
Using an Automatic Collection Method to
Identify Patterns during Design Activity

Jonatan Hernandez1, Hironori Washizaki2, and Yoshiaki Fukazawa3

1 Waseda University, Tokyo, Japan,
jhernandez@asagi.waseda.jp,

2 washizaki@waseda.jp,
3 fukazawa@waseda.jp

Abstract. Although design is an extremely important activity in soft-
ware development, it is subjective because it depends on the designers’
knowledge and skills. Every designer has her or his own strategies to
solve design problems. Herein we model the design process as an ordered
sequence of logical actions of “Create”, “Delete”, and “Modify” applied
to the elements of a UML class diagram, and propose an automatic ap-
proach to collect information about the design process to elucidate design
strategies. The strategies considered are top-down, bottom-up, breadth-
first, depth-first, and opportunistic. By mining the ordered sequences of
actions for frequent patterns and analyzing the position and distribution
of the actions in the sequence, we obtained two types of relationships in
the design process: micro-patterns and macro-patterns. Then we evalu-
ated our approach with two case studies. The first one, which occurred
over a short time frame with seven subjects, identified the strategies
used, while the second, which involved three subjects over a long pe-
riod, revealed that there is not a universal strategy, but a combination
of strategies.

1 Introduction:

“All software is designed” [1]. Design is a fundamental step in the software devel-
opment process, but it is subjective because the abilities of the designers greatly
influence the final product. Hence, explicitly identifying successful strategies and
patterns will not only increase the understanding of the design process, but will
also help improve the skills of software designers.

1.1 Design Strategies

Here the term strategic knowledge [2] represents the strategies or approaches
applied by the designers, such as top-down or bottom-up. These strategies can
be identified using the order in which the elements are created, deleted, and
modified. The main elements of a UML class diagram are entities and their rela-
tionships. These elements are classified at a different levels of abstraction; classes
and relationships are in the higher level of abstraction because they are general,

JCKBSE2014, 216, v1: ’Using an Automa...’ 1

while methods and attributes are in the lower level of abstraction because they
are more specific. The elements and their abstraction levels in this paper are
listed below:

– High level of abstraction

1. Classes and Interfaces Entities

2. Relationships Relationships among the entities such as dependency,
generalization, and aggregation

– Low level of abstraction

3. Attributes and Operations Entity details

UML specifications contain several types of diagrams (e.g., Activity Dia-
grams, Sequence Diagrams, Collaboration Diagrams, etc.). Every diagram has
its own specific elements (e.g., Actors, Activities, etc.) [3]. Initially we chose the
UML class diagram and its main elements as the starting point. The strategies
considered are [4], [5]:

Bottom-up Operations and attributes are defined before classes.

Top-down Classes are defined before methods.

Breadth-first Operations are defined before being refined.

Depth-first Operations are defined in the class and immediately refined before
creating the next method.

Opportunistic Frequent changes between different levels of abstraction.

It is important to note that there are some constraints when using a UML
tool. For example, a bottom-up approach is more difficult because methods or
attributes cannot be created without first creating a class.

1.2 Challenges

There are challenges when analyzing design activities. One is data collection. Pre-
vious research used verbal protocols to collect data about the design process in
which the participants were asked to verbalize their thinking processes [4] [6] [7].
These protocols require an extensive analysis of the recorded sessions, which
makes data collection time-consuming. Moreover, most of the elements created
during an activity very short lived, and evidence is non-existent or quickly dis-
carded (e.g., notes or talks with colleagues and co-workers) [1]. A method for
fast, automated data collection should help establish an explicit record of the
creative process.

Another is how to evaluate design. Design is difficult to evaluate in terms
of correct or incorrect. As stated in [4], “design problem solutions are more or
less ‘acceptable’ or ‘satisfying’, they are not either ‘correct’ or ‘incorrect’ ”. Thus,
each design problem has multiple solutions. A method that provides details about
the process step-by-step should help realize a better evaluation design evaluation.

2 JCKBSE2014, 216, v1: ’Using an Automa...’

2 Proposal: Our Approach

We model the design process as an ordered sequence of actions. Each action is
an operation over an element of the UML diagram. The operations are “Create”,
“Delete”, and “Modify”, and are applied on entities such as classes and interfaces
as well as relationships like generalizations and associations. Figure 1 shows an
example of our model of this process.

Designer
Seq = Create Class, Create Attribute, ...

UML Class Diagram UML Class Diagram

UML Class DiagramUML Class Diagram

Seq = ... Create Class, Create Class, Create Generalization, ...

Seq = ... Create Class, Create Class, ...Seq = ... Modify Class, Modify Association, ...

UML Class Diagram

Seq = ... Delete Association, Delete Class

Problem

Designer

Fig. 1. Representation of the design process as a sequence of actions.

Every diagram creation process is represented as an ordered sequence S of ac-
tions a and elements e such as {a1, e1, a2, e2, ..., an, en}, where a ∈ {Create,Delete,Modify}
and e ∈ {class, attribute, operation, . . .}. Using this step-by-step process repre-
sentation of how the design elements are created, we can analyze the importance
of elements, the order of creation, and the number of changes to the elements.
Two tools were used to collect the sequences of these actions: a collection tool
that we developed for ArgoUML [8] by using JAspect [9], and a collection tool
provided by Sparx Systems Japan for Enterprise Architect [10]. Two patterns
emerged: macro- and micro-patterns. Macro-patterns indicate the relationships
between actions and sequences, including the position, distribution, and the to-
tal number of actions in a sequence. Examples of macro-patterns include the
location of the Create operation, and the ratio between the total numbers of
Create actions and Delete actions.

In contrast, micro-patterns represent the relationships between sequence ac-
tions, such as the frequent subsequences of actions. To find these relationships,
we used the apriori algorithm to search for frequent subsequences and performed

JCKBSE2014, 216, v1: ’Using an Automa...’ 3

a typical term and pattern-counting search [11]. An example micro-pattern is a
frequent subsequence like an action of Create Class followed by Modify Class.
Using the apriori algorithm we obtain rules, which are implications of the form
X ⇒ Y where X,Y ⊆ a, e and X ∩ Y = ∅ [12]. In other words a rule represents
how likely an element X will be followed by an element Y in one subsequence. To
create the subsequences we divided the main sequence into smaller subsequences
of size 2, 3, 4, . . . , up to max.lenght. These subsequences are repeated at least
two times in the main sequence. Thus the max.length is the length in which no
more subsequences that repeated at least two times are found.

Two metrics are used to evaluate the rules: support [13] and confidence [14].
Only rules that meet a minimum value for both metrics are considered. Support
is defined as the number of sequences in which the subsequence is present. For
example, if a subsequence is found in six of seven transactions, its support is 6/7
or 0.86. Confidence is defined as support(X ∪Y)/support(X), and indicates the
percentage that a rule is true for all transactions containing both elements X
and Y . For example, a support of 0.50 for the rule {Create Class} ⇒ {Rename
Class} indicates that the rule is true in half of the cases when a transaction
contains both Create Class and Rename Class. Finally we show one example a
diagram evolution. Figures 2, 3, and 4 show a diagram for minute 9, 30, and 50,
respectively. The sequence began with defining many classes, but relationships,
attributes, and methods, were added over time.

Fig. 2. Minute 9 of E2

3 Case Study 1: Short Time-frame Exercise

This case study involved a small design exercise, which lasted approximately
one hour. The subjects (seven total) were asked to use the open source UML
tool ArgoUML [8] to analyze the parts and control elements necessary for an

4 JCKBSE2014, 216, v1: ’Using an Automa...’

Fig. 3. Minute 30 of E2

Fig. 4. Minute 50 of E2

elevator to work properly. The objective was to create a UML class diagram
with elements and relationships appropriate to model an elevator and its control
system. The subjects were volunteers from the Department of Computer Science
and Engineering of Waseda University. All the diagrams can be reviewed online
at [15].

The elements considered were class, interface, attribute, operation, general-
ization, and association from the UML standard (Table 1). In this ArgoUML
case study, the “Modify” action was renaming of the elements.

The experiments and subjects are referenced as E1. . . E7 and S1. . . S7, re-
spectively. Table 2 indicates the academic year of the subjects.

3.1 Macro-patterns

The first macro-pattern was the total number of Delete actions, which were the
least frequently performed actions. The percentage of the total is ranged from

JCKBSE2014, 216, v1: ’Using an Automa...’ 5

Create Delete Modify
Class CC DC MC
Interface CI DI MI
Attribute CA DA MA
Operation CO DO MO
Generalization CG DG MG
Association CS DS MS

Table 1. Abbreviations for the actions collected from the users by our tool in the short
time-frame exercise.

Experiment Subject Year

E1,E3,E4,E5, E6 S1,S3,S4,S5,S6 Undergraduate students
E2,E7 S2,S7 Graduate students

Table 2. Subjects listed by academic year

4% (E5) to 23% in (E1). Figure 5 shows the distribution for all the experiments.
S1, who used UML diagrams for the first time in this case study, had the highest
percentage of Delete actions.

Fig. 5. Percentage of the Total Number of Actions

6 JCKBSE2014, 216, v1: ’Using an Automa...’

Ratios
(Create/Modify) Class (Create/Modify) Attribute (Create/Modify) Operation

E1 0.62 0.7 0.57
E2 0.93 0.88 1
E3 0.44 0.82 0.94
E4 1.12 0.87 0.96
E5 1.46 1.06 1
E6 0.8 0.78 0.83
E7 0.75 1 2

Table 3. Ration of Create to Modify actions for class, attribute, and operation by
subject

The second macro-pattern was the ratio between Create and Modify actions.
Action targets were classes, attributes, and operations, which were the most
used elements in all the diagrams. Table 3 shows their relationships where a
value closer to one denotes fewer changes, while a value less than one indicates
that the final name of the classes were altered several times (i.e., the number of
modifications is higher than the number of created classes).

Closely related to the previous macro-pattern was the ratio between the total
number of classes and the Create Class action (Table 4). Similar values indicated
fewer changes in the classes during the exercise, and are associated with fewer
errors.

Ratio E1 E2 E3 E4 E5 E6 E7

Total Classes/CC 0.72 0.85 0.64 0.28 0.4 0.75 0.92
Table 4. Ratio of the total number of classes to Create actions by subject

The third macro-pattern was related to the distribution of actions (Fig. 6).
Figure 7 shows the sequences used in E1, E2, E3, and E7. In E2, 9 of the 11 final
classes of the diagram were created in the first 10 minutes of the experiment. In
E3, all 7 of the final classes were created in the first 10 minutes. In E7, 9 out
of the 11 classes were created at the beginning. In contrast, classes in E1 were
created and removed throughout the experiment.

In E2 and E7 not only were classes created at the beginning, but they were
created sequentially. Classes were created one after another in a long sequence
of creation of classes. In E2 nine classes were created in a row, while in E7 seven
classes were created in a row. Thus, this design used the same level of abstraction
and the same type of elements.

3.2 Micro-patterns

The highest transition rates occurred when executing an action on an element
and when continuing with more actions on the same type of element (Table

JCKBSE2014, 216, v1: ’Using an Automa...’ 7

Fig. 6. Number of Create actions

5). The highest rates were for class, attribute and operation, which are the
basic elements of a UML class diagram. This micro-pattern of executing actions
on elements with the same level of abstraction was related to a breadth-first
approach. Two more interesting transitions also resulted from a relationship,
such an association or a generalization to a class. Consequently, design occurred
at a high level of abstraction.

After a Delete or Modify action, the action with the next highest probabil-
ity was Create (Table 6), indicating that a modification action created a new
element, especially after a Modify action.

Transition Probability Transition Probability

Class → Class 0.70 Generalization → Class 0.22
Attribute → Attribute 0.71 Association → Class 0.31
Operation → Operation 0.74
Interface → Interface 0.45
Association → Association 0.50
Generalization → Generalization 0.48

Table 5. Transition rates of elements

There was the second micro-pattern in the transition rates of the actions
(Table 6). After the Delete action, there was a 0.39 probability of continuing
with a similar action. Similarly, after a Create action, there was about 0.33
probability of repeating the same operation. The most interesting rates were
from Create to Modify and vice versa. After creating an element, it seemed
natural to modify it, whereas after an element was modified, creating a new
element seems logical.

8 JCKBSE2014, 216, v1: ’Using an Automa...’

Number of step

E
xp

er
im

en
ts

[1] [15] [31] [47] [63] [79] [95] [112] [131] [150] [169] [188] [207]

E
1

E
2

E
3

E
7

Class
Attribute
Operation

Interface
Association
Package

Generalization

Fig. 7. Comparison of E1, E2, E3, and E7

The rules for Create and Modify actions had a high confidence (Table 7).
These rules were related to designing elements at a same, high level of abstrac-
tion (i.e., design at the level of classes, which is a high level of abstraction) or
designing at the same, more detailed level of attributes and operations.

3.3 Relationship between Strategies and Patterns

In this first case study, several students used a top-down, breadth-first approach.
In particular, in the sequences of E2 and E7 (Fig. 7) the subjects were graduate
students with more experience in design methods and tools, and began their
class diagrams by defining the majority of the classes, and then they refined
their design by adding more detail using methods and relationships. This top-
down approach, which is demonstrated in Figs. 2 and 3, was commonly used

JCKBSE2014, 216, v1: ’Using an Automa...’ 9

→ Create → Delete → Modify

Create → 0.33 0.07 0.60
Delete → 0.48 0.39 0.13
Modify → 0.72 0.09 0.19

Table 6. Transition rates of actions

Rule Support Confidence
Modify Operation → Create Operation 0.18 0.77
Create Operation → Modify Operation 0.18 0.75
Modify Attribute → Create Attribute 0.18 0.73
Create Attribute → Modify Attribute 0.18 0.74
Modify Class → Create Class 0.30 0.79
Create Class → Modify Class 0.30 0.80

Table 7. Rules for the actions and elements

by designers, especially those who had experience in Object Oriented Program-
ming [5]. The top-down approach depended on both designer’s experience and
difficulty of the problem. The top-down is the most common approach when the
problem is known or the designer is experienced [16]. A common micro-pattern
was creating and modifying elements on the same level of abstraction (Table 5),
which is a breadth-first approach.

A second strategy used the opportunistic approach, where elements and re-
lationships of the diagram were created on different levels of abstraction. E1 in
Figure 7 had the highest variation in the abstraction levels.

4 Case Study 2: Long Time-frame Exercise

In this second case study, we collected the logs of students in a Software Engi-
neering class. The students used the UML tool Enterprise Architect [10] for their
designs. Data was collected for three months. The objective of the class was for
the students to learn the basic principles of Software Engineering by acquiring
basic design techniques. Although several domains were presented in the class,
herein the domain is a hotel reservation system. Table 8 lists the elements con-
sidered in this case study. For Enterprise Architect, the “Modify” action was to
rename and to change the properties of an element.

This exercise involved three undergraduate students enrolled in a Software
Engineering course and were using UML for the first time. The experiments and
subjects are referenced as E8, E9, and E10 and S8, S9, and S10, respectively.

4.1 Macro-patterns

The first macro-pattern was the total number of actions (Create, Delete, Modify)
(Fig. 8). The most common action was Modify, which occurred 71.86 % of the
time.

10 JCKBSE2014, 216, v1: ’Using an Automa...’

Create Delete Modify
Association CCn DCn MCn
Attribute CA DA MA
Method CM DM MM
Class CC DC MO
Object CO DO MO

Table 8. Abbreviations for the Actions collected from the users in the long time-frame
exercise.

Fig. 8. Total Number of Create, Delete, and Modify Actions

Modifying existing elements was the most common operation, and the el-
ement most used was association. A second macro-pattern found was long se-
quences of Modify actions on the association elements. The longest sequence was
104 modifications of existing associations. Figure 9 shows some very long chains
of actions on association elements.

4.2 Micro-patterns

Tables 9 and 10 show the transition rates of the elements and actions. The
action with the highest probability was Modify, which was usually executed after
any other action. Because examples were given during the class, the students
used these examples as the basis for their own designs, which involved more
modifications than creation of new elements. The diagrams [15] showed that of
all of the students created similar designs.

Table 11 shows the rules for the elements of Enterprise Architect.

JCKBSE2014, 216, v1: ’Using an Automa...’ 11

Number of step

E
xp

er
im

en
t

[1] [59] [131] [211] [291] [371] [451] [531] [611] [691] [771] [851]

E
10

E
8

E
9

Attribute
Class

Associaton
Method

Object
Package

Fig. 9. Sequences for elements

4.3 Relationship between Strategies and Patterns

Although we expected for a top-down, breadth-first approach similar to the first
case study, the subjects in the second case study used a combination of strategies.
The most common pattern was the modification of the association elements,
such as generalization, aggregation, and dependency. 72.88% of all actions in a
sequence targeted and association element, and 71.86% of the steps the action
was Modify. We believe this result was due to the numerous in-class examples,
which were the basis of each subjects’ design. The relationships of the elements
are high-level abstraction elements. Consequently, the subjects designed at a
high level of abstraction instead of using operations or attributes to realize a
detailed design.

12 JCKBSE2014, 216, v1: ’Using an Automa...’

→ Create → Delete → Modify

Create → 0.01 0.02 0.97
Delete → 0.27 0.24 0.49
Modify → 0.33 0.03 0.64

Table 9. Transition rates of actions

Transition Probability

Attribute→Class 1.0
Method→Class 1.0
Association→Association 0.90
Object→Object 0.75
Class→Class 0.48
Package→Package 0.41
Table 10. Transition rates of elements

5 Comparing Results from the Case Studies

In the first (short time-frame) case study, the top-down, bread-first approach
was clearly used, whereas the second (long time-frame) case study, one specific
strategy was not employed. The difference seemed to be the length of the exper-
iment. Moreover, the second case study involved students learning about object-
oriented design for the first time, which explained why the level of abstraction
were frequently changed in a more opportunistic approach.

6 Related Work

In [2], three teams’ abilities to solve a design problem were compared by watching
videos of the developers, and classifying the statements made during the design to
identify the strategies that each team used. Herein our classification is based on
the sequence of actions that each developer employed to create a class diagram.

In [7] the design activities of three designers were compared through the
verbalization of different tasks. The strategy level of the design activity was
analyzed while creating a program at two levels: global-control strategy and
very particular strategies, (i.e. “reuse, consideration of the user of the system
and simulation”). These strategies are at a different level of abstraction that
those used in our study.

In [17] designer’s experience is important because it affects his behavior. For
example, simulation and note taking only occur when a designer has sufficient
domain knowledge. If the designer already has a plan based on his experience,
he will use that plan. In our case study, we also observed different strategies in
each of the case studies, but we considered time to be the most important factor
because the strategies differ in the short time-frame and long time-frame case
studies.

In [18] is a study where two teams of two people each designed a traffic
simulator, the strategies are divided by two factors: the approach to explore

JCKBSE2014, 216, v1: ’Using an Automa...’ 13

Rule Support Confidence
Create Association→ Modify Association 0.56 0.97

Table 11. Rules for actions and elements

the possible designs: breadth-driven or deep-driven, and the problem solving
strategy: problem-driven or solution-driven. The strategies in this study were
obtained by observing the discussion of the teams using the recorded session in
a video, and classifying the statements during the design session. The approach
is different, at a higher level, and with the need of direct observation and analysis
of the design process.

In [19] forty professionals participated in a software design task and their
strategies were analyzed with a verbal protocol. In this study the differences
between high and moderate performers was evident only when analysing what it
is called “task-irrelevant verbalizations”, which shows the difficulties of analysing
design activity with verbal protocols.

In [20] three design sessions, each consisting of a pair of designers working on a
design problem were analyzed. The analysis in this paper was made by analysing
the sessions, evaluating the discussion and ideas talk by the designers during the
sessions. The analysis focused on dividing the sessions into cycles and describing
the subjects in each session. This approach requires much analysis that can only
be made by a researcher.

7 Conclusions and Future Work

We found macro- and micro-pattern relationships using a quick, non-intrusive
method to collect the information about a design process. These patterns were
used to identify the strategies employed by designers. The information collected
using our process was very specific because it is composed of a set of basic
actions that offer a simple but complete view of the design process. We identified
two strategies. One was a top-down, breadth-first strategy where classes were
initially defined and then the design details were considered. The other was
an opportunistic approach where the elements of the diagram were created at
different levels of abstraction.

We conducted our experiment on two different groups of students. All the
subjects were students, therefore at this moment we cannot generalized our
results to other groups of people. In the future we plan to experiment with
different groups of subjects, such as professionals.

In the future, we plan to analyze the relationship between metrics and pat-
terns. The strategies used might be related to the quality of the UML diagram,
such as quality metrics of the design. We intend to use the elucidated patterns
to help the designers inexperience designers to improve their designs.

14 JCKBSE2014, 216, v1: ’Using an Automa...’

References

1. A. Baker, A. van der Hoek, H. Ossher, and M. Petre, “Guest editors’ introduction:
Studying professional software design,” IEEE Software, vol. 29, no. 1, pp. 28–33,
Feb. 2012.

2. V. Popovic and B. Kraal, “Expertise in software design: Novice and expert models,”
Proceedings of Studying Professional Software Design, 2010.

3. P.-A. Muller, Instant Uml. Wrox Press Ltd., 1997.
4. W. Visser and J. Hoc, “Expert software design strategies,” in Psychology of Pro-

gramming. Academic Press, 1990, pp. 235–249.
5. F. Détienne, “Design strategies and knowledge in object-oriented programming:

effects of experience,” Human–Computer Interaction, vol. 10, no. 2-3, pp. 129–169,
1995.

6. K. Dorst and J. Dijkhuis, “Comparing paradigms for describing design activity,”
Design Studies, vol. 16, no. 2, pp. 261–274, 1995.

7. W. Visser, “Designers’ activities examined at three levels: organization, strategies
and problem-solving processes,” Knowledge-Based Systems, vol. 5, no. 1, pp. 92–
104, 1992.

8. “Argouml.” [Online]. Available: http://argouml.tigris.org/
9. “Aspectj,” december 2013. [Online]. Available: http://www.eclipse.org/aspectj/

10. “Enterprise architect,” december 2013. [Online]. Available: http://www.
sparxsystems.com

11. “Text analysis utilities,” june 2013. [Online]. Available: http://cran.r-project.org/
web/packages/tau/tau.pdf

12. M. Hahsler and K. Hornik, “Building on the arules infrastructure for analyzing
transaction data with r,” in Advances in Data Analysis, Proceedings of the 30th
Annual Conference of the Gesellschaft fur Klassifikation e.V., Freie Universitat
Berlin, March 810, 2006, Studies in Classification, Data Analysis, and Knowledge
Organization. Springer-Verlag, 2006, pp. 449–456.

13. R. Agrawal and R. Srikant, “Mining sequential patterns,” in Data Engineering,
1995. Proceedings of the Eleventh International Conference on. IEEE, 1995, pp.
3–14.

14. M. J. Zaki, “Spade: An efficient algorithm for mining frequent sequences,” Machine
learning, vol. 42, no. 1-2, pp. 31–60, 2001.

15. “Diagrams,” january 2014. [Online]. Available: http://www.fuka.info.waseda.ac.
jp/∼jonatan/ref/RD1.html

16. R. S. Rist, “Knowledge creation and retrieval in program design: A comparison
of novice and intermediate student programmers,” Human-Computer Interaction,
vol. 6, no. 1, pp. 1–46, 1991.

17. B. Adelson and E. Soloway, “The role of domain experience in software design,”
Software Engineering, IEEE Transactions on, no. 11, pp. 1351–1360, 1985.

18. A. Tang and H. van Vliet, “Design strategy and software design effectiveness,”
Software, IEEE, vol. 29, no. 1, pp. 51–55, 2012.

19. S. Sonnentag, “Expertise in professional software design: A process study.” Journal
of Applied Psychology, vol. 83, no. 5, p. 703, 1998.

20. A. Baker and A. van der Hoek, “Ideas, subjects, and cycles as lenses for under-
standing the software design process,” Design Studies, vol. 31, no. 6, pp. 590–613,
2010.

JCKBSE2014, 216, v1: ’Using an Automa...’ 15

