
1

Verification of Implementing Security Design

Patterns Using a Test Template

Abstract—Although security patterns contain security expert

knowledge to support software developers, these patterns may be

inappropriately applied because most developers are not security

specialists, leading to threats and vulnerabilities. Here we

propose a validation method for security design patterns in the

implementation phase of software development. Our method

creates a test template from a security design pattern, which

consists of the “aspect test template” to observe the internal

processing and the “test case template”. Providing design

information creates a test from the test template. Because a test

template is recyclable, it can create easily a test, which can

validate the security design patterns. As a case study, we applied

our method to a web system. The result shows that our method

can test repetition in the early stage of implementation, verify

pattern applications, and assess whether vulnerabilities are

resolved.

Keywords— Security Patterns; Model-based Testing; Test-driven

Development; Aspect-oriented Programming;

I. INTRODUCTION

Security issues have become critical due to the increasing

number of business services on open networks and

distributed platforms [1]. Security concerns must be

considered in every phase of software development from

requirements engineering to design, implementation, testing,

and deployment [2]. However, addressing all security

concerns is difficult due to the sheer number and the fact that

not all software engineers are security specialists.

Patterns are reusable packages that incorporate expert

knowledge. Specifically, patterns represent a frequently

recurring structure, behavior, activity, process, or “thing”

during the software development process. Many security

design patterns have been proposed. For example, reference

[3] includes 25 design-level security patterns.

Currently, security design patterns are abstract

descriptions, making them difficult to implement.

Additionally, it is hard to validate the security design patterns

in the implementation phase because an adequate test case is

required. Hence, a security pattern can be inappropriately

applied, leading to serious vulnerability issues.

We propose a method to validate security design patterns

using a test template in the implementation phase. Our

method creates a test template from the security design

pattern. The test template consists of an “aspect test

template” to observe internal processing and a “test case

template”. By providing design information in the test

template, a test is created to evaluate the system in the early

stage of implementation and refactor the code. This test can

be executed repeatedly and can validate the applied security

design patterns in the implementation phase.

We address the following research questions.

RQ1 Can a test be created from the test template?

RQ2 Can the created test case validate whether the security

design pattern is appropriately applied in the

implementation phase of software development?

Our contributions are as follows:

 A reusable test template created from the security design

patterns.

 Embodiment of the test template by providing design

information.

 Validation of the security design patterns in the

implementation phase.

 Ease of testing with the test template.

The remainder of this paper is organized as follows. First,

we provide background and problems with security patterns in

Section II. In Section III, we describe our proposed method.

We then discuss the evaluation results of our method in

Section IV. In Section V, we describe potential weaknesses of

our method. Finally, we provide a conclusion and future works

in Section VI.

II. BACKGROUND

A. Security Design Patterns

Security design patterns are an existing technique to make

decisions on the conceptual architecture and detailed design of

system. In the design phase of software development, security

functions should be designed to satisfy the security properties

of assets identified in the requirement phase. Security design

patterns include “Name”, “Context”, “Problem”, “Solution”,

“Structure”, “Consequence”, “See Also”, and “OCL

Description”. OCL stands for Object Constraint Language,

which is a semiformal language that can be used to express

constraints and other expressions in UML and other modeling

languages. Patterns can be reused in multiple systems.

2

Figure 1. Structure of a security pattern (Password Design and Use

pattern)

Figure 2. Structure of a security pattern (Role-based Access

Control pattern)

Figures 1 and 2 show examples of the security pattern

structure. The Password Design and Use pattern describes the

best security practice to design, create, manage, and use

password components. In addition to configuring or managing

passwords, engineers and administrators use password

constraints to build or select password systems. The Role-

based Access Control (RBAC) pattern, which is a

representative pattern for access control, describes how to

assign precise access rights to roles in an environment where

access to computing resources must be controlled to preserve

confidentiality and the availability requirements.

B. Motivating example

As an example of a pattern application, Figure 3 shows a

portion (“make a payment”) of a UML class diagram, which is

implemented to realize a payment process on the Web.

Figure 3. Implementation of the “make a payment” portion of a

class diagram for payment processing

Although the class diagram in Fig. 3 appropriately applies

the security design pattern, it is incomprehensible in the

implementation phase. It is unclear how the selected pattern

should be implemented because the relation between a

security design pattern and implementation is not defined.

Consequently, the system may be vulnerable, and the applied

pattern must be verified via a test.

However, a conventional test only detects vulnerabilities

due to known coding bugs; it cannot determine if a security

design pattern is appropriately applied, which is difficult to

validate in the implementation phase. Similar to our work,

reference [4] has proposed a method to verify the

completeness of implemented security features, but this.

method is limited to access control for Ruby-on-Rails web

application development.

C. Model-based Testing

Model-based Testing (MBT) is technique to generate part

or all of a test case from a model [5]. A model is an abstract

thing expressing an operation that should realize the system.

Testing is complicated and expensive. MBT can alleviate

these issues. Reference [6] proposes an automated MBT tool,

while reference [7] proposes a method of security MBT

although a security pattern is not used.

We have created a formal test template based on MBT. To

create a security design pattern, the test template is abstract

and reusable. Therefore, the test template is applicable to

various systems.

D. Test-driven Development (TDD)

Test-driven Development (TDD) is a software development

technique that uses short development iterations based on

prewritten test cases, which define the desired improvements

or new functions. Here our testing process uses TDD, which

requires development prior to writing the actual code [7]. A

test case represents a requirement that the program must

satisfy [8].

Our method uses Selenium [9], which is a tool for testing

web applications. The first step is to create a test in which a

requirement is satisfied. The next step is to quickly execute a

test (test first) to detect vulnerabilities in the code. Then the

code is updated so that it passes the test. Finally, the test is re-

executed to confirm that the vulnerabilities are resolved.

E. Aspect-oriented Programming

Aspect-oriented Programming aims to improve the

modularity of software by providing constructs to modularize

the so-called crosscutting concerns, which are concerns where

the code representation cannot be modularized using

traditional software development mechanisms [10]. In the

pointcut-advice model of aspect-oriented programming, which

is embodied in AspectJ [11] for example, a crosscutting

behavior is defined by pointcuts and advices. A pointcut is a

3

predicate that matches program execution points, called join

points, while advice is the action to be taken at a join point

matched by a pointcut. An aspect is a module that

encompasses a number of pointcuts and advices [12].

In our method, a test template is created via AspectJ. A test,

which embodies the test template, observes the internal

processing and supports vulnerability validation.

III. OUR VALIDATION METHOD

A. Overview

Figure 4 outlines the process of our method. A test

template, which is derived from security design pattern, is

prepared by providing design information to create a test.

Then a developer can execute a test to validate the applied

security design pattern in the implementation phase of

software development.

Figure 4. Process of our method

Specifically, our method involves five steps.

Step0. Create a test template

A test template is created from a security design

pattern during a previous step. The test template

consists of an “aspect test template” and “test case

template”.

Step1. Embody test templates

A test is embodied by the given design information in

a test template.

Step2. Implement a design

The design for which the security design pattern was

used is implemented, but whether the patterns are

applied cannot be verified in this step.

Step3. Test and validate the applied patterns

Based on TDD, a test is quickly executed to validate

the applied patterns in the implementation phase.

Step4. Refactor

The implementation is refactored based on the errors

found in step3.

Step5. Re-test and re-validate applied patterns

The refactored implementation is re-tested to re-

validate the applied patterns. If the test is true, the

patterns are successfully applied in the

implementation phase. Otherwise step4 is repeated

until the re-test is passed.

B. Test Template

In this section, we explain the test template using a

concrete example of “Password Design and Use Pattern”. The

flow to realize a test template is shown below.

1. A decision table is created from the OCL Description.

2. An aspect test template for an internal processing

observation is created from the decision table and the

pattern structure.

3. A test case template is produced from the decision table

and behavior of a pattern.

The test template consists of this aspect test template and

this test case.

Figure 5. OCL Description (Password Design and Use pattern)

Figure 6. Structure (Password Design and Use pattern)

4

Figure 7. Login behavior (Password Design and Use pattern)

Figure 8. Behavior to access an asset (Password Design and Use

pattern)

Figures 5–8 depict the Password Design and Use pattern.

The OCL Description (Fig. 5) means that if the ID and

Password inputted from the login screen agree with the ID and

Password of User Data, then the user is deemed a regular user

and allowed access to an asset. Otherwise, the user is

considered a non-regular user and denied access to an asset.

From this OCL Description, a decision table is created (Table

I).

Table I. Decision table (Password Design and Use pattern)

1 2 3 4

Inputted ID agrees with User
Data.

Yes Yes No No

Inputted Password agree with
User Data.

Yes No Yes No

Considered a regular user ×

Can access an asset. ×

Considered a non-regular user × × ×

Cannot access an asset. × × ×

Actions

Conditions

Next, an aspect test template to observe the internal

processing is created from the decision table and structure of

the pattern. The objects to be verified in the test from the

decision table are whether to be considered a regular or non-

regular user and whether to allow access.

In the structure diagram shown in Fig. 6, part of "considered

regular user or non- regular user” is the check_identification

method of password_design_and_use class. In order to

observe the internal processing of this point, a pointcut and

advice are defined.

Figure 9. Pointcut considering a regular or non-regular user

Figure 10. Advice to observe the consideration of whether a

regular or non-regular user

Figure 9 shows a pointcut executing the consideration of a

regular or non-regular user. Figure 10 shows the advice to

observe the pointcut result.

Similarly, a pointcut and advice are defined for whether to

allow or deny access. In the structure diagram shown in Fig. 6,

whether to allow or deny access is the subject_function

method of the Subject_Contorol class.

Figure 11. Pointcut judging access to an asset

Figure 12. Advice observing access to an asset

Figure 11 shows the pointcut executing the consideration to

allow or deny access to an asset. Figure 12 shows the advice

observing the pointcut result.

Finally, a test case template is created from the decision

table and pattern behavior. Figure 7 shows the behavior of a

login to which a Boolean value of a regular_user is returned

when an actor inputs an ID and password into a Login_UI, and

Fig. 8 shows the behavior by which an actor sends a request to

the subject_controller. A test case template performs these

behaviors and confirms whether the internal processing

observed by the aspect is correctly performed as actions of the

decision table.

Figure 13 shows part of test case template, which is used

to create a test, and defines “true_id”, “true_pass”, “false_id”,

“false_pass”, and “request”. These are templates in which the

value is not contained. Therefore, the defined terms must be

embodied in order to use them as a test.

Figure 13. Part of a test case template

5

IV. EVALUATION

To answer the two research questions, we conduced case

studies to evaluate our method.

RQ1 Can a test be created from the test template?

RQ2 Can the created test case validate whether the security

design pattern is appropriately applied in the

implementation phase of software development?

A. Case Studies

We applied our method to a purchasing system on the Web

in reference [13] as an example validation process. Figures 14

and 15 show the structure and behavior to which our method is

applied, respectively. “Password Design and Use pattern”,

“Prevent SQL Injection pattern”, and “Role-based access control

pattern” are used as a premise.

Figure 14. Structure applied to our method

 Figure 15. Behavior applied to our method

We embody a test case using the design information that is

previously defined (e.g., the make_a_payment method of

Payment_Control class due to apply “Password Design and

Use pattern” in Fig. 14). Additionally, “select item and push a

button” is used to access to an asset in Fig. 15. These are used

to create a test template, part of which is shown in Fig. 16.

Figure 16. Part of the created test

In Fig. 16, the “make_a_payment_test” method is embodied

in the “request” method in Fig. 13 because the “request”

method in test template corresponds to the

“make_a_payment_test” method in the system. Stereotypes,

such as <<control>> and <<Login_UI>>, attached to the class

diagram show these correspondence relations.

After the design is implemented, a test is executed to

validate the application of patterns in the implementation

phase. Figure 17 shows the test result for the “Password Design

and Use pattern”.

Figure 17. Result of a test (“Password Design and Use pattern”)

Next, the implementation is refactored. The error message

in Fig. 17 indicates that “whether allow or deny access” is

impossible. Finally, we re-test the implementation and re-

validate the applied patterns. Figure 18, which shows the re-

test results, confirms that “Password Design and Use pattern”,

“Prevent SQL Injection pattern”, and “Role-based Access

Control pattern” are applied appropriately.

Figure 18. Re-test results

B. Research Questions

Our case studies deal with four patterns. A test is created

from the test template by providing design information. Thus,

the proposed method answers RQ1.

Then we validated whether implementation after testing

satisfies the Security Design Pattern by repeated testing

6

based on TDD. Consequently, the test validated the existence

of vulnerabilities identified in the early implementation phase.

Additionally, we confirm qualitatively that the test is quickly

created. Thus, the proposed method answers RQ2.

C. Limitations

Our method has a few limitations. Because the test is

created using design information, we postulate that the

security design pattern is appropriately applied in the design.

Additionally, verification of vulnerability that is not

considered by the design may be out of range.

V. THREATS TO VALIDITY

A. Threats to internal validity

Although our test template may eliminate human

dependency, the effectiveness of the template should be

confirmed when employed by a developer unfamiliar with

our method.

B. Threats to external validity

We used representative patterns and a typical model for

software development. However, we did not verify whether

our method is applicable to all types of patterns and models.

In the future, we intend to confirm that our method is

applicable to more patterns and more general examples.

VI. CONCLUSIONS AND FUTURE WORK

 Because a software developer is not necessarily a

security expert, patterns may be inappropriately applied.

Additionally, even if patterns are properly applied in the

design phase of software development, threats and

vulnerabilities may not be mitigated or resolved in the

implementation phase. Hence, we propose a validation

method for security design patterns using a test template in the

implementation phase.

This method offers two significant contributions. First, a

reusable test template created from a security design pattern is

defined, easily creating and executing a test in the early

implementation phase. Second, the security design pattern is

validated in the implementation phase. Although the test is

manually created from a test template, in the future we plan to

automatically transform a test template into a test.

REFERENCES

[1] N.Yoshioka, H.Washizaki and K.Maruyama,“A Survey on Security

Patterns” Progress in Informatics, No.5, pp. 35-47, 2008.

[2] PT. Devanbu and S.Stubblebine, “Software Engineering for Security: a
Roadmap” The Conference on The Future of Software Engineering, pp.
227-239, 2000.

[3] M.Schumacher, E.Fernandez-Buglioni, D.Hybertson, F.Buschmann and
P.Sommerlad, “Security Patterns”, Wikey, 2006.

[4] S.Munetoh and N.Yoshioka, “Model-Assisted Access Control
Implementation for Code-centric Ruby-on-Rails Web Application
Development”, The International Conference on Availability, Reliability
and Security, 2013, pp. 350 – 359, 1999.

[5] S.R.Dalal, A.Jain, N.Karunanithi, J.M.Leaton, C.M.Lott, G.C.Patton,
and B.M.Horowitz,“Model-based Testing in practice”, The International
Conference on Software Engineering, pp. 285-294.

[6] J.Tretmans, E.Brinksma, “TorX: Automated Model-Based Testing”,
The Conference on Model-Driven Software Engineering, pp. 11-12,
2003.

[7] M.Felderer, B.Agreiter, R.Breu and A.Armenteros, “Security Testing by
Telling TestStories”, The conference on Modellierung, pp. 24-26, 2010.

[8] Heejin Kim, Byoungju Choi, and Seokjin Yoon, “Performance testing
based on test-driven development for mobile applications”, The
International Conference on Ubiquitous Information Management and
Communication, 2009, pp. 612-617.

[9] Steven Fraser, Dave Astels, Kent Beck, Barry Boehm, John McGregor,
James Newkirk, and Charlie Poole,“Discipline and practices of TDD:
(test driven development) ”, The Conference on Object-oriented
Programming, Systems, Languages, and Applications, pp. 268-270,
2003.

[10] Selenium http://docs.seleniumhq.org/

[11] Endrikat.S, Hanenberg.S, “Is Aspect-Oriented Programming a
Rewarding Investment into Future Code Changes? A Socio-technical
Study on Development and Maintenance Time”, The International
Conference on Program Comprehension, pp. 51 - 60, 2011.

[12] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,Jeffrey Palm,
and William Griswold, “An overview of AspectJ”, The Conference on
Object-Oriented Programming, pp. 327-354, 2001.

[13] Éric Tanter, “Execution levels for aspect-oriented programming”, The
9th International Conference on Aspect-Oriented Software Development,
pp. 37-48, 2010.

[14] T.Kobashi, N.Yoshioka, T.Okubo, H.Washizaka and Y.Fukazawa,
“Validating Security Design Pattern Applications Using Model Testing”,
The International Conference on Availability, Reliability and Security,
pp. 62-71, 2013.

