
Predicting Time Range of Development Based on
Generalized Software Reliability Model

Kiyoshi Honda, Hidenori Nakai
Hironori Washizaki, Yoshiaki Fukazawa

Waseda University, Tokyo, Japan
Email: khonda@ruri.waseda.jp, hide-and-seek@toki.waseda.jp

{washizaki, fukazawa}@waseda.jp

Ken Asoh, Kaz Takahashi, Kentarou Ogawa
Maki Mori, Takashi Hino, Yosuke HAYAKAWA

Yasuyuki Tanaka, Shinichi Yamada, Daisuke Miyazaki
Yahoo Japan Corporation, Tokyo, Japan

Email: {keasoh, katakaha, keogawa, makimori, tashino
yhayakaw, yasutana, shyamada, daimiyaz}@yahoo-corp.jp

Abstract—Development environments have changed drasti-
cally, development periods are shorter than ever and the number
of team members has increased. These changes have led to
difficulties in controlling the development activities and predicting
when the development will end. Especially, quality managers
try to control software reliability and project managers try to
estimate the end of development for planing developing term and
distribute the manpower to other developments. In order to assess
recent software developments, we propose a generalized software
reliability model (GSRM) based on a stochastic process, and
simulate developments that include uncertainties and dynamics.
We also compare our simulation results to those of other software
reliability models. Using the values of uncertainties and dynamics
obtained from GSRM, we can evaluate the developments in a
quantitative manner. Additionally, we use equations to define
the uncertainty regarding the time required to complete a
development, and predict whether or not a development will be
completed on time. We compare GSRM with an existing model
using two old actual datasets and one new actual dataset which
we collected, and show that the approximation curve generated
by GSRM is about 12% more precise than that generated by
the existing model. Furthermore, GSRM can narrow down the
predicted time range in which a development will end to less than
40% of that obtained by the existing model.

I. I NTRODUCTION

Software reliability is a critical component of computer
system availability. Especially, quality managers try to control
software reliability and project managers try to estimate the
end of development for planing developing term and distribute
the manpower to other developments. In a estimating method,
a manager collects faults data, which contains the number of
faults and the time when faults are detected, and estimates how
many faults remained using the faults data applying a predic-
tion model, which is called software reliability growth model.
Thus, software reliability growth models have been developed
to indicate whether enough faults have been removed to release
the software. Although the logistic curve and Gompertz curve
[19] are well-known software reliability growth curves, they
cannot account for the dynamics of software development,
which are affected by various development environment el-
ements, such as the skills of the development team, changing
requirements, etc. However, these curves cannot account for

0In our paper[8] we merely given proposal only generalized software
reliability model (GSRM). On the other hand, in this paper we suggested
the ranges of the term when developments will end and compared GSRM
with other model.

the dynamics of software development. Developments are
affected by various elements of the development environment,
such as the skills of the development team and changing
requirements.

Examples of software reliability models include the “Times
Between Failures Models” and “Failure Count Models” [6].
We have used the “Failure Count Model,” which is based
on counting failures and probability methods. The Goel-
Okumoto NHPP Model and the Musa Execution Time Model
are examples of this type of model [6]. Recent studies by
Tamura [16], Yamada [18], Zhang [22], Cai [3], Kamei [9],
Dohi [4], Schneidewind [14], Nguyen [11], and Okamura [12]
have attempted to describe the dynamics of developments
using stochastic differential equations. Although many models
have been proposed, surveyed, and compared [17] [2] [10],
most failure count models cannot account for the dynamics of
development, (e.g., drastic changes in the development team
composition or significant reductions in the development time),
and cannot precisely predict when developments will end.

Many current models only give the number of faults that
will be found within some time range. Here, we propose
a model called the generalized software reliability model
(GSRM), which can describe several development situations
that include random factors (e.g., skills of the development
team and development environment), to provide a time range
in which development will end. Although earlier studies use
linear stochastic differential equations, our research indicates
that non-linear stochastic differential equations lead to more
elaborate equations that can model situations more realistically.
Furthermore, GSRM can quantify uncertainties influenced by
random factors. To more accurately predict the time required
to complete development and to optimize development teams
and environments, uncertainties must be quantified. Thus, this
study aims to answer the following three research questions.

RQ1: How much better is GSRM at describing the
growth of software reliability in different situations
compared to other models (e.g., NHPP)?

RQ2: How accurately does GSRM describe the conver-
gence of the number of faults and the appropriate
development term in a given situation compared to
other models?

RQ3: How does GSRM predict when a development will
end, considering the dispersion due to uncertainty?

Our contributions are as follows:

• A software reliability model applicable to nine devel-
opment situations.

• A generalized software reliability model, which is
12% more precise than existing models.

• A new method to predict when development will end.

II. BACKGROUND

A. Software reliability model

Although many software reliability models have been
proposed, the most popular is the non-homogeneous Poisson
process (NHPP) model. Hence, we compare GSRM with
NHPP using the development data containing the number of
faults detected in a given time. Some models quantitatively
assess software reliability from the fault data observed in
the software-testing phase; similar to these software reliability
models, GSRM is based on a fault counting [6] model. The
fault counting software reliability model is formulated by
counting the number of faults detected in a given time, assum-
ing that faults are detected based on a stochastic process. The
NHPP model assumes that the stochastic process governing the
relationship between fault detection and a given time interval
is a Poisson process. In actual developments, counting the
faults predicts the number of remaining faults and provides an
indication of when the development will end. To understand
how our model was developed, we begin with a description of
the general NHPP model. In the NHPP model, the probability
of detecting n faults is expressed as

Pr{N(t) = n} =
{H(t)}n

n!
exp {−H(t)} (1)

N(t) is the number of faults detected by timet, andH(t) is the
expected cumulative number of faults detected[13]. Assuming
that the number of all the faults is constant atNmax, the
number of detected faults at a unit time is proportional to
the number of remaining faults. These assumptions lead to the
following equation

dH(t)

dt
= c(Nmax −H(t)) (2)

where c is a proportionality constant. Equation (2) can be
solved as

H(t) = Nmax(1− exp (−ct)) (3)

Models derived based on equation 3 are called exponential
software reliability growth models. The first example of this
type of model was proposed by Goel and Okumoto [7].
Later Yamada et al. derived a delayed S-shaped software
reliability growth (S-Shaped) model from equation (3) with a
fault isolation process [20]. Equation (3) can be rewritten for
the delayed S-shaped software reliability growth model using
HS(t), which is the expected cumulative number of faults
detected in the S-shaped model, as

HS(t) = Nmax{1− (1 + ct) exp (−ct)} (4)

B. Motivating example

Existing software reliability growth models give us the
number of faults will be found with some ranges of raults,
however the models cannot precisely indicate the time when
the development will end. Figure 1 shows an example dataset

Fig. 1. Time ranges based on NHPP model.

from reference [15] written by C. Stringfellow et al. , which
is drawn with three models: the normal NHPP, its upper limit,
and its lower limit, which indicate a greater deal of faults than
normal NHPP and a less than normal NHPP, whose values are
calculated with confidence interval as 70%. For example, the
end for the “Lower Limit Time” is twice that of the “Upper
Limit Time,” indicating that the predictions are not meaningful.
Hence, we try to construct a new method which can define the
time ranges of development at section 3.2.

In this paper, we compare GSRM with these models. Equa-
tion (3) results in an exponentially shaped software reliability
graph. However, actual software reliability graphs typically
follow a logistic curve or a Gompertz curve [19], which are
more complex. Therefore, we propose a new model, GSRM,
which can fit either a logistic curve or an exponentially-shaped
curve for use in actual developments.

III. G ENERALIZED SOFTWARE RELIABILITY MODEL

For our software reliability model, we extend a nonlinear
differential equation that describes the fault content as a logis-
tic curve into an Ito-type stochastic differential equation. We
start with equation. (5), which is called the logistic differential
equation.

dN(t)

dt
= N(t)(a+ bN(t)) (5)

N(t) is the number of detected faults by timet, a defines the
growth rate, andb is the carrying capacity. Ifb = 0, then the
solutions of this equation become exponential functions. Equa-
tion (5) can be extended into a stochastic differential equation
because actual developments do not strictly obey equation
(5) due to the numerous uncertainties and dynamic changes.
Such dynamic elements are considered time-dependent and
to contain uncertainty; these factors are expressed ina. The
time-dependence of a can be used to describe situations such
as skill improvement of development members and increases
in the growth rate, while the uncertainty ofa can describe
parameters such as the variability of development members
and the environment. We analyze the growth of software with
an emphasis on the testing phase by simulating the number of
detected faults. Software development is assumed to have the
following properties:

1) The total number of faults is constant.
2) The number of faults that can be found varies de-

pending on time.

3) The number of faults that can be found contains
uncertainty, which can be simulated with Gaussian
white noise.

Considering these properties, equation (5) can be extended to
an Ito-type stochastic differential equation witha(t) = α(t)+
σdw(t) as

dN(t) = (α(t) +
σ2

2
+ βN(t))N(t)dt+N(t)σdw(t) (6)

N(t) is the number of detected faults by timet, α(t)+σ2/2+
σdw(t) is the differential of the number of detected faults
per unit time,γ(t) = N(t)σdw(t) is the uncertainty term,
σ is the dispersion, andβ is the non-linear carrying capacity
term. This equation has two significant terms,α and dw; α
affects the end point of development, anddw affects the growth
curve through uncertainties. In particular, the stochastic term
depends onN(t), which means that uncertainties depend on
the number of detected faults. We compare three different
types of dependencies ofγ(t) onN(t). The first type is where
γ(t) = N(t)σdw(t). The second type is whereγ(t) does not
depend onN(t): γ(t) = σdw(t). The third type is whereγ(t)
depends on the inverse ofN(t): γ(t) = 1/N(t)σdw(t). We
vary α(t) and the coefficient ofdw(t), and simulate models
using equation (6). Table I summarizes the types ofα(t) and of
the coefficient ofdw(t) and their corresponding situations. To
apply GSRM, a type in Table I and past data must be selected
to calculate the parameters.

A. Uncertainty and Time-dependence

In development, faults are detected and debugged. The
detected faults are counted and used to predict when the project
will end. A project has a lot of uncertain elements, and the
predicted development period is almost never long enough.
GSRM can describe the uncertainty of the applied development
and calculate the uncertainty of fault detection.

We describe the uncertainty asσdw, which is basically
Gaussian white noise and can be obtained from past data.
Because the uncertainty is difficult to calculate from equation
(5), we assume there are some limits to obtainσdw in
quantitative manner. The result can be useful. We start by
defining a in terms ofσdw from equation (5) as

a = α(t) + σdw(t) (7)

However, equation (5) cannot be solved due to the time-
dependence ofa as shown in equation (7). Therefore, we
assume thata is time-independent with an added termδ, which
is small. This assumption allows equation (5) to be solved, and
can be rewritten as

dN(t)

dt
= N(t)(α+ δ + bN(t)) (8)

Equation (8) can be solved as

N =
Nmax

1 + b exp{−(α+ δ)t}
(9)

This equation is a logistic equation whereδ is the origin of the
uncertainty.α+δ is the gradient. The sign ofδ can be positive
or negative. Ifδ is negative, the gradient of the equation is
small, whereas if it is positive, the gradient of the equation is
large.

The sign ofδ provides the limitation of the uncertainty. If
δ is negative (positive), the growth of the graph provides the
lower (upper) limit. The lower and upper limits are calculated
in the next section.δ is calculated as

δi = − 1

ti
ln

{
1

b

(
N(ti)

Ni
− 1

)}
− α (10)

The subscripti indicates that the data is for theith fault
detected atti. i differs from the approximate value atti.
Finally, the average and variance ofδ are obtained, which are
used to construct an equation for the software reliability growth
model.

By using δ and its distribution, which are Gaussian white
noise, we can predict the range of the required development
period. The range due to uncertainties is obtained using the
equations below.

We assume that the detected faults obey equation (8)
and that the detection rate has an uncertaintyδ that is time
independent, which leads to

N+(t) =
Nmax

1 + b exp{−(α+ δ)t}
(11)

N−(t) =
Nmax

1 + b exp{−(α− δ)t}
(12)

ForN+(t), the rate of development is faster than forN(t). For
N−(t), the rate of development is slower than forN(t). Using
these equations, we can establish the range from the shortest
development period to the longest. The development periods
are expressed as

t±(t) = − 1

α± δ

[
ln

{
1

b

(
Nmax

N
− 1

)}]
(13)

B. Time Range of Development

The development period usually ends when a certain per-
centage of expected faults (typically 95%) are detected and
removed. Using equation (13), the range of the development
period can be calculated before the development period ac-
tually ends. The range is defined as∆t = t− − t+, and is
expressed as

∆t =

(
−2δ

α2 − δ2

)[
ln

{
1

b

(
Nmax

N
− 1

)}]
(14)

By calculating the development period range in the develop-
ment, the delay risk can be predicted as well as the delay
range. Figure 2 depicts the relations among these equations.

Figure 2 shows the time range of the same data with Figure
1. In figure 1, the time range is 26.30 weeks, however in figure
2 the time range is 6.40 weeks. These results show our method
is more meaningful to predict the end of the development than
that of NHPP.

TABLE I. THIS COMBINATIONS OF DYNAMICS AS CHARACTERIZED BYα(t) AND γ(t).

γ1(t) = N(t)σdw(t) γ2(t) = σdw(t) γ3(t) = 1/N(t)σdw(t)
α1(t) = a1(const.) The number of detected faults per unit

time is constant, and the uncertainty in-
crease near the end. This model is similar
to a logistic curve. (Model 1-1)

The number of detected faults per unit
time is constant, and the uncertainty is
constant at any given time. (Model 1-2)

The number of detected faults per unit
time is constant, and the uncertainty is
greater at the start of the project than at
the end (e.g. the team matures over time).
(Model 1-3)

α2(t) = a2(t < t1)
α2(t) = a3(t ≥ t1)

The number of detected faults per unit
time changes att1, and the uncertainty
increases near the end (e.g. new members
join the project at timet1). (Model 2-1)

The number of detected faults per unit
time changes att1, and the uncertainty is
constant at any given time. (Model 2-2)

The number of detected faults per unit
time changes att1, and the uncertainty
is greater at the start of the project than at
the end. (Model 2-3)

α3(t) ∝ t Both the number of detected faults per unit
time and the uncertainty increase near the
end (e.g. increasing manpower with time).
(Model 3-1)

The number of detected faults per unit
time increases, and the uncertainty is con-
stant at any given time. (Model 3-2)

The number of detected faults per unit
time increases, and the uncertainty is
greater at the start of project than at the
end. (Model 3-3)

Fig. 2. Relationship between the equations forN(t), N+(t) andN−(t),
and∆t, t+ and t−.

IV. SIMULATION AND DISCUSSION

A. Simulation

The nine cases tabulated in Table I are modeled and plotted
by column in Fig. 3, Fig. 4 and Fig. 5. For each column in
Table I, the difference between each model is the parameter
α(t). In Model 1-1, Model 2-1 and Model 3-1, based on
Model 1-1, we defineda2 = a1, a3 = 2a1 and t1 = tmax/2
in Model 2-1, andα3(t) = a1t in Model 3-1. α(t)s set in the
same manner along all columns (i.e.,α(t) is the same along
each row in Table I).

For Model 1-1, Model 2-1 andModel 3-1, the uncertainty
γ(t) = N(t)σdw(t), which means that over time, the effect
of the uncertainty increases. The situation corresponding to
Model 2-1 is that at time t1 the number of members of
the development team doubles. The situation corresponding
to Model 3-1 is that the members’ skills improve over
time, effectively doubling the manpower by the timetmax.
For Model 1-2, Model 2-2 and Model 3-2, the uncertainty
γ(t) = σdw(t), which means that over time, the effect of the
uncertainty decreases. ForModel 1-3,Model 2-3 andModel
3-3, the uncertaintyγ(t) = 1/N(t)σdw(t), which means that
over time, the effect of the uncertainty decreases.

The purpose of the simulations is to confirm that our ap-
proach can assess software reliability under dynamic changes
and uncertainties in development, and that it can adapt to the
models above and produce appropriate results. We use a Monte
Carlo method to examine these models.

Fig. 3. Plot of the ratio of the cumulative number of detected faults at time
t to the total number of detected faults for the entire project where the x-axis
represents time in arbitrary units and 1 corresponds totmax and 0.5 tot1.

1) Model 1-1: The number of detected faults per unit time
is constant, and the effect of uncertainty increases over time.
As we predicted, the simulation result forModel 1-1 fits the
logistic curve. This result cannot be obtained by using other
stochastic models that do not include a non-linear term.

2) Model 2-1: The number of detected faults per unit time
changes att1, and the effect of uncertainty increases over time.
In agreement with our predictions, the resulting curve sharply
rises att1 and then converges quickly. Other models cannot
describe such a time-dependent curve involving a nonlinear
term.

3) Model 3-1: Both the number of detected faults per unit
time and the effect of uncertainty increase over time. We
expected the resulting curve to show a steeper increase than
Model 1-1, but that was not the case. The reason for this is
that the non-linear term pulls the curve down because of the
increasing growth rate.

4) Model 1-2: The number of detected faults per unit time
is constant, and the effect of uncertainty is constant. As we
predicted, the simulation result forModel 1-2 fits the logistic
curve and the uncertainty effects, in dependent of the number
of faults. As can be seen in Fig. 4, the curve fits the logistic
curve better than forModel 1-1. This result cannot be obtained
by using other stochastic models that do not include a non-
linear term.

5) Model 2-2: The number of detected faults per unit time
changes att1, and the effect of uncertainty is constant. In
agreement with our predictions, the resulting curve sharply
rises att1 and then converges quickly. Other models cannot
describe such a time-dependent curve involving a non-linear
term.

Fig. 4. The same parameters are plotted as in Fig.3, but for Models 1-2, 2-2
and 3-2. InModel 1-2, the number of detected faults per unit time is constant.
In Model 2-2, the number of detected faults per unit time changes att1. In
Model 3-2, the number of detected faults per unit time increases.

Fig. 5. The same parameters are plotted as in Fig.3, but for Models 1-3, 2-3
and 3-3. InModel 1-3, the number of detected faults per unit time is constant.
In Model 2-3, the number of detected faults per unit time changes att1. In
Model 3-3, the number of detected faults per unit time increases.

6) Model 3-2: The number of detected faults per unit time
increases over time, and the effect of uncertainty is constant.
We expected the resulting curve to show a steeper increase
thanModel 1-2, but that was not the case. The reason for this
is that the non-linear term pulls the curve down because of the
increasing growth rate.

7) Model 1-3: The number of detected faults per unit time
is constant, and the effect of uncertainty decreases over time.
As we predicted, the simulation result forModel 1-3 fits the
logistic curve, and the effect of uncertainty is large at the start
of development. This result cannot be obtained by using other
stochastic models that do not include a non-linear term.

8) Model 2-3: The number of detected faults per unit time
changes att1, and the effect of uncertainty decreases over time.
In agreement with our predictions, the resulting curve sharply
rises att1 and then converges quickly. Other models cannot
describe such a time-dependent curve involving a non-linear
term.

9) Model 3-3: The number of detected faults per unit time
increases over time, and the effect of uncertainty decreases
over time. We expected the resulting curve to show a steeper
increase thanModel 1-3, but that was not the case. The reason
for this is that the non-linear term pulls the curve down because
of the increasing growth rate.

TABLE II. COMPARISON OFGSRM AND NHPPMODELS USING

DATASET 1.

NHPP S-Shaped GSRM
RSS 67.21 35.14 11.2
AIC 106.5 87.62 59.90

B. Comparison with the NHPP models

The NHPP model is one of many proposed reliability
models. In this section, we discuss the differences between
GSRM and NHPP models using actual development data for
a given situation when the growth rate is time-independent.
This limitation is imposed because the NHPP model cannot
be applied to other time-dependent situations.

1) Dataset 1: This development dataset is from reference
[7] written by Goel and Okukmoto. The data are originally
from the U.S. Navy Fleet Computer Programming Center, and
consist of the errors in software development. Figure 6 plots
the results using the NHPP model and GSRM. The parameters

0

5

10

15

20

25

30

0 50 100 150 200 250

D
e

te
c
te

d
 f

a
u

lt
s

Time(day)

NHPP
data

logistic

Fig. 6. Comparison of GSRM and the NHPP model.

for both GSRM and the NHPP model are calculated by R [1],
which is a language and environment for statistical computing
and graphics. The residual sum of squares(RSS) and Akaike’s
Information Criterion (AIC) are calculated from these models
and the development data (Table II). These results show that
GSRM provides a better approximation than the NHPP models
because GSRM is more flexible due to the non-linear term.

2) Dataset 2: The second development dataset is from
reference [15] written by C. Stringfellow et al. The data come
from three releases of a large medical record system, which
consists of 188 software components (Table III). The data
contain the cumulative number of faults and their detected
times for the three different releases of a software program.
Figures 7-9 plot the results for each release using the NHPP

TABLE III. DATASET 2. NUMBER OF WEEKS FOR DEVELOPMENT AND

THE NUMBER OF FAULTS FOR THE THREE DIFFERENT RELEASES OF A

LARGE MEDICAL RECORD SYSTEM.

Weeks Number of faults
Release 1 18 176
Release 2 17 204
Release 3 13 77

model and GSRM. The parameters are calculated by R [1] for
both GSRM and the NHPP model. Then these equations and
developmental data are used to calculate RSS and the AIC
(Table IV). Furthermore,δ is calculated, and the upper and
lower limits are simulated and calculated. Almost all of the
real data points are contained within the calculated upper and
lower limits. GSRM produces a good fit for release 1 (Figure
7) as the curve for the lower limit corresponds to the worst-
case scenario, indicating that if the development is continued
until 95% of the 176 faults are detected, five more weeks are
necessary than it actually took to complete the development.
However, the upper and lower limits are almost the same for
the release 2 (Figure 8), suggesting that the development does
not have critical uncertainties. Additionally, the GSRM results
realize a good fit for release 3 (Figure. 9), and although most
of the data points are within the curves for the upper and lower
limits, a few are above the upper curve.

TABLE IV. COMPARISON OFGSRM WITH THE NHPPMODELS USING

DATASET 2.

NHPP S-Shaped GSRM
Release 1 RSS 4612 3246 1310

AIC 158.9 152.6 136.3
Release 2 RSS 696.1 3489 473.7

AIC 119.4 145.8 112.8
Release 3 RSS 264.8 181.1 158.8

AIC 84.07 79.14 77.43

3) Dataset 3: We collected the third development dataset
from Yahoo Japan Corporation in 2013. The data comes from
a platform of a search engine. A platform consists of seven
major modules: messaging, storage, UI, common, consumer,
control-api, and data-api. The modules manage development
using Jenkins and track faults with it. Table V shows each
module’s faults. Figures 10-12 plot the actual number of
faults and the predicted number of faults using GSRM for
messaging, common and consumer. Table VI compares GSRM
to the NHPP model. The results demonstrate that GSRM more
accurately.

TABLE V. NUMBER OF FAULTS IN DATASET3.

Module Name Days Number of faults Predicted faults
messaging 206 240 232.88

storage 194 50 54.63
UI 187 148 144.09

common 184 134 126.72
consumer 157 63 58.50
control-api 190 73 68.08

data-api 183 147 144.60

TABLE VI. COMPARISON OFGSRM AND THE NHPPMODEL USING

DATASET 3.

Module Name NHPP S-Shaped GSRM
messaging RSS 50626 31510 12240

AIC 1971 1857 1632
storage RSS 409 592 232

AIC 253 592 226
UI RSS 47250 8160 2416

AIC 1279 1019 841
common RSS 357852 6824 7124

AIC 1443 912 920
consumer RSS 13168 622 514

AIC 521 329 319
control-api RSS 1913 1500 784

AIC 451 433 388
data-api RSS 9560 3359 1001

AIC 1036 883 707

Fig. 7. Cumulative number of detected faults for the entire project of release
1 versus the elapsed number of weeks. release1, NHPP, Our Model,+, and
− represent the actual data, the fit using NHPP, the fit using GSRM, the
predicted upper limit, and the predicted lower limit, respectively.

Fig. 8. Cumulative number of detected faults for the entire project of release
2 versus the elapsed number of weeks. Legend is the same as Figure 7.

Fig. 9. Cumulative number of detected faults for the entire project of release
3 versus the elapsed number of weeks. Legend is the same as Figure 7.

0 100 200 300 400

0
10

0
20

0
30

0
40

0

Day

of

 Is
su

e

Fig. 10. Plot of the number of faults over time for the messaging module.
Circles and solid line indicate the actual faults and predicted faults by GSRM,
respectively.

0 100 200 300

0
50

10
0

15
0

20
0

25
0

Day

of

 Is
su

e

Fig. 11. Plot of the number of faults over time for the common module.
Circles and solid line indicate the actual faults and predicted faults by GSRM,
respectively.

0 50 100 150 200 250 300

0
20

40
60

80
10

0
12

0

Day

of

 Is
su

e

Fig. 12. Plot of the number of faults over time for the consumer module.
Circles and solid line indicate the actual faults and predicted faults by GSRM,
respectively.

C. Prediction of time ranges

The time range (∆t) when a development is predicted to
end is calculated using GSRM as well as by the NHPP model.
In the NHPP model, the range is determined by using the upper
and lower boundaries to define a confidence interval of 90%.

1) Dataset 2: In dataset 2,∆t is determined by GSRM
when the upper and lower boundaries cross the 85% mark of
the total number of predicted faults. Table VII shows∆t for
GSRM and the NHPP model.∆t’s obtained by GSRM have a
40% narrower width than those obtained by the NHPP model,
and each dataset lies almost entirely within the time ranges
obtained by GSRM. Table VIII shows∆t predicted based on
GSRM using a partial dataset. The values of∆t decrease as
the development proceeds and the amount of data used for the
predictions increases. The results indicate that GSRM can be
used to predict delays in development.

TABLE VII. PREDICTED RANGES OF THENHPPMODEL AND GSRM
FOR EACH DATASET. UNIT TIME IS WEEKS.

NHPP GSRM
Release 1 31.002 3.739
Release 2 2.890 1.051
Release 3 9.601 3.739

2) Dataset 3: In dataset 3,∆t for GSRM or the NHPP
model is determined when the upper and lower boundaries
cross the 70% mark of the total number of predicted faults
(Table IX).

TABLE VIII. ∆t FOR EACH RELEASES. UNIT TIME IS WEEKS.
All [1:15] [1:12] [1:9] [1:7]

Release 1 5.314 6.395 8.436 - -
Release 2 0.771 0.727 0.679 - 0.263
Release 3 2.287 - 4.075 2.754 3.254

TABLE IX. RANGES OF THENHPPMODEL AND GSRM IN DATASET 3.

Module Name NHPP GSRM
messaging 1309 58.13

storage 219 86.92
UI 3308 17.01

common 58162 -
consumer NaN -
control-api 421 14.62

data-api 444 72.41

All of the ranges from GRSM are less than those of NHPP.
At least one of the NHPP ranges is 2.5 times greater than
those of GRSM, demonstrating that the NHPP’s range is not
meaningful for predicting when development will end.

Table X shows∆t of each module’s faults and that
predicted using GSRM and a partial dataset. By comparing
to the data in Table V, some modules are well predicted
during development, and almost all the GSRM results are
well fitted and meaningful to predict when development will
end. However, the common and consumer modules cannot
be predicted because the predictions using partial data are
inaccurate. The prediction using the partial dataset for the
common (consumer) module is 101.74 (98.03) days, while the
actual development is 184 (157) days.

D. Summary
Wide applicability (RQ1):Our simulations applied the reli-

ability growth models to nine types of development situations,
which are characterized by two uncertainty elements related
to fault detection. Although existing models can describe only
one of these situations with additional limitations, GSRM
can describe several of these situations. This is primarily
because existing models cannot handle time-dependent growth
rates without limitations. In contrast, GSRM can handle time-
dependence, and only the appropriate type of situation must be
inputted. Additionally, GSRM has a scheme for development
uncertainties and can construct a model involving uncertainties.

Comparison with NHPP model (RQ2):Given a situation
where the growth rate is time-independent, we used two
actual datasets and compared GSRM to the NHPP model.
The results show a precise convergence of the numbers of
faults and the appropriate development terms with GSRM. The
convergence precision is at least 12% higher for GSRM than
for the NHPP model, demonstrating that GSRM can describe
software growth more realistically than previously proposed
models based on the NHPP model. Thus, GSRM may provide
developers with a more accurate plan for releasing software.

Predictions involving uncertainties (RQ3):For two
datasets, GSRM is able to model the uncertainties, and calcu-
late∆t to predict not only the total development time, but also
how long development will be delayed due to uncertainties.
∆t cannot be obtained with other models. Therefore, existing
models can only predict the day when the development will
be end, but not the length of a delay.

Internal validity threats:In comparing models, we use two
datasets, both of which were obtained by one organization
or company. Therefore, the data could contain mistakes or

TABLE X. NUMBER OF FAULTS IN DATASET3.

Module Name Predicted end days Predicted left days Number of faults Predicted faults Predicted range
messaging 173.33 25 198 230 58.13

storage 201.36 60 41 49 86.92
UI 184.69 57 117 173 17.01

common 101.74 -23 107 96 -
consumer 98.03 -3 52 53 -
control-api 199.85 76 58 97 14.62

data-api 156.39 43 124 145 72.41

some other false elements. Moreover, the data were too old
to compare with recent developments. However, recent studies
also use these data so the validity should be protected.

External validity threats:We only tested GSRM with two
datasets, which is insufficient to make generalizations about
GSRM. Moreover, the datasets are old and the scales of their
systems are smaller than recent systems. A future project will
use datasets related to large-scale systems. Additionally, we
only compared GSRM with the NHPP model. There are a lot
of other proposed and applied models. Although these other
models have similar origins as the NHPP model, GSRM should
also be compared to them.

V. RELATED WORK

Many different types of software reliability growth models
exist. Yamada et al. proposed an extend NHPP model, which
is related to test-domain dependence [21]. The test-domain
dependent model includes the notion that the tester’s skills
should improve by degrees; thus, skills grow over time. The
test-domain dependent model adds additional assumptions to
the NHPP model.

Although water fall development has not been applied to
software reliability models, Fujii et al. developed a quanti-
tative software reliability assessment method via incremental
development processes, which is a type of agile software
development based on the familiar non-homogeneous Poisson
processes [5]. Fujii et al. used both the number of faults and
software metrics to demonstrate software reliability predictions
via a case study.

VI. CONCLUSION

Using GSRM, we successfully simulated developments
containing uncertainties and dynamic elements. We obtained
the time-dependent curve, which is not possible using other
models. GSRM can be used to predict the length of the devel-
opment when the team composition drastically changes during
development as well as to simulate and analyze nine types of
developments. Furthermore, we were able to define uncertainty
values from actual data containing information on the faults
during development, and apply GSRM to three datasets to
calculate∆t, including the range of possible development
times considering the uncertainty values. We also examined
how well GSRM can predict the required development time
using actual datasets. By using past data, GSRM can calculate
the uncertainties with and predict how long a project will
take. In the future, we aim to find methods to quantitatively
evaluate teams or team members considering uncertainties and
to optimize teams to suit particular projects using GSRM.

REFERENCES

[1] The r project for statistical computing. http://www.r-project.org/

[2] M. Anjum et al. Analysis and ranking of software reliability models
based on weighted criteria value.I.J. Information Technology and
Computer Science, 2013.

[3] X. Cai et al. Software reliability modeling with test coverage: Ex-
perimentation and measurement with a fault-tolerant software project.
ISSRE, 2007.

[4] T. Dohi et al. Software reliability assessment models based on cumula-
tive bernoulli trial processes.Mathematical and Computer Modelling,
38, 2003.

[5] T. Fujii et al. Towards quantitative software reliability assessment in
incremental development processes.ICSE , 2011.

[6] A. Goel. Software reliability models: Assumptions, limitations, and
applicability. Software Engineering, IEEE Transactions on, SE-
11(12),1985.

[7] A. GOEL et al. Time-dependent error-detection rate model for software
reliability and other performance measures.Reliability, IEEE Transac-
tions on, R-28(3), 1979.

[8] K. Honda et al. A generalized software reliability model considering
uncertainty and dynamics in development.PROFES, 2013.

[9] Y. Kamei et al. Empirical evaluation of an svm-based software relia-
bility model. ISESE, 2006.

[10] R. Lai et al. A detailed study of nhpp software reliability models.
JOURNAL OF SOFTWARE, 7(6), 2012.

[11] E. A. Nguyenet al. The importance of data quality in software reliability
modeling.ISSRE, 2010.

[12] H. Okamuraet al. A multi-factor software reliability model based on
logistic regression.ISSRE, 2010.

[13] S. Osaki, editor.Stochastic Reliability and Maintenance Modeling.
Springer Berlin Heidelberg, 2002.

[14] N. Schneidewindet al. A complexity reliability model.ISSRE, 2009.

[15] C. Stringfellow et al. An empirical method for selecting software
reliability growth models.ISSRE, 2007.

[16] Y. Tamura et al. A flexible stochastic differential equation model in
distributed development environment.European Journal of Operational
Research, 168(1), 2006.

[17] K. Worwa. A discrete-time software reliability-growth model and its
application for predicting the number of errors encountered during
program testing.Control and Cybernetics, 34, 2005.

[18] S. Yamadaet al. Software reliability measurement and assessment with
stochastic differential equations.IEICE transactions on fundamentals of
electronics, communications and computer sciences, E77-A(1), 1994.

[19] S. Yamadaet al. S-shaped reliability growth modeling for software error
detection.Reliability, IEEE Transactions on, R-32(5), 1983.

[20] S. Yamadaet al. s-shaped software reliability growth models and their
applications.Reliability, IEEE Transactions on, R-33(4), 1984.

[21] S. Yamadaet al. Testing-domain dependent software reliability models.
Computers and Mathematics with Applications, 24(12), 1992.

[22] N. Zhanget al. Software reliability measurement and assessment with
stochastic differential equations. InWorld Automation Congress 2012,
2012.

