example of RefactoringScript to do
these two refactorings.

B. Applying Coding Conventions
Many projects have their own coding conventions. To

enhance maintainability of the entire code, especially for team
development, all team members must observe the coding
convention established before development. [4] and [10]
summarize the underlying rules, which can be used
and modified freely. For example, the rule (27) places
the underscore prefix or suffix of the name for a private,
protected field, while the rule (44) avoids overloading
the method.

For a project with an already inflated scale, the following is
necessary to apply these conventions:

a) Among the protected or private fields, extract all
names without an underscore prefix (or suffix), and execute
the rename method.(Example script is shown in Figure 2.)

b) Acquire all methods that have the same name and the
same number of arguments from a specific class, and execute
the rename method.

Although coding conventions can be used in multiple
projects, if a new coding convention is applied or an old coding
convention is changed for an existing source code, the
execution cost for refactoring all relevant places is very high.
Additionally, the more places where refactoring occurs, the
likelihood of a mistake increases.

List 1. Example of changing a field name and the corresponding
accessor name (Left: original code; Middle: renamed field; Right: renamed the
accessor).

private int page;
public int getPage()
{
 return page;
}

private int pageCount;
public int getPage()
{
 return pageCount;
}

private int pageCount;
public int getPageCount()
{
 return pageCount;
}

Figure 1. Example script of renaming field and the corresponding accessor

Figure 2. Example script of applying coding conventions

C. Introducing Design Patterns
The transformation to introduce a design pattern involves

many iterations of refactoring. For example, introducing a
Visitor Pattern includes the following two types of refactoring:

a) Move Method
b) Rename Method (to avoid name collisions, add “visit"

to the beginning of the name of the method that has been
moved.)

Even if only the above two refactorings are considered,
operations like “Find the methods by the specified signature
from subclasses of a specified class, and move to another class”
and “Rename method that has been moved with a new name
based on the name of the target class” are necessary. These
operations will be performed repeatedly, which is clearly a high
cost. However, these refactorings can be formally scripted.

III. REFACTORINGSCRIPT LANGUAGE AND ITS PROCESSOR
In this section, we describe the design of the proposed

RefactoringScript language and its processor.

A. Requirements
Requirements of the RefactoringScript language and its

processor are:

R1 Analysis API and Refactoring Function: The
refactoring location can be identified, and the refactoring
operation can be executed.

R2 Concise Script Expression: The script need only
include locations and operations necessary for refactoring.

R3 Immediate Execution: The script can use the plug-in
resource easily.

R4 Widely Available: The introduction cost is small and
readily available.

B. Overview
In this section, we describe the interactions between the

RefactoringScript language, its processor, and users. The
RefactoringScript consists of two components.

• RSCore*2: The fundamental part, which includes
elements for the RefactoringScript language and its
processor.

• RSUI: The user interface part, such as an editor*3 to
create or modify script, and a menu*4 to execute script
by inputting script into the interpreter of
RefactoringScript in RSCore.

The procedure for a user to apply script to a workspace, and
the interaction between user and RefactoringScript processor
are as follows:

(1) User creates and edits the script in the editor.

(2) User activates the core component by specifying the
script file.

(3) Processor inputs script into the interpreter.

(4) Interpreter runs the script and applies it to the user’s
workspace

(5) User is notified of the script execution result.

C. Language
In this section, we describe the elements of

RefactoringScript language.

1) Code Entity and Code Entity Collection
Java elements of JDT provide APIs, which are suitable for

searching a particular element from the workspace. However,
the Java elements do not have APIs that allow the conditions to
be specified in detail to determine the specified elements. Two
types of APIs is added to Code Entity(CE) which is a class
based on Java element:

• APIs to analyze and search. For example, the select
method which we will describe later.

• APIs to trace the tree structure of the code in the
description similar to the simple natural language. For
example, we prefer to use c.methods rather than
c.getMethods() to acquire all methods of c.

Table I shows the correspondence between the Java
Element and CE. An indentation in the table represents the
containment relationship of the package or the class
inheritance. It should be noted that RSWorkspace differs
slightly from the other CEs; RSWorkspace represents a
reference to the target workspace, and is a starting point to find
the other CEs.

The Code Entity Collection (CEC) represents a set of CEs
and provides APIs that can search for CEs included in the set.
An example script to perform a search is introduced in the next
section.

2) Query Selector and Qualifier

Figure 3. Example script of the select method

By using the select method to search for a CE from CEC,
we write the script by combining SearchParams,
QuerySelector, and Qualifier in the following format:

CEC.select(QuerySelector (Qualifier (SearchParams)))

QuerySelector ::=
”By.name”|”By.namereg”|”By.modifier”|”By.typename”

Qualifier ::= ””|”With.or”|”With.and”|”With.out”

QuerySelector is a keyword that specifies the Search Key,
which refers to the four regular representations: names, name
of the CE, access modifier, and type name. Table II shows each
CE and the corresponding combination of the search key and
query selector, where O indicates that it can search CE using
the search key, and X indicates cannot. For example, a set of
RSProject can be searched by key elements in the name, but
not by the key elements in access modifier name. Qualifier is a
keyword that specifies whether to interpret the given search
parameters as OR, AND, or NOT. However, it can be omitted
(if there is only one search parameter) when a qualifier is not
required. Figure 3 shows three examples of using select
method. The select method has also been used in Figure 1 and
Figure 2 at the first line.

3) Action
A refactoring operation for CE / CEC is called an action.

With parameters(params), an action is expressed in the
following format:

CE/CEC.Action(params)
An action parameter may be specified as the minimum

required when performing refactoring. Table III summarizes
the types of the actions, which have been supported and the
parameters can be currently specified. For example,
CE.rename(“newname”) will apply rename refactoring to CE.
As we showed at line 3 and 4 in Figure 1, or line 5 in Figure 2.

D. Processor
In this tool, we adopt Scala to implement the processor.

Scala is based on JVM, so it can use the assets of Java
seamlessly. RefactoringScript language can be regarded as an
internal DSL of Scala. Developers only need to focus on the
descriptions of the searching CE and handling CE, because
Scala expressions and the built-in functions or libraries of both
of Java and Scala are available in the script. Additionally,
because Scala is adopted, a new interpreter does not have to be
implemented, allowing the interpreter to be incorporated into
the processor economically.

IV. EVALUATION

A. Evaluation Design and Results
To evaluate the describability, the accuracy, execution cost,

and reusability of RefactoringScript, we conducted subject
*2 https://github.com/hugh3166/RSCore
*3 https://github.com/hugh3166/RSEditor
*4 https://github.com/hugh3166/RSLauncher

experiments and case studies for the four composite
refactorings, which were selected by considering trends of
refactoring[9] and coding conventions[4].

EX1. Assign a prefix to the name of every private field for
all classes in a specific package.

EX2. Generate template method from subclasses into a
superclass.

EX3. Encapsulate classes with Factory.

EX4. Change the name of a specified field in a package and
the name of the corresponding accessor.

1) Describability
For EX1, 2, 3, 4, we measured the lines of code for

processing refactorings in the Java language and the
RefactoringScript language (Table IV). Note that the Java
projects used as experimental objects are also the test data used
for testing RSCore.

For EX2, we used the simplified experimental code in List
2. Two subclasses have the same name method “startGame”,
but they have different conditional structures. For simplicity,
we just extract the conditional structures to form two new
methods with same name, and pull up the two “startGame”
methods and one of the extracted methods into a superclass.
Because the two “startGame” methods are the same method in
the superclass, they can be regarded as a template method.
Afterwards, the subclasses can change the behavior of the
“startGame” by overriding the method “start” or “extract”
without overriding the “startGame” method directly, such as
the class Game2 shown at the right of List 2.

2) Accuracy and Execution Cost
We conducted the following subject experiments to

compare the accuracy and execution cost between manual
composite refactoring and RefactoringScript. The experimental
objects are the sample projects prepared for the experiments. It
should be noted that in consideration of the similarity of
operation difficulty and the influence of prior knowledge, we
only used EX1 and 4 as the experimental objects. In addition,
for simplicity, we chose int type fields to be the target fields,
and wrote the script to extract the fields by type in EX4.

Experimental Subjects: Five Information Engineering
undergraduate and graduate students (P1~P5)

Approach: Divide subjects into two groups. Make one
group conduct EX1 manually and then EX4 by
RefactoringScript, and make the other group conduct EX1 by
RefactoringScript and then EX4 manually. Then measure the
time necessary to complete refactorings and the places where
refactoring is applied correctly.

Tables V and VI summarize the results of this subject
experiment. Table V shows that subject P1 took seven minutes
to do EX1 manually, 22 minutes to do EX4 by script, while
Table VI shows that subject P1 applied refactoring correctly at
27 of 30 places in EX1 manually, but applied 96 of 96 places in
EX4 by script.

TABLE I. CORRESPONDENCE BETWEEN THE ELEMENTS IN JDT AND CE

org.eclipse.jdt.core
 IMember RSMember
 IType RSClass
 IField RSField
 IMethod RSMethod
 IPackageFragment RSPackage
 ILocalVariable RSParameter
 IJavaProject RSProject
org.eclipse.core.dom
 Statement RSStatement
org.eclipse.core.resources
 ResourcesPlugin RSWorkspace

TABLE II. QUERY SELECTOR

Search Key Name
Regular

Expression
of Name

Access
Modifiers Type

QuerySelector By.name By.namereg By.modifier By.typename
RSStatement X X X O
RSField O O O O
RSMethod O O O O
RSClass O O O X
RSParameter O O X O
RSProject O O X X

RSWorkspace X X X X

TABLE III. TYPES OF SUPPORTED ACTIONS AND CORRESPONDING
PARAMETERS

Action Receiver Parameter
rename RSField New name

rename RSMethod New name

encapsulate RSField -

introduce_factory RSClass Destination Class

introduce_factory RSMethod Destination Class

introduce_parameter_object RSMethod Class Name of Object

pull_up RSMethod Destination Class

push_down RSMethod -

change_return_type RSMethod New Type Name

extract_method RSStatement New Method Name

delete RSEntity -

move RSEntity Destination Class

TABLE IV. COMPARISON OF NUMBER OF LINES OF SCRIPT IN
REFACTORINGSCRIPT WITH JAVA

 Java RefactoringScript

EX1 42 10

EX2 143 14

EX3 107 9

EX4 48 12

Unit: Lines

TABLE V. COMPARISON OF EXECUTION TIME FOR REFACTORING BY
SCRIPT AND MANUALLY

Experiment P1 P2 P3 P4 P5 Average

EX1(Manually) 7 - 5 - - 6.0

EX1(Script) - 10 - 5 14 9.7

EX4(Manually) - 17 - 9 13 13.0

EX4(Script) 22 - 10 - - 16.0

Unit: Minutes

TABLE VI. COMPARISON OF ACCURACY OF REFACTORING BY SCRIPT
AND MANUALLY

Experiment P1 P2 P3 P4 P5 Average

EX1(Manually) 27 - 30 - - 28.5

EX1(Script) - 30 - 30 30 30

EX4(Manually) - 95 - 96 93 94.7

EX4(Script) 96 - 96 - - 96

Unit: Places

TABLE VII. APPLIED REFACTORINGSCRIPT TO OPEN SOURCE PROJECTS

Project Experiment Number
of Files

Number
of Lines Applying Places

P1 EX1 3 68 16 fields

P1 EX4 2 18 6 fields
12 methods

P2 EX3 6 20 6 classes
6 methods

List 2. Example to generate template method (Left: before refactoring;
Right: after refactoring)

package p;

public class Game{
 protected int playerCount = 0;
 public void start(){
 System.out.println("Game Start");
 }
}

public class Game1 extends Game{
 public void startGame(){
 start();
 if (playerCount != 0){
 System.out.println("Restart");
 }
 }
}

public class Game2 extends Game{
 public void startGame(){
 start();
 if (playerCount >= 0){
 playerCount++;
 System.out.println("Join");
 }
 }
}

package p;

public class Game{
 protected int playerCount = 0;
 public void start(){
 System.out.println("Game Start");
 }

 public void startGame(){
 start();
 extracted();
}

 protected void extracted(){
 if (playerCount != 0){
 System.out.println("Restart");
 }
 }
}

public class Game1 extends Game{

}

public class Game2 extends Game{
 protected void extracted(){
 if (playerCount >= 0){
 playerCount++;
 System.out.println("Join");
 }
 }
}

Figure 4. Example script of EX2

1) Reusability (Case Study)
We applied the EX1, 3, 4 to open source project P1*5, P2*6

to determine the mechanical differences with the source code
applied to manual refactoring. By verifying the results with the
goals, it is confirmed that the proposed method is able to
process the object refactoring. Because the focus is on only the
refactoring operation, we selected projects with a moderate
scale as the experimental material. Table VII lists the projects,
kinds of experiments, numbers of files, numbers of lines
affected by refactoring, and the applied places.

B. Discussion
1) Describability

RQ1 Is it possible to script and apply refactoring

operations (applying places and actions) concisely
and accurately?

In all four cases, the number of lines of script written in
RefactoringScript is 1/4 to 1/10 of the script written in Java.
The reduction is attributed primarily to two reasons:

• API allows CE to be flexibly searched, and conditional
statements are less likely to nest.

• Processes not directly related to refactoring (e.g.,
acquiring workspace) do not have to be described.

In EX2, the project, package, class, and method entities are
to search by name, but a statement is searched by the type
defined at ASTNode class in JDT. Figure 4 shows the example
script of EX2. Additionally, even on a scale like EX3, the
number of lines of script written in RefactoringScript can be as
few as 10. Because the RefactoringScript language is
specialized to describe the processes and search loctions for
refactoring, concise scripting can be realized.

2) Accuracy and Execution Cost
RQ2 Compared to the case without this tool, is composite

refactoring executed correctly?
RQ3 Compared to the case without this tool is the cost of

composite refactoring reduced?

With regard to the execution cost, manual refactoring
required slightly less time in each experiment. Based on the
feedback from the subjects, this is likely because learning the

*5 https://github.com/shigenobu/acbook-wa710
*6 http://code.google.com/p/jslideshare/

RefactoringScript takes some time. In fact, some of the subjects
commented:

• I was confused by the script language idiom.

• I think that RefactoringScript can reduce the time once
I learned how to write with it. (In this experiment, the
answers to the examples and script pieces required by
the experiment were distributed as material.)

On the other hand, feedback regarding manual refactoring
indicated a desire for an automatic method:

• I do not want to refactor more complex objects
manually. (For example, when the applied places are
enormous).

• Firstly, I prefer not to do manually simple mechanical
work.

Therefore, we believe that once developer become familiar
with RefactoringScript, the burden of refactoring can be
reduced.

With regard to accuracy, all the scripts written by the
subjects worked properly using the script case, whereas the
manual refactoring contained the following mistakes:

• Renamed fields that are not specified (EX1).

• Field renamed correctly, but the name of the accessor
was incorrect (EX4).

These errors indicate that the script contributes to correct
composite refactoring.

3) Reusability
RQ4 Is it possible to reuse the refactoring operations in
other projects?

The scripts used in EX1 and EX4 can be applied to other
projects without substantial modification. Most projects require
the following changes:

• Package name of the object.

• Action parameters (For example, in EX4, P1 changes
field names ‘created’, ‘updated’, ‘executed’ to
‘createdAt’, ‘updatedAt’, ‘executedAt’ as well as the
corresponding accessor names).

However, these elements are project specific and are the
minimum parameters that user have to specify for per project.

C. Limitations
1) Lazy evaluation

In this tool, it is impossible to reflect the effect of
refactoring on the CE. When multiple actions are performed on
the same CE, the specified CE must be searched in each case.
This problem should be resolved by introducing the lazy
evaluation, which is a mechanism to set aside the query search
for CE until execution. In addition, there is almost no issue to
apply many basic refactorings to a particular CE.

2) Error Handling
This tool does not provide error handling when the script is

running. The information of the notifying dialog lets users

know the script is successfully executed, but it cannot
understand the cause of a failure. Additionally, if the
prerequisites of the refactoring are not satisfied, refactoring will
not be performed if an error is detected internally. However,
this tool will not notify the user why refactoring failed.
Strengthening the user notifications should resolve these issues.

3) Threats To Validity
In the evaluation, we selected four refactorings that can be

implemented relatively easily with RefactoringScript, but did
not select experimental material that is impossible to
implement. Hence, it is possible that the evaluation
experiments used in other studies cannot be implemented in
RefactoringScript. Additionally in the subject experiments, the
ratio of learning cost of the script within working time
increased. In future, we aim to measure the pure working time,
by subtracting accurately estimated learning costs.

V. CONCLUSION AND FUTURE WORK
We have proposed a RefactoringScript language and its

processor to script refactoring processes and apply to
appropriate places. Using CE searching API and Scala, we
realized a user-friendly script. This tool should significantly
reduce the cost of applying refactoring to many places or
repeatedly applying refactorings across projects. Additionally
by sharing accumulated scripts, it is possible to summarize
combinations of refactorings and the specific remedies. Thus,
refactoring should be become more common. Although the
refactoring types supported by RefactoringScript are limited to
the functions provided in Eclipse, we intend to expand it and
realize more flexible code deformation.

REFERENCES
[1] Eclipse Java development tools (JDT). http://www.eclipse.org/jdt/.
[2] Martin Odersky. Scala. http://www.scala-lang.org/.
[3] Joshua Kerievsky. “Refactoring to Patterns.” Prentice Hall. 2004.
[4] Oracle, Code Conventions for the Java Programming Language.

http://www.oracle.com/technetwork/java/codeconvtoc-136057.html.
[5] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. “Jungl: a scripting

language for refactoring.” In Proceedings of the 28th international
conference on Software engineering, ICSE ’06, pp. 172–181, New York,
NY, USA, 2006. ACM.

[6] Mark Hills, Paul Klint, and Jurgen J. Vinju. “Scripting a refactoring
with Rascal and Eclipse.” In Proceedings of the Fifth Workshop on
Refactoring Tools, WRT ’12, pp. 40–49, New York, NY, USA, 2012.
ACM.

[7] T. Mens and T. Tourwe. “A survey of software refactoring.” Software
Engineering. IEEE Transactions on, Vol. 30, No. 2, pp. 126 – 139, feb
2004.

[8] Mohsen Vakilian, Nicholas Chen, Roshanak Zilouchian Moghaddam,
Stas Negara, and Ralph E. Johnson. “A compositional paradigm of
automating refactorings.” Technical report, University of Illinois, 2012.

[9] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh
Rajkumar, Brian P. Bailey, and Ralph E. Johnson. “Use, disuse, and
misuse of automated refactorings.” In Proceedings of the 2012
International Conference on Software Engineering, ICSE 2012, pp. 233–
243, Piscataway, NJ, USA, 2012. IEEE Press.

[10] Kenji Hiranabe, Object Club. Java Coding Standard.
http://www.objectclub.jp/community/codingstandard/CodingStd.pdf.(in
Japanese)

[11] Tomoyuki Kamiya, Kazunori Sakamoto, Hironori Washizaki, Yoshiaki
Fukazawa, “Refactoring Script: A script for composite refactoring and
its processor,” IPSJ Transactions on Programming, Vol. 6, No.3, 2013.
(in Japanese)

