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Abstract—Development environments have changed drasti- the dynamics of software development. Developments are
cally, development periods are shorter than ever and the number  affected by various elements of the development environment,

of team members has increased. These changes have led to sych as the skills of the development team and changing
difficulties in controlling the development activities and predicting requirements.

when the development will end. Especially, quality managers

try to control software reliability and project managers try to Examples of software reliability models include the “Times
estimate the end of development for planing developing term and Between Failures Models” and “Failure Count Models” [6].
distribute the manpower to other developments. In order to assess \We have used the “Failure Count Model,” which is based
recent software developments, we propose a generalized software on counting failures and probability methods. The Goel-
reliability model (GSRM) based on a stochastic process, and ok moto NHPP Model and the Musa Execution Time Model
simulate developments that include uncertainties and dynamics. are examples of this type of model [6]. Recent studies by
We also compare our simulation results to those of other software Tamura [16], Yamada [18], Zhang [22] 'Cai [3], Kamei [9]
reliability models. Using the values of uncertainties and dynamics . v . ! g ! ! y
obtained from GSRM, we can evaluate the developments in a D0hi [4], Schneidewind [14], Nguyen [11], and Okamura [12]
quantitative manner. Additionally, we use equations to define have attempted to describe the dynamics of developments
the uncertainty regarding the time required to complete a using stochastic differential equations. Although many models
development, and predict whether or not a development will be have been proposed, surveyed, and compared [17] [2] [10],
completed on time. We compare GSRM with an existing model most failure count models cannot account for the dynamics of
using two old actual datasets and one new actual dataset which development, (e.g., drastic changes in the development team
we collected, and show that the approximation curve generated composition or significant reductions in the development time),

by GSRM is about 12% more precise than that generated by 554 cannot precisely predict when developments will end
the existing model. Furthermore, GSRM can narrow down the P y P P '

predicted time range in which a development will end to less than Many current models only give the number of faults that
40% of that obtained by the existing model. will be found within some time range. Here, we propose
a model called the generalized software reliability model
(GSRM), which can describe several development situations
that include random factors (e.g., skills of the development
Software reliability is a critical component of computer team and development environment), to provide a time range
system availability. Especially, quality managers try to controlin which development will end. Although earlier studies use
software reliability and project managers try to estimate thdinear stochastic differential equations, our research indicates
end of development for planing developing term and distributghat non-linear stochastic differential equations lead to more
the manpower to other developments. In a estimating metho/aborate equations that can model situations more realistically.
a manager collects faults data, which contains the number dfurthermore, GSRM can quantify uncertainties influenced by
faults and the time when faults are detected, and estimates hg@ndom factors. To more accurately predict the time required
many faults remained using the faults data applying a predicto complete development and to optimize development teams
tion model, which is called software reliability growth model. and environments, uncertainties must be quantified. Thus, this
Thus, software reliability growth models have been developegtudy aims to answer the following three research questions.
to indicate whether enough faults have been removed to release . -
the software. Although tr?e logistic curve and Gompertz curve RQ1: How much better is GSRM at describing the
[19] are well-known software reliability growth curves, they growth ofdsoftwe?]re rehadbllllty in different S|’t;uat|0ns
cannot account for the dynamics of software development, o compared to Olt Zr moge’s (e.g., NH;P)H
which are affected by various development environment el- RQ2:  How accurately does GSRM describe the conver-
ements, such as the skills of the development team, changing gence of the number of faults and the appropriate
requirements, etc. However, these curves cannot account for g?ﬁ’:rlorgg‘deer;;germ in a given situation compared to

OIn our paper[8] we merely given proposal only generalized software ~RQ3: How does GSRM predict when a development will

reliability model (GSRM). On the other hand, in this paper we suggested end, considering the dispersion due to uncertainty?
the ranges of the term when developments will end and compared GSRM o
with other model. Our contributions are as follows:

I. INTRODUCTION




e A software reliability model applicable to nine devel-
opment situations.

releasel NHPP - = - = Upper limit

e A generalized software reliability model, which is
12% more precise than existing models.
e A new method to predict when development will end. :; EESHIITE
ll. BACKGROUND £ = e

A. Software reliability model . oo —

Although many software reliability models have been o umpertimiine] Y/ [LowertimiTime| W
proposed, the most popular is the non-homogeneous Poisson ° : ° * * » *

5 Time(Week)

process (NHPP) model. Hence, we compare GSRM wmhg. 1. Time ranges based on NHPP model.

NHPP using the development data containing the number of
faults detected in a given time. Some models quantitatively

assess software reliability from the fault data observed if.qm reference [15] written by C. Stringfellow et al. , which
the software-test_ing phase; similar to these_z software reliabilitys qrawn with three models: the normal NHPP. its upber limit
models, GSRM is based on a fault counting [6] model. The,nq its Jower limit, which indicate a greater deal of faults than
fault counting software reliability model is formulated by ,,rmal NHPP and a less than normal NHPP, whose values are

counting the number of faults detected in a given time, assuMsy|cylated with confidence interval as 70%. For example, the
ing that faults are detected based on a stochastic process. TBgq for the “Lower Limit Time” is twice that of the “Upper

NHPP model assumes that the stochastic process governing gt Time ” indicating that the predictions are not meaningful.

relationship between fault detection and a given time intervafjance we try to construct a new method which can define the
is a Poisson process. In actual developments, counting thg,e ra{nges of development at section 3.2.
faults predicts the number of remaining faults and provides an

indication of when the development will end. To understand  In this paper, we compare GSRM with these models. Equa-
how our model was developed, we begin with a description ofion (3) results in an exponentially shaped software reliability
the general NHPP model. In the NHPP model, the probabilitygraph. However, actual software reliability graphs typically

of detecting n faults is expressed as follow a logistic curve or a Gompertz curve [19], which are
(H()}" more comp_lex_. Therefor_e,.we propose a new mo_del, GSRM,
Pr{N(t) =n} = ——F—exp {—H(t)} (1)  which can fit either a logistic curve or an exponentially-shaped
n: curve for use in actual developments.
N(t) is the number of faults detected by timeandH () is the
expected cumulative number of faults detected[13]. Assuming 1Il. GENERALIZED SOFTWARE RELIABILITY MODEL

that the number of all the faults is constant .., the E o liabili del q i
number of detected faults at a unit time is proportional to . O our software reliability model, we extend a nonlinear

the number of remaining faults. These assumptions lead to tHgifferential equation that describes the fault content as a logis-
following equation tic curve into an Ito-type stochastic differential equation. We

start with equation. (5), which is called the logistic differential

dH(t equation.
dt( ) = C(Nmax - H(t)) (2) q dN(t)
: o : — = = N(t)(a+bN(1)) (5)
where ¢ is a proportionality constant. Equation (2) can be dt
solved as N(t) is the number of detected faults by timea defines the
H(t) = Nmax(1 — exp (—ct)) (3)  growth rate, and is the carrying capacity. I6 = 0, then the

lutions of this equation become exponential functions. Equa-
n (5) can be extended into a stochastic differential equation
because actual developments do not strictly obey equation

) due to the numerous uncertainties and dynamic changes.

Models derived based on equation 3 are called exponenti%g
software reliability growth models. The first example of this
type of model was proposed by Goel and Okumoto [7].

Later Yamada et al. derived a delayed S-shaped softwa uch dynamic elements are considered time-dependent and
reliability growth (S-Shaped) model from equation (3) with a y L P
to contain uncertainty; these factors are expressedl ifhe

fault isolation process [20]. Equation (3) can be rewritten for,.

the delayed S-shaped software reliability growth model usin ime-dependence of a can be used to describe situations such
Hs(t), which is the expected cumulative number of faults® s skill improvement of development members and increases

detected in the S-shaped model. as in the growth rate, while the uncertainty af can describe
P ' parameters such as the variability of development members

Hg(t) = Npag {1l — (1 +ct) exp (—ct)} (4) and the environment. We analyze the growth of software with
an emphasis on the testing phase by simulating the number of
B. Motivating example detected faults. Software development is assumed to have the

I . , following properties:
Existing software reliability growth models give us the

number of faults will be found with some ranges of raults, 1) The total number of faults is constant.
however the models cannot precisely indicate the time when 2) The number of faults that can be found varies de-
the development will end. Figure 1 shows an example dataset pending on time.



3) The number of faults that can be found contains The sign ofd provides the limitation of the uncertainty. If
uncertainty, which can be simulated with Gaussiand is negative (positive), the growth of the graph provides the
white noise. lower (upper) limit. The lower and upper limits are calculated

. . ) in the next sections is calculated as
Considering these properties, equation (5) can be extended to

an lto-type stochastic differential equation wittt) = «(t) + 1 1{N@)
odw(t) as 0; = —fln{ < N.Z - 1) } -«

b

(10)

2
g
dN(t) = t)+ — 4+ BN(t))N(t)dt + N(t)odw(t 6
1) = (a®) 2 ANWOINE®) (Doduw(t) (6) The subscripti indicates that the data is for thih fault
N (t) is the number of detected faults by tite(t) +o2/2+  detected ati;. i differs from the approximate value a.
odw(t) is the differential of the number of detected faults Finally, the average and variance dfre obtained, which are
per unit time,~v(t) = N(t)odw(t) is the uncertainty term, Uused to constructan equation for the software reliability growth
o is the dispersion, ang is the non-linear carrying capacity model.
term. This equation has two significant ternasand dw; «

affects the end point of development, ahd affects the growth By usingd and its distribution, which are Gaussian white
: ; Jjoise, we can predict the range of the required development

depends onV (t), which means that uncertainties depend Onperiod.. The range due to uncertainties is obtained using the
’ gquations below.

the number of detected faults. We compare three differen
types of dependencies oft) on N(¢). The first type is where
~v(t) = N(t)odw(t). The second type is whergt) does not
depend onN (¢): v(t) = odw(t). The third type is where(t)
depends on the inverse §ft): v(t) = 1/N(t)odw(t). We

We assume that the detected faults obey equation (8)
and that the detection rate has an uncertaintpat is time
independent, which leads to

vary «a(t) and the coefficient oflw(t), and simulate models Nyas

using equation (6). Table | summarizes the types(@j and of Ny (t) = T+ bexp—(a 1 0)1) (11)
the coefficient ofdw(t) and their corresponding situations. To xpr—ia

apply GSRM, a type in Table | and past data must be selected

to calculate the parameters. N_(@®) Ninaz (12)

T 1+ bexp{—(a — 0)t}
A. Uncertainty and Time-dependence

For N, (1), the rate of development is faster than f6(¢). For

In development, faults are detected and debugged. Th . .
detected faults are counted and used to predict when the projet%r (1), the rate of development is slower than fé(¢). Using

will end. A project has a lot of uncertain elements, and the1€S€ €quations, we can establish the range from the shortest
predicted development period is almost never long enougHj_evelopment period to the longest. The development periods
GSRM can describe the uncertainty of the applied developmert'® €xPressed as
]‘ Nmal‘
In{ — -1 13

and calculate the uncertainty of fault detection.
1
;3. Time Range of Development

Cats

We describe the uncertainty asiw, which is basically ty(t) =
Gaussian white noise and can be obtained from past data.
Because the uncertainty is difficult to calculate from equation
(5), we assume there are some limits to obtaitw in
guantitative manner. The result can be useful. We start b
defining a in terms obdw from equation (5) as

The development period usually ends when a certain per-
a=a(t)+ odw(t) (7)  centage of expected faults (typically 95%) are detected and
) ~ removed. Using equation (13), the range of the development
However, equation (5) cannot be solved due to the timeperiod can be calculated before the development period ac-
dependence of. as shown in equation (7). Therefore, we tyally ends. The range is defined a8 = t_ — ¢, and is
assume that is time-independent with an added tefiwhich  expressed as

is small. This assumption allows equation (5) to be solved, and

can be rewritten as
—26 1[N,

At = —"= | |In{ - =22 1 14

‘Uzt(t) = N(t)(a+ 6+ bN (1) ®) <a2—62>l {b( N )H (14)
Equation (8) can be solved as By calculating the development period range in the develop-
Nopaw ment, the delay risk can be predicted as well as the delay
N = 1+ bexp{—(a +0)t} 9) range. Figure 2 depicts the relations among these equations.
This equation is a logistic equation whe¥és the origin of the Figure 2 shows the time range of the same data with Figure

uncertainty.«+ ¢ is the gradient. The sign @fcan be positive 1. In figure 1, the time range is 26.30 weeks, however in figure
or negative. Ifé is negative, the gradient of the equation is 2 the time range is 6.40 weeks. These results show our method
small, whereas if it is positive, the gradient of the equation iss more meaningful to predict the end of the development than
large. that of NHPP.



TABLE I. THIS COMBINATIONS OF DYNAMICS AS CHARACTERIZED BY«/(t) AND ~(t).

1 (1) = N(H)odw(?) 72 (t) = odw(t) 150 = 1/N(Hodw(?)
a1 (t) = ai(const.) The number of detected faults per unit The number of detected faults per unit The number of detected faults per unjt
time is constant, and the uncertainty in- time is constant, and the uncertainty |stime is constant, and the uncertainty |s
crease near the end. This model is similarconstant at any given timeMpdel 1-2) greater at the start of the project than gt
to a logistic curve. Model 1-1) the end (e.g. the team matures over time).
(Model 1-3)
az(t) = a2(t < ti1) | The number of detected faults per unit The number of detected faults per urjit The number of detected faults per urit
as(t) = as(t > t1) time changes at;, and the uncertainty| time changes at;, and the uncertainty i§ time changes at;, and the uncertainty|
increases near the end (e.g. new membgrsonstant at any given timeModel 2-2) is greater at the start of the project than jat
join the project at timet1). (Model 2-1) the end. Kodel 2-3)
ag(t) oc t Both the number of detected faults per urjit The number of detected faults per urjit The number of detected faults per unit
time and the uncertainty increase near thetime increases, and the uncertainty is cgn-time increases, and the uncertainty |is
end (e.g. increasing manpower with time)). stant at any given timeModel 3-2) greater at the start of project than at the
(Model 3-1) end. Model 3-3)
|‘N+(f) T+ bexp{—(a + )t} At .
n 3 s
= E
2 —releasel g / -
3 -=-[1:15] £ - Model 1
b+ < 7 Model 2
9 - E ) -~ Model 3
o 8 ;
a —+ 8 /
- /
. Nimaz S Wy
N = 1+ bexp{—(a — )t} %
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Time

Nonazx
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Fig. 2. Relationship between the equations 16(t), N4 (t) and N_(t),
and At, t4 andt_.

Fig. 3. Plot of the ratio of the cumulative number of detected faults at time
t to the total number of detected faults for the entire project where the x-axis
represents time in arbitrary units and 1 corresponds.tg and 0.5 tot; .

IV. SIMULATION AND DISCUSSION 1) Model 1-1: The number of detected faults per unit time
is constant, and the effect of uncertainty increases over time.
As we predicted, the simulation result fbfodel 1-1 fits the

The nine cases tabulated in Table | are modeled and plotté@gistic curve. This result cannot be obtained by using other
by column in Fig. 3, Fig. 4 and Fig. 5. For each column inStochastic models that do not include a non-linear term.

Table 1, the difference between each model is the parameter 2) Model 2-1: The number of detected faults per unit time
a(t). In Model 1-1, Model 2-1 and Model 3-1, based on changes at;, and the effect of uncertainty increases over time.

Model 1-1, we definedas = a1, az = 2a; andt; = tras /2 In agreement with our predictions, the resulting curve sharply
in Model 21 andas(t) = agt in Model 3-1. a(t)s setinthe 1S€S att; and then converges quickly. Other models cannot
same mannér along all columns (i.e(¢) is the same along describe such a time-dependent curve involving a nonlinear

. term.
each row in Table 1). 3) Model 3-1: Both the number of detected faults per unit

For Model 1-1, Model 2-1 andModel 3-1, the uncertainty time and the effect of uncertainty increase over time. We
v(t) = N(t)odw(t), which means that over time, the effect expected the resulting curve to show a steeper increase than
of the uncertainty increases. The situation corresponding tdlodel 1-1, but that was not the case. The reason for this is
Model 2-1 is that at timet,; the number of members of Fhat the_ non-linear term pulls the curve down because of the
the development team doubles. The situation correspondin§creasing growth rate. .
to Model 3-1 is that the members’ skills improve over %) Model1-2:The number of detected faults per unit time
time, effectively doubling the manpower by the timg,.. is constant, and the effect of uncertainty is constant. As we
For Model 1-2. Model 2-2 and Model 3-2 the uncertaﬁty predicted, the simulation result fddodel 1-2 fits the logistic
() = odw(t) "which means that over time. the effect of the CUrve and the uncertainty effects, in dependent of the number

uncertainty decreases. Fbrodel 1-3,Model 2-3 and Model of faults. As can be seen in Fig. 4, the curve fits the logistic
3.3 the uncertaintyy(t). _ l/N(t)crdl,u(t) which means that Ccurve better than foModel 1-1. This result cannot be obtained

over time, the effect of the uncertainty decreases by using other stochastic models that do not include a non-
' ' linear term.
The purpose of the simulations is to confirm that our ap- ) Model 2-2: The number of detected faults per unit time
proach can assess software reliability under dynamic changé§anges at;, and the effect of uncertainty is constant. In
and uncertainties in development, and that it can adapt to th@dreement with our predictions, the resulting curve sharply

models above and produce appropriate results. We use a Morfiges até; and then converges quickly. Other models cannot
Carlo method to examine these models. describe such a time-dependent curve involving a non-linear

term.

A. Simulation



TABLE II. COMPARISON OFGSRMAND NHPPMODELS USING
= DATASET 1.

=0 NHPP | S-Shaped| GSRM
e RSS | 67.21 35.14 11.2
= AIC 106.5 87.62 59.90

/ —— Model 1

Model 2
4 -~ Model 3

/ B. Comparison with the NHPP models

Ratio of detected faults to total faults
N

The NHPP model is one of many proposed reliability

models. In this section, we discuss the differences between
GSRM and NHPP models using actual development data for
a given situation when the growth rate is time-independent.
This limitation is imposed because the NHPP model cannot

Fig. 4. The same parameters are plotted as in Fig.3, but for Models 1-2, 2- ; . ; ;
and 3-2. InModel 1-2, the number of detected faults per unit time is constant. Be applled to other time dependent situations.

In Model 2-2, the number of detected faults per unit time changes atn l) Dataset 1: This development dataset is from reference
Model 3-2, the number of detected faults per unit time increases. . . P .

[7] written by Goel and Okukmoto. The data are originally
from the U.S. Navy Fleet Computer Programming Center, and
consist of the errors in software development. Figure 6 plots
the results using the NHPP model and GSRM. The parameters

Time

-t 30

Model 1 25
Model 2
7 ~ -~ Model 3

Ratio of detected faults to total faults

Detected faults
=
T

Time 10 |

Fig. 5. The same parameters are plotted as in Fig.3, but for Models 1-3, 2-3 5]
and 3-3. InModel 1-3, the number of detected faults per unit time is constant. , logistic
In Model 2-3, the number of detected faults per unit time changes atn £ NHPP - ——-

data
I I I I

Model 3-3, the number of detected faults per unit time increases. 5 = 00 50 200 250
Time (day)
Fig. 6. Comparison of GSRM and the NHPP model.

6) Model 3-2: The number of detected faults per unit time
increases over time, and the effect of uncertainty is constantor both GSRM and the NHPP model are calculated by R [1],
We expected the resulting curve to show a steeper increasehich is a language and environment for statistical computing
thanModel 1-2, but that was not the case. The reason for thisand graphics. The residual sum of squares(RSS) and Akaike’s
is that the non-linear term pulls the curve down because of thenformation Criterion (AIC) are calculated from these models
increasing growth rate. and the development data (Table Il). These results show that

7) Model 1-3: The number of detected faults per unit time GSRM provides a better approximation than the NHPP models
is constant, and the effect of uncertainty decreases over timbecause GSRM is more flexible due to the non-linear term.
As we predicted, the simulation result fbtodel 1-3 fits the
logistic curve, and the effect of uncertainty is large at the start
of development. This result cannot be obtained by using othe)

stochastic models that do not include a non-linear term. )
8) Model 2-3: The number of detected faults per unit time CONSIStS of 188 software components (Table Il). The data
contain the cumulative number of faults and their detected

han nd the effect of uncertaint r ver time; X
changes at;, and the effect of uncertainty decreases ove © imes for the three different releases of a software program.

In agreement with our predictions, the resulting curve sharply_. .
rises atf, and then converges quickly. Other models canno igures 7-9 plot the results for each release using the NHPP

describe such a time-dependent curve involving a non-lineag, o, - i

2) Dataset 2: The second development dataset is from
ference [15] written by C. Stringfellow et al. The data come
rom three releases of a large medical record system, which

DATASET 2. NUMBER OF WEEKS FOR DEVELOPMENT AND

term. o THE NUMBER OF FAULTS FOR THE THREE DIFFERENT RELEASES OF A
9) Model 3-3: The number of detected faults per unit time LARGE MEDICAL RECORD SYSTEM
increases over time, and the effect of uncertainty decreases
over time. We expected the resulting curve to show a steeper Weeks | Number of faults
increase thaModel 1-3, but that was not the case. The reason Release 1| 18 176
.. . Release 2 17 204
for this is that the non-linear term pulls the curve down because Release 3 13 -

of the increasing growth rate.



model and GSRM. The parameters are calculated by R [1] for
both GSRM and the NHPP model. Then these equations and
developmental data are used to calculate RSS and the AIC
(Table IV). Furthermoreg is calculated, and the upper and
lower limits are simulated and calculated. Almost all of the e
real data points are contained within the calculated upper and '
lower limits. GSRM produces a good fit for release 1 (Figure
7) as the curve for the lower limit corresponds to the worst- /
case scenario, indicating that if the development is continued .

until 95% of the 176 faults are detected, five more weeks are =
necessary than it actually took to complete the development. : T
However, the upper and lower limits are almost the same for
the release 2 (Figure 8), suggesting that the development doeg. 7. cumulative number of detected faults for the entire project of release
not have critical uncertainties. Additionally, the GSRM results1 versus the elapsed number of weeks. releasel, NHPP, Our Mpdahd
realize a gOOd fit for release 3 (Figure. 9)' and although most represent the_a(;tual data, the _fit using NHPE, the fit L_Jsing GSRM, the
of the data points are within the curves for the upper and |OWGPrEdICted upper limit, and the predicted lower limit, respectively.

limits, a few are above the upper curve.

releasel NHPP Our Model - +

Number of Faults

Time [week]

release2 NHPP Our Model - +

TABLE V. COMPARISON OFGSRMWITH THE NHPPMODELS USING

DATASET 2.
NHPP | S-Shaped| GSRM PR —— ]
Release 1| RSS | 4612 3246 1310 ]

AIC 158.9 152.6 136.3
Release 2| RSS | 696.1 3489 473.7
AIC 119.4 145.8 112.8
Release 3| RSS | 264.8 181.1 158.8
AIC 84.07 79.14 77.43

Number of Faults

3) Dataset 3:We collected the third development dataset 7 IR
from Yahoo Japan Corporation in 2013. The data comes from Tiem week]
a platform of a search ‘?”9'”9- A platform consists of Sevel’l]-'ig. 8. Cumulative number of detected faults for the entire project of release
major modules: messaging, storage, Ul, common, CONSUMES,versus the elapsed number of weeks. Legend is the same as Figure 7.
control-api, and data-api. The modules manage development
using Jenkins and track faults with it. Table V shows each

module’s faults. Figures 10-12 plot the actual number of released <o NHPP ———OurModel - - =
faults and the predicted number of faults using GSRM for | |
messaging, common and consumer. Table VI compares GSRM i = e
to the NHPP model. The results demonstrate that GSRM more =
accurately. 2
TABLE V. NUMBER OF FAULTS IN DATASET3. %
Module Name | Days | Number of faults | Predicted faults :
messaging 206 240 232.88 . e
storage 194 50 54.63 |
Ul 187 148 144.09 ’ :
common 184 134 126.72 Timelweek]
consumer 157 63 58.50

Fig. 9. Cumulative number of detected faults for the entire project of release

Cg;g’_;i?' 122 1757 fffgo 3 versus the elapsed number of weeks. Legend is the same as Figure 7.
TABLE VI. COMPARISON OFGSRMAND THE NHPPMODEL USING
DATASET 3.
Module Name NHPP [ S-Shaped][ GSRM 8 e booeeneee boreeanes
messaging | RSS | 50626 31510 12240 3 3 3 3 3
AIC 1971 1857 1632 w 84
storage RSS | 409 592 232 7
AIC 253 592 226 5 g
Ul RSS | 47250 8160 2416 o
AIC 1279 1019 841 s |
common RSS | 357852 6824 7124 -
AIC 1443 912 920 o ; | | :
consumer RSS | 13168 622 514 T 1 1 1 i
AIC 521 329 319 0 100 200 300 400
control-api RSS 1913 1500 784 bay
] AIC 451 433 388 Fig. 10. Plot of the number of faults over time for the messaging module.
data-api RSS | 9560 3359 1001 Circles and solid line indicate the actual faults and predicted faults by GSRM,
AIC 1036 883 707 respectively.



TABLE VIII. At FOR EACH RELEASES UNIT TIME IS WEEKS.

All [L:A5] | [1:12] | [1:9] | [L7]
- - - - Release 1| 5.314 | 6.395 | 8.436 - -
A SRS S b Release 2| 0.771 | 0.727 | 0.679 - 0.263
; ; ; ; Release 3| 2.287 - 4.075 | 2.754 | 3.254

100 150 200 250

g TABLE IX. RANGES OF THENHPPMODEL AND GSRMIN DATASET 3.
s oo Module Name | NHPP [ GSRM
messaging 1309 58.13
B storage 219 86.92
Ul 3308 17.01
o common 58162 -
! ! ! ! consumer NaN -
0 100 200 300 control-api 421 14.62
Day data-api 444 72.41

Fig. 11. Plot of the number of faults over time for the common module.
Circles and solid line indicate the actual faults and predicted faults by GSRM,

respectively. All of the ranges from GRSM are less than those of NHPP.

At least one of the NHPP ranges is 2.5 times greater than
those of GRSM, demonstrating that the NHPP’s range is not
meaningful for predicting when development will end.

Table X showsAt of each module’s faults and that
predicted using GSRM and a partial dataset. By comparing
to the data in Table V, some modules are well predicted
during development, and almost all the GSRM results are
well fitted and meaningful to predict when development will
end. However, the common and consumer modules cannot
be predicted because the predictions using partial data are
inaccurate. The prediction using the partial dataset for the
common (consumer) module is 101.74 (98.03) days, while the
actual development is 184 (157) days.
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Fig. 12. Plot of the number of faults over time for the consumer module.D. Summary

Circles _and solid line indicate the actual faults and predicted faults by GSRM, Wide applicability (RQ1):Our simulations applied the reli-
respectively. - e . .
ability growth models to nine types of development situations,
which are characterized by two uncertainty elements related
to fault detection. Although existing models can describe only
one of these situations with additional limitations, GSRM
The time range 4t) when a development is predicted to can describe several of these situations. This is primarily
end is calculated using GSRM as well as by the NHPP modebecause existing models cannot handle time-dependent growth
In the NHPP model, the range is determined by using the uppeates without limitations. In contrast, GSRM can handle time-
and lower boundaries to define a confidence interval of 90%dependence, and only the appropriate type of situation must be

1) Dataset 2: In dataset 2A¢ is determined by GSRM inputted. Additionally, GSRM has a scheme for development

when the upper and lower boundaries cross the 85% mark &ncertainties and can construct a model involving uncertainties.
the total number of predicted faults. Table VII shoks for Comparison with NHPP model (RQ2J3iven a situation

, . where the growth rate is time-independent, we used two
GSRM and the NHPP model\t’s obtained by GSRM have a ’
40% narrower width than those obtained by the NHPP mode ctual datasets and compared GSRM to the NHPP model.

and each dataset lies almost entirely within the time rangefsahe results show a precise convergence of the numbers of
obtained by GSRM. Table VIIl showa¢ predicted based on ults and the appropriate development terms with GSRM. The

. . convergence precision is at least 12% higher for GSRM than
tcri“:’Fé'\e/lv;i'nrgn:n{)aigzgggfﬁg t-mea\r/naé%ﬁﬁf ggg ia:é% ?c?r tfor the NHPP model, demonstrating that GSRM can describe

ievelopr P S t%‘Eﬁ]‘tware growth more realistically than previously proposed
predictions increases. The results indicate that GSRM can bl%odels based on the NHPP model. Thus, GSRM may provide
used to predict delays in development. developers with a more accurate plan for releasing software.

C. Prediction of time ranges

TABLE VIl.  PREDICTED RANGES OF THENHPPMODEL AND GSRM Predictions involving uncertainties (RQ3):For two
FOR EACH DATASET. UNIT TIME IS WEEKS. datasets, GSRM is able to model the uncertainties, and calcu-
NAPP | GSRM late At to predict not only the total development time, but also
Release 1] 31.002 | 3.739 how long development will be delayed due to uncertainties.

Release 2| 2.890 1.051
Release 3| 9.601 3.739

At cannot be obtained with other models. Therefore, existing

models can only predict the day when the development will
2) Dataset 3:In dataset 3 At for GSRM or the NHPP be end, but not the length of a delay.

model is determined when the upper and lower boundaries Internal validity threats:In comparing models, we use two

cross the 70% mark of the total number of predicted faultdatasets, both of which were obtained by one organization

(Table IX). or company. Therefore, the data could contain mistakes or




TABLE X. NUMBER OF FAULTS IN DATASET3.
Module Name | Predicted end dayg Predicted left days| Number of faults | Predicted faults| Predicted range
messaging 173.33 25 198 230 58.13
storage 201.36 60 41 49 86.92
Ul 184.69 57 117 173 17.01
common 101.74 -23 107 96 -
consumer 98.03 -3 52 53 -
control-api 199.85 76 58 97 14.62
data-api 156.39 43 124 145 72.41

some other false elements. Moreover, the data were too oldz]
to compare with recent developments. However, recent studies
also use these data so the validity should be protected.

External validity threats:We only tested GSRM with two 3]
datasets, which is insufficient to make generalizations about
GSRM. Moreover, the datasets are old and the scales of theiy,
systems are smaller than recent systems. A future project will
use datasets related to large-scale systems. Additionally, we
only compared GSRM with the NHPP model. There are a lot [5]
of other proposed and applied models. Although these other
models have similar origins as the NHPP model, GSRM shouldl6]
also be compared to them.

V. RELATED WORK [71

Many different types of software reliability growth models
exist. Yamada et al. proposed an extend NHPP model, whichs]
is related to test-domain dependence [21]. The test-domain
dependent model includes the notion that the tester's skills[9]
should improve by degrees; thus, skills grow over time. The
test-domain dependent model adds additional assumptions &
the NHPP model. 1]

Although water fall development has not been applied to
software reliability models, Fujii et al. developed a quanti-[12]
tative software reliability assessment method via incremental
development processes, which is a type of agile softwaré3l
development based on the familiar non-homogeneous Poisson
processes [5]. Fujii et al. used both the number of faults an§*
software metrics to demonstrate software reliability predictiong!®!

via a case study. [16]

VI. CONCLUSION

Using GSRM, we successfully simulated developmentsm]
containing uncertainties and dynamic elements. We obtained
the time-dependent curve, which is not possible using othensg]
models. GSRM can be used to predict the length of the devel-
opment when the team composition drastically changes durin
development as well as to simulate and analyze nine types
developments. Furthermore, we were able to define uncertaing0
values from actual data containing information on the fault ]
during development, and apply GSRM to three datasets t&l]
calculate At, including the range of possible development
times considering the uncertainty values. We also examineQZ]
how well GSRM can predict the required development time
using actual datasets. By using past data, GSRM can calculate
the uncertainties with and predict how long a project will
take. In the future, we aim to find methods to quantitatively
evaluate teams or team members considering uncertainties and
to optimize teams to suit particular projects using GSRM.
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