
1 switch (intSelector)
2 {
3 case 111: // Pattern 2
4 this.GetMultiply(local_int_1, strNum[intSelector]);
5 Console.WriteLine("The first case."); // Pattern 1
6 break;
7 case 222:
8 this.GetMultiply(local_int_2, strNum[intSelector]);
9 Console.WriteLine("The second case.");

10 break;
11 case 333:
12 this.GetMultiply(local_int_3, strNum[intSelector]);
13 Console.WriteLine("The third case.");
14 break;
15 //.......
16 }

List 1. Example of a switch block in C#.

A Tool to Suggest Similar Program

Element Modifications

Yujiang Yang

Department of Computer Science

and Engineering

Waseda University

Tokyo, Japan

yujiang.yang@fuji.waseda.jp

Kazunori Sakamoto

National Institute of Informatics

Tokyo, Japan

exkazuu@nii.ac.jp

Hironori Washizaki,

and Yoshiaki Fukazawa
Department of Computer Science

and Engineering

Waseda University

Tokyo, Japan

{washizaki, fukazawa}@waseda.jp

Abstract—Many program tasks require continuous

modification of similar program elements, which is burdensome

on programmers because continuous modifications are time

consuming and some modifications are easily overlooked. To

resolve this issue, we extracted all possible matching elements via

similarity patterns from recently modified elements using a sub

syntax tree comparison and then created a tool, SimilarHighlight.

Our tool suggests similar program elements that may be

modified during the next modification. Potential elements are

highlighted and their text can be immediately selected by

shortcut keys. Evaluations indicate that SimilarHighlight can

improve programming productivity. Currently, our tool supports

C, C#, JAVA, JavaScript, and PHP, but in the future we will

expand it to other languages.

Keywords—Minimal Keystrokes; Productivity; Modification;

Similar elements; Syntax tree;

I. INTRODUCTION

 Programming is a challenging job that often requires
typing long codes via a keyboard. Many source code editors
and tools such as Visual Studio and Eclipse are developed to
help programmers to improve programming productivity. In a
source code editor, code completion is a widely used
productivity feature. It involves predicting program element
such as a word or phrase that the programmer wants to type in
without actually typing it in completely, and provides a
progressively refined list of candidates matching the input to
allow them to choose the right one. This is particularly useful
for code writing because it help programmers decrease the
number of keystrokes needed to save time spent typing [19].
Moreover, the candidate suggestions can help programmers
save time and reduce the errors because often the program8mer
will not know exactly what members a particular class has and
even the correct spelling of an element. Furthermore, an
improved code completion can complete multiple keywords
from abbreviated input. One case study about it found a 30%
reduction in time usage and a 41% reduction of keystrokes
over conventional code completion [2]. Besides the above-
mentioned code completion, there are many studies [22, 23]

and tools [20, 21] about program element typing －the core

task of code writing－ to improve coding efficiency. However,

few studies have focused on the operations about selecting
texts and moving the cursor. The only widely known fact is
that they are supported by keyboard and mouse shortcut keys.
The minimum number of keystrokes (hereafter referred to as
minimal keystrokes) can be used to determine the fewest
number of keystrokes necessary to accomplish a specific
typing task [1]. Minimal keystrokes occur when a programmer
has a clear goal. Hence, programming productivity should
increase as the number of keystrokes is reduced.

Programmers are often faced with programming tasks of
many continuous similar operations. For example, 1) ten local
variables need to be initialized in a method, 2) an array must be
initialized by explicitly setting ten elements, 3) and it is
representative that each case block calls a logical method and
an output method, with different parameters like List 1, etc. For
these specific tasks, some programmers will type all of the
code by hand, while others employ the Copy-Paste method [3].

The Copy-Paste method has three steps: 1) Type a
representative part of the code. 2) Copy and paste the
representative code. 3) Modify the elements as needed to
accomplish the task. Like these tasks and operations there are

1 void function_A(int a, int b) // Pattern 5
2 {
3 string[] strNum = new string[] {
4 "one", "two", "three", "four", "five", "six", "seven",
5 "eight", "nine",
6 }; // Pattern 3
7 }
8
9 void function_B() // Pattern 5

10 {
11 int local_int_C = 111; // Pattern 4
12 string local_String_D = "Hello world";
13 }

List 2. Example of modification patterns in C#.

many similar code fragments in the source code.

Similar code is also called code clone or duplicated code
and it is one factor that makes software maintenance more
difficult [4, 5]. If programmers modify one similar code
fragment, then they must determine if the same modification is
applicable to other code fragments. Furthermore, similar code
fragments sometimes involve similar defects caused by the
same mistake [6].

Code clone detection offers effective means to identify
similar code, and it is very useful for software analysis,
maintenance, and reengineering [7, 8]. Several tools address
the problem of identifying code clones such as the ones from
the copy-paste modifications [9], and some approaches support
programmers in modification tasks that affect different source
code locations by automatically eliciting past changes [10].
However, a tool to minimize the number of keystrokes during
modifications of similar code does not exist.

To improve programming productivity, we propose an
approach to extract the similarity pattern from recently
modified elements and provide all possible matching elements
as modification suggestions for programmers. Because syntax
highlighting helps programmers find errors, the matching
elements are highlighted and the next element can be selected
by shortcut keys. Finally to improve program productivity, a
visual studio extension is implemented.

Specifically this work aims to answer three research
questions.

RQ1: Does our tool reduce the minimal keystrokes?

RQ2: Can our tool improve the programming productivity?

RQ3: Does our tool run smoothly without inconvenience?

The contributions of this paper are:

 Proposal of an approach to extract similar elements by
analyzing recently modified elements.

 SimilarHighlight, a novel tool that reduces keystrokes
by suggesting program elements to modify.

 Demonstration that SimilarHighlight can help improve
programming productivity.

SimilarHighlight is released as open source software in
https://github.com/youfbi008/SimilarHighlight/ and the tool
has been published in Visual Studio Gallery
http://goo.gl/KqtTvY.

The remainder of this paper is organized as follows.
Section II provides a motivating example. Section III describes
our proposed approach and tool, SimilarHighlight. Sections IV
and V provide details and evaluate its functions, respectively.
Section VI describes related works. Finally, Section VII is the
conclusion and future work.

II. MOTIVATING EXAMPLE

This section provides examples to demonstrate our
approach and tool. Consider List 1, which shows a switch

block and at least three case blocks, where each case block has
a method with two parameters and a system output method.

Generally the Copy-Paste method is used for this
programming task. Initially the code typed in the first case is
copied and pasted multiple times. Then the elements are
modified for each case. In this example, the modified elements
are case keywords, the first parameters of the GetMultiply
methods, and the parameters of the Console.WriteLine
methods. Due to its simplicity, a proficient typist often
employs the Copy-Paste method. The more these similar
operations, the higher efficiency obtained by the Copy-Paste
method.

This study focuses on the third step of the Copy-Paste
method, which is similar to modification tasks that often occur
in software maintenance and reengineering. An element may
be a local variable, a parameter to a method, an expression, a
program block consisting of multiple elements, etc. Program
elements with similar positions in similar code fragments are
defined as similar program elements.

Representative patterns of similar program elements are as
follows: (1) Method parameters and (2) Case values of a switch
(List 1). In addition, the example in List 2 shows other
representative patterns such as (3) Array elements, (4) Local
variable names or values, and (5) Method names. To modify
similar elements continuously, programmers generally select
the whole text of each element and type the new text
sequentially. Below, select operations are discussed in detail
[11].

A person who usually selects items using a mouse often has
two text-selection methods: double-click and click-and-drag.
However, the double-click method cannot select the whole
parameter text because it just selects a word. Hence,
programmers have to click and drag the mouse over the whole
text to accomplish this operation.

A person who usually selects items using a keyboard,
especially the shortcut keys, often has two text-selection
methods: [Shift]+arrow and [Ctrl]+[Shift]+[Right arrow] |
[Left arrow]. The latter method can select from the current
position to the right or left of the current word. Thus, to select
the whole text such as "The first case.", the arrow key must be
pressed four times.

Using both a mouse and keyword effectively should be
more convenient. However, some appropriate subjects should
be considered when many similar program elements must be
modified, especially if the elements are scattered throughout
the source file. Identifying every necessary modification is
time-consuming and often modifications are missed.
Additionally, selecting the text of each element is a hassle in a
continuous modification.

To illustrate these issues, we conducted an experiment
involving a person who uses a keyboard where a programming
task is composed of patterns where each pattern has nine
similar elements. The text of the similar elements should be
continuously rewritten. To present the proportion of the
keystrokes to select texts and move the cursor in the entire task,
each keystroke is counted separately to determine the minimal
keystrokes. Figure 1 shows the percentages of keystrokes for
selecting and moving operations.

At least 33% of the minimal keystrokes are used to select
texts and move the cursor, but this value can be as high as 60%
for shorter text (Fig. 1). Additionally, when elements are
further separated in the code, more keystrokes are used to
move between elements, resulting in more unnecessary
keystrokes. Thus, the cost of the keystrokes for selecting and
moving operations should not be neglected in programming.
Consequently, reducing the number of keystrokes should
improve programming productivity.

III. SIMILARHIGHLIGHT: A TOOL TO IMPROVE PROGRAMMING

PRODUCTIVITY

We propose a tool (SimilarHighlight) to help programmers
improve their productivity. Our tool suggests program
elements similar to the last selected element that might be
modified during the next modifications. The elements are
highlighted and the text of the next element can be selected
immediately by shortcut keys for easy modification. Figure 2
summarizes the main steps of SimilarHighlight.

First, the source code file is parsed into a concrete syntax
tree (CST) [12] similar to the XML DOM by the Code2Xml
library [13]. A program element can be represented as a single
node or a subtree. Two different elements of the last selected
elements are compared to extract the common node set as a
similarity pattern. In addition, candidate node type is extracted

to determine the candidate nodes. Second, each of the
candidate nodes are compared to the similarity pattern to check
whether they match. Finally, SimilarHighlight highlights all the
corresponding elements of the matching nodes and presents
them to the programmers.

A. Parsing a source file into a concrete syntax tree and

determining the corresponding subtree of an element

The source code of a source file is called a compilation unit
in C#, JAVA, etc. A compilation unit normally contains a
single class definition that is parsed into a CST by the
Code2Xml library. Code2Xml is a set of parsers to interconvert
between the source code and xml supporting multiple
programming languages. Due to Code2Xml, SimilarHighlight
supports C, C#, JAVA, JavaScript, and PHP, and should
support other languages in the future.

A program element is usually represented as a single node
in the syntax tree. However, a program element in our CST is
represented as a subtree, which consists of multiple nodes,
including a token node. Each node has node type and node id.
If the node is a token node, it also has positional data to
describe the position of the element in the source code.

As an easy-to-understand example, List 3 shows a parsed
xml where the xml texts for Console.WriteLine("The first
case.") is omitted. Although the complete xml text is ten times
longer, the main elements such as (, "The first case.", and) in
this expression are presented in red. In our approach, selecting
the element of "The first case." via a mouse or keyboard
causes SimilarHighlight to determine the corresponding token
node by comparing the cursor positional data and the node
positional data, such as startline, startpos, endline, and endpos.
To represent the corresponding subtree of the current element,

Fig. 2. Overview of SimilarHighlight.

Fig. 1. Minimal keystrokes comparison without our tool.

dll

 1

 5

 9 10

 2 3

 4

 7 8

 6

 11 12

Syntax tree

…

…

…

Each element compare

with similarity pattern

Highlighting

Parsing

Candidate

node type

(TOP)

Extract candidate

nodes

Matched elements

(Similar elements)

Code2Xml
Source code

Parser

Visual Studio IDE

 4

 7
 8

TOP

 YY ZZ

 5

 9
 10

TOP

 YY AA

 20
 16

Candidate nodes

 32
 24

 11

Similarity

pattern

TOP

YY

Target

Subtrees

comparison

1 <brackets_or_arguments id="257">
2 <arguments id="276">
3 <TOKENS id="char_literal279">
4 <TOKEN id="char_literal279" …>(</TOKEN>
5 </TOKENS>
6 <argument_list id="280">
7 <STRINGLITERAL id="set1275">
8 <TOKEN id="set1275" startline="86" startpos="38"
9 endline="86" endpos="55">"The first case."</TOKEN>

10 </STRINGLITERAL>
11 </argument_list>
12 <RPAREN id="char_literal281">
13 <TOKEN id="char_literal281" …>)</TOKEN>
14 </RPAREN>
15 </arguments>
16 </brackets_or_arguments>

List 3. Omitted xml text of the syntax tree about the expression:

Console.WriteLine("The first case.");.

[0]:<argument_list280

[1]:<argument_list280<argument185

[2]:<argument_list280<argument185<argument_value190

[3]:<argument_list280<argument185<argument_value190<expression193

……

[22]:<argument_list280<argument185<argument_value190<expression193<......<primar

y_expression_start232<literal242<STRINGLITERALset1275

[23]:argument_list280

[24]:argument_list>'"The first case."'

[25]:argument_list-'('

[26]:argument_list-')'

……

[28]:argument_list-TOKENSchar_literal279(

[29]:argument_list-RPARENchar_literal281)

……

[40]:argument_list<arguments276<brackets_or_arguments257-access_identifier256>'.'

[41]:argument_list<arguments276<brackets_or_arguments257-

access_identifier256>'WriteLine'

[42]:argument_list<arguments276<brackets_or_arguments257<primary_expression_part

233-'Console'

……
[56]:argument_list<arguments276<brackets_or_arguments257<primary_expression_part2

33<primary_expression210<primary_or_array_creation_expression163

List 4. Omitted node set of the surrounding nodes of the element: "The first

case.".

outermost ancestor also must be determined. The outermost
ancestor is outermost one in the ancestors which is ancestor of
the token node and has no other immediate child nodes. Then
the corresponding subtree can be represented by the nodes
from the outermost ancestor to the current node. Figure 3
shows the corresponding subtree for "The first case." and the
node types used to describe the nodes. In addition, the
outermost ancestor type, which is seen as the type of element
in CST, is used to extract the candidates. The outermost node
type of "The first case." is argument_list.

Because an expression can be seen as an element in our
approach, Fig. 4 shows the corresponding subtree of the
expression: Console.WriteLine("The first case."); as an
element in our approach. Although some nodes are omitted, the
structure and position can be understood. The next step
considers the subtree to determine the surrounding nodes of
"The first case.".

B. Extracting the similarity pattern

In the example of List 1, when the parameter texts of Con-
sole.WriteLine in the first two case blocks: "The first case."
and "The second case." are selected successively, the
corresponding subtrees of the two elements can be determined
as mentioned above. Then SimilarHighlight will compare their
surrounding nodes. The surrounding nodes generally consist of
ancestor nodes, sibling nodes, and descendant nodes. Because

it is important to effectively collect this information, our
approach extracts the surrounding nodes from CST. This
information is then used to construct a node set. List 4 shows a
case with an omitted node set for "The first case.". The
numbers on the left are the index of the data in the node set.
The non-consecutive index numbers indicate that too much
data is omitted to understand the relationships between List 3
and 4. In practice, the node type, node id, and token text shown
in List 3 is used to construct the data of the node set in List 4.
The main elements of the expression such as Console,
WriteLine marked in red can be found in the node set, hence
the main elements are seen as the surrounding nodes as we
expected.

List 5 shows a pseudocode to present our approach in
collecting the surrounding nodes. First, the traversal from the
outermost node to the token node is presented as an index of 0
to 22. Next, two methods are used to determine other
surrounding nodes: (1) find the immediate child nodes of all
new added nodes and (2) find sibling nodes of the immediate
parent node. To collect more accurate data, these methods are
repeated several times.

Figure 5 compares the node sets to extract the similarity
pattern. The data of the two node sets are similar, excluding

Fig. 3. Corresponding subtree of the element: "The first case.".

Fig. 4. Omitted subtree of the expression: Console.WriteLine("The first

case.");.

expression_statement

primary_expression_start primary_expression_part

brackets_or_arguments

argument_list

"The first case."

identifier

Console

WriteLine

DOT identifier
(

SEMI

)

;

.

access_identifier

argument_list

"The first case."

TOKEN

STRINGLITERAL

Add outermost ancestor to the Child node set

SET outermost ancestor to the Parent node

FOR each node from outermost ancestor to immediate parent of token

 Add the node to the Result node set

ENDFOR

Add outermost ancestor to the Result node set

FOR loop one to many times

 FOR each node in the Child node set

 FOR each child node of the node

Add the child node to the new Child node set

Add the child node to the Result node set

 ENDFOR

 ENDFOR

 FOR each node in the first ten siblings of the Parent node

 Add the node to the new Child node set

 Add the node to the Result node set

 ENDFOR

 SET the new Child node set to the Child node set

 SET parent of the Parent node to the Parent node
ENDFOR

List 5. The pseudo code for collecting surrounding nodes.

index 24 and other omitted data. In practice, there are 52
common data points. Therefore, the elements are similar
because they have many similar surrounding nodes. Then the
common data of node sets are defined as the similarity pattern.

C. Extracting all possible matching elements

To ensure a high running performance, each program
element in the source file cannot be traversed to verify similar
elements. Fortunately, candidates can be extracted using the
outermost node type of CST (as mentioned in 3.1). Figure 6
shows the process to determine similar elements. Because the
outermost node types of the two elements are both
argument_list, the outermost node type is a candidate node
type. Then all nodes where the outermost node type is
argument_list are extracted as candidate nodes, and the
surrounding nodes of each candidate node are compared to the

similarity pattern. A preset threshold is used to determine if
there is enough common data to be a valid match (i.e., the
corresponding element of the node is a similar element).
Finally, similar elements are highlighted based on the
positional data of the corresponding token nodes.

IV. VISUAL STUDIO EXTENSION

SimilarHighlight is implemented in a visual studio
extension to evaluate our approach and to help programmers
improve their programming productivity. The main functions
of the SimilarHighlight are as follows:

 Elements similar to the last selected element are
highlighted.

 The previous or next similar element can be found
immediately via shortcut keys, and the whole text is
selected for easy modification.

 A margin is added on the right side in the visual studio
editor to offer relative position markers of similar
elements.

 A pane named “Similar” is added into the output
window to provide more information about similar
elements.

 Some settings in the tool can be customized, including
enable (disable) the functions and adjusting the
similarity level to change the threshold to improve or
reduce the scope of similar elements.

To present the functions of the tool, Fig. 7 shows the
running results of a more complicated example than the
motivating example. In the parameter texts of
Console.WriteLine in the first two case blocks: first and
second are selected successively using a mouse or keyboard,
and similar elements are obviously highlighted. Although the
whole text in the token has double quotations like "The first
case." not The first case, for quick modifications the double
quotations are ignored. The current cursor is located in the
second case block whose background color is deeper than
others, but the next similar element can be found by Ctrl + Alt

Fig. 5. Comparison of node sets to extract similarity pattern.

Fig. 6. Comparison of node sets to extract the similarity pattern.

Node
set

[23]:argument_list280
[24]:argument_list>'"T

he first case."'
[25]:argument_list-'('
[26]:argument_list-')'
[28]:argument_list-

TOKENSchar_literal279(
[29]:argument_list-

RPARENchar_literal281)

Node set of "The first case."

Similarity

pattern

[23]:argument_list280
[25]:argument_list-'('
[26]:argument_list-')'
[28]:argument_list-

TOKENSchar_literal279(
[29]:argument_list-

RPARENchar_literal281)

Node

set

[23]:argument_list280
[24]:argument_list>'"T

he second case."'
[25]:argument_list-'('
[26]:argument_list-')'
[28]:argument_list-

TOKENSchar_literal279(
[29]:argument_list-

RPARENchar_literal281)

Node set of "The second case."

Surrounding nodes

20

Candidate

node type

(argument_list)

brackets_or_arguments

(

"The first case."

argument_list)

The number of

common data
Threshold

Similar

element

brackets_or_arguments

(

"The second case."

argument_list)

Extract

candidate

nodes

 20
 16

Candidate nodes

 32
 24

 11

Similarity pattern

brackets_or_arguments

(argument_list)

argument_list

11 16

…

…

>

+ Right Arrow. Then the text of the next element can be
modified immediately. Consequently, many select and move
operations become unnecessary, reducing the minimal
keystrokes.

Furthermore, another technique worth mentioning is to
click a mark using the left mouse button in the right margin to
select the corresponding element of that mark. This allows an
quick jump to another type of element. An additional function
is that the “Similar” output window is used to offer selected
element information, which provides text and similarity in
order. The similarity is a count of common data in the
similarity pattern. In this example, the maximum similarity is
52. The similarity of the element in fifth case block is 45,
which exceeds the predetermined threshold. In addition,
although part of the text for the element is selected by the
mouse or keyboard, the element can be found exactly if the
source code in the file does not have a serious format error.

V. EVALUATION

To assess the effectiveness of SimilarHighlight, we
conducted a set of experiments and compared the results
against conventional methods to answer the three research
questions.

A. Experiment 1

To investigate RQ1 (Does our tool reduce the minimal
keystrokes?), we reevaluated the experiment in the Motivating
Example using our tool. Then the minimal keystrokes for the
selecting and moving operations with and without using our
tool were compared to calculate the reduction rates.

Figure 8 compares the minimal keystrokes for the five

similar element patterns and the reduction rates. Our tool
results in an almost 70% reduction in the minimal keystrokes
for selecting texts and moving the cursor. In particular, the
longer the distance between each element, the higher
productivity.

Therefore, SimilarHighlight can significantly reduce the
minimal keystrokes for selecting and moving in a modification
task.

B. Experiment 2

To investigate RQ2 (Can our tool improve the
programming productivity?), we conducted an experiment
consisting of two modification tasks for a person using a
keyboard. The first one contains an array of 20 elements
similar to pattern 3. The second one is more complex and it
consists of ten case blocks in a switch block similar to Fig. 1,
which includes pattern 1 and pattern 2
(https://github.com/youfbi008/SimilarHighlight/blob/master/Si
milarHighlight.Tests/SimilarityTest1.cs) This experiment tests
the third step of the Copy-Paste method (element modification).
We measured the time and the keystrokes necessary to
accomplish each task with and without our tool. The results
were compared to calculate the reduction rates. It will not have
a beneficial effect if we use our tool base on without tool using
in the experiment, because the methods of operations are
different. Eight master's degree students studying computer
science (S1, S2 …, and S8) participated in the experiments.

Figure 9 and 10 show the results for the first and second

Fig. 7. Running result of SimilarHighlight.

Fig. 9. Running results in the first task.

Fig. 8. Minimal keystrokes comparison.

tasks, respectively. The averages of time usage and the number
of keystrokes were calculated to determine the reduction rate in
using our tool. SimilarHighlight reduces the coding time by
approximately 23% and the keystrokes by 44% in the first task
(Fig. 9). Because the reduction in keystrokes is nearly twice the
reduction in time, as programmers become more familiar with
our tool, the time reduction should become larger.

SimilarHighlight reduces the coding time by approximately
27% and the keystrokes by 40% in the second task (Fig. 10).
Similarly, familiarity with the tool is important to further
reduce the coding time.

These experiments demonstrate that SimilarHighlight can
reduce costs of writing code and improve programming
productivity, especially when a keyboard is used. The
difference in the time usage and the number of keystrokes
between our method and conventional methods was
statistically significant based on wilcoxon signed-rank tests (p-
value < 0.05) [25]. Therefore, our method is significantly better
than conventional methods.

C. Experiment 3

Because the parsed xml text becomes too long as the line
number of the source code file increases and often there are too
many candidate elements, the running performance of our tool
is considered. It is possible that our tool does not run smoothly
or is inconvenient to programmers. To investigate RQ3 (Does
our tool run smoothly without inconvenience?), we conducted
an experiment in which our tool was used to determine similar

elements in five files
(https://github.com/youfbi008/SimilarHighlight). The number
of similar elements (CNT) and the average running time (ART)
was recorded separately.

Figure 11 shows the running results. The test file names
and the source lines of code (SLOC) are listed on the top and
bottom separately in the order of increasing SLOC. Then ART
is presented as the bar and CNT is presented as the number
over the top of the corresponding bar. As the running results,
source files with less than 5000 SLOC ran in less than 1 second.
Because the elements are highlighted earlier using our tool
rather than the default highlighting functionality of visual
studio [14], programmers do not have to wait for elements to
be highlighted to continue with the next operation.
Additionally, the main process steps of SimilarHighlight run in
background thread, which minimizes the wait time. Therefore,
SimilarHighlight runs smoothly without affecting the
operations.

VI. RELATED WORKS

There are many research works to detect similar code,
especially about clone detection techniques. Four main
approaches, namely string-based, token-based, tree-based and
PDG-based, are used by source code similarity detection tools.

Ducasse et al. [16] proposed a language independent
approach which is String-based. The approach works on the
source code directly to look for specific patterns in a
comparison from every line to every other.

Kamiya et al. [5] provide a token-based code clone
detection tool named CCFinder, which transforms tokens of a
program according to a language-specific rule and performs a
token-by-token comparison.

Because the parse tree (CST) and abstract syntax tree
(AST) contains the complete information of the source code,
the matches of subtrees can be identified by comparing
subtrees within the generated tree [15]. Our approach is also
tree-based. However, because of the different aim, we use the
subtree comparison to find out the similar elements.

PDG is program dependence graph which is a
representation of a program that represents only the control and
data dependency among statements [17]. Krinke et al. [24] uses

Fig. 10. Running results in the second task.

Fig. 11. Running results of the five patterns.

the PDG-based method to detect maximal similar subgraphs.

Due to the different aim, our approach is to find similar
code in one source file, not in the entire project. We find the
similar program elements not the code fragments. Our tool,
SimilarHighlight, suggests the programmer to modify them at
the next modifications and reduce the keystrokes to improve
the programming productivity.

VII. CONCLUSIONS AND FUTURE WORKS

We elucidated problems in successive modifications
through motivating examples and developed a tool called
SimilarHighlight to resolve the problems. SimilarHighlight
suggests program elements similar to the last selected elements
that could be modified during the next modification. These
suggested elements are highlighted and their text can be
selected immediately by shortcut keys, reducing the minimal
keystrokes. Moreover, we evaluated the effectiveness of
SimilarHighlight in empirical experiments.

Our tool can be used in programming tasks and
modification tasks to improve the programming productivity.
Furthermore, source code review is a peer review of the source
code of computer programs. It is intended to find and fix
defects overlooked in early development phases, improving
overall code quality [18]. Additionally, highlighting similar
elements can easily identify elements, especially when
reviewing for consistency.

Our aim is to make SimilarHighlight the default
functionality of the source code editor. In the future, we will
improve our approach and our tool as follows:

 Improve the running performance. Although the
average running time is less than 1 second, it can be
improved, especially when the SLOC exceeds 3000.

 Improve the precision to match similar elements, which
may encourage more programmers to use our tool.

 Support more programming languages. Currently
SimilarHighlight can be used in C, C#, JAVA,
JavaScript, and PHP files. We are contributing to a
Code2Xml project to support more programming
languages, such as Cobol.

 Extract more patterns based on programming habits.
Although programming habits vary by programmer, we
intend to extract potential modification patterns.
Additionally, instead of highlighting all of the text of an
element, we will highlight only the part to be modified.

 Add a suggestion list about text modifications similar to
Code Completion. When the next element is selected by
shortcut keys, a list of modification suggestions will be
displayed based on the modification history of similar
elements.

REFERENCES

[1] H. Duan and B. P. Hsu, “Online spelling correction for query
completion,” in Proc. WWW. New York, USA, 2011, pp. 117–126.

[2] S. Han, D. R. Wallace, and R. C. Miller, “Code completion from
abbreviated input,” in Proc. ASE. IEEE Computer Society, 2009, pp.
332–343.

[3] M. Kim, L. D. Bergman, T. A. Lau, and D. Notkin, “An ethnographic
study of copy and paste programming practices in OOPL,” in Proc.
ISESE, 2004, pp. 83–92.

[4] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proc. ICSM, 1998, pp. 368–377.

[5] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, 2002.

[6] B. Lague, D. Proulx, J. Mayrand, E.M. Merlo, and J. Hudepohl,
“Assessing the benefits of incorporating function clone detection in a
development process,” in Proc. ICSM, Oct. 1997, pp 314–321.

[7] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in Proc. ICSE, New York, USA, 2008, pp. 321-330.

[8] E. Burd and J. Bailey, “Evaluating clone detection tools for use during
preventative maintenance,” in Proc. SCAM, Montreal, Canada, Oct.
2002, pp. 36-43.

[9] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo,
“Comparison and Evaluation of Clone Detection Tools,” IEEE
Transactions on Software Engineering, vol. 33, no. 9, pp. 577-591, Sep.
2007.

[10] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Predicting source
code changes by mining change history,” IEEE Trans. Softw. Eng., vol.
30, no. 9, pp. 574-586, 2004.

[11] 15 ways to select text in a Word document,
http://www.techrepublic.com/blog/microsoft-office/15-ways-to-select-
text-in-a-word-document/

[12] Parse tree, http://en.wikipedia.org/wiki/Parse_tree

[13] Code2Xml, https://github.com/exKAZUu/Code2Xml

[14] Microsoft: How to: Use Reference Highlighting,
http://msdn.microsoft.com/en-
us/library/vstudio/ee349251(v=vs.100).aspx

[15] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. “Clone
detection using abstract syntax trees,” in Proc. ICSM, 1998, pp. 368–377.

[16] S. Ducasse, M. Rieger, and S. Demeyer. “A Language Independent
Approach for Detecting Duplicated Code,” in Proc. IEEE Int’l Conf. on
Software Maintenance (ICSM), Oxford, England, Aug. 1999, pp. 109-
118.

[17] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 9, no.3, pp. 319-
349, 1987.

[18] H. Uwano, M. Nakamura, A. Monden, and K. Matsumoto, “Analyzing
individual performance of source code review using reviewers' eye
movement,” in Proc. Eye tracking research & applications (ETRA), San
Diego, California, 2006, pp. 133-140.

[19] D. Anson, P. Moist, M. Przywars, H. Wells, H. Saylor, and H. Maxime.
“The effects of word completion and word prediction on typing rates
using on-screen keyboards,” Assistive technology, vol. 18, no. 2, pp.
146-154, 2006.

[20] IntelliJ IDEA, http://www.jetbrains.com/idea/

[21] Resharper, http://www.jetbrains.com/resharper/

[22] G. Little and R. C. Miller, “Keyword Programming in Java,” Autom.
Softw. Eng., vol. 16, no. 1, pp. 37-71, 2009.

[23] K. Czarnecki and U. Eisenecker. Generative Programming - Methods,
Tools, and Applications. Boston : Addison Wesley, 2000.

[24] J. Krinke, “Identifying Similar Code with Program Dependence
Graphs,” in Proc. Working Conf. Reverse Eng., 2001, pp. 301-309.

[25] Wilcoxon signed-rank test ,
http://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test

