
Initial Industrial Experience of GQM-based Product-

Focused Project Monitoring with Trend Patterns

Hidenori Nakai, Kiyoshi Honda, Hironori Washizaki,

Yoshiaki Fukazawa

Waseda University

Dept. of Computer Science and Engineering

Tokyo, Japan

hide-and-seek@toki.waseda.jp, khonda@ruri.waseda.jp,

{washizaki, fukazawa}@waseda.jp

Ken Asoh, Kaz Takahashi, Kentarou Ogawa, Maki

Mori, Takashi Hino, Yosuke Hayakawa, Yasuyuki

Tanaka, Shinichi Yamada, Daisuke Miyazaki

Yahoo Japan Corporation

Tokyo, Japan

{keasoh, katakaha, keogawa, makimori, tahino, yhayakaw,

yasutana, shyamada, daimiyaz}@yahoo-corp.jp

Abstract— It is important for project stakeholders to identify

a state of projects and quality of products. Although metrics are

useful for identifying them, it is difficult for project stakeholders

to select appropriate metrics and determine the purpose of

measuring metrics. We propose an approach which defines the

measured metrics by GQM method support identifying tendency

of projects and products based on Trend Pattern. Additionally,

we implement a tool as Jenkins Plugin which visualizes an evalu-

ation results based on GQM method. We perform an industrial

case study, which object is two software development projects. In

our industrial case study, we can identify the tendency of project

and product. We also identify the problem that product contains.

Therefore if project stakeholders use our approach and tool, then

they can identify the problem of project and product.

Keywords—GQM, Visualization, Trend Pattern, Software En-

gineering

I. INTRODUCTION

It is important for project stakeholders to recognize a state
of projects (e.g., test is insufficient) and quality of products
(e.g., there are many defects). If they identify a state and
quality, they can identify some defects more quickly and
decrease costs for improve them. For example, as problems of
source code quality affect the overall systems[1], their quickly
detection helps project stakeholders to decrease costs.
Additionally, this motivate to improve the process and quality.

Often metrics are used for identifying the state, quality, and
tendency of projects and products. In CMM[2]/CMMI[3]
which provide the roadmap, it is required for quantitative
project management and improvement of the process that some
metrics should be calculated and analyzed. However, it is
difficult for project stakeholders to select appropriate
measuring metrics and determine the purpose of measuring
because they do not understand the purpose of a metric and
what metrics they should measure. One way to resolve this
problem is the Goal-Question-Metric (GQM) method[4]. The
GQM method is used for describing relationship between
metrics and measurement purpose (this is often equal with
project goal) by using questions. Questions are evaluated for
determining whether measurement purpose (project goal) is
achieved or not. These items are described as a model.

Therefore, we propose the approach which defines
measured metrics using the GQM method. Additionally, we
propose the Trend Patterns of metrics and questions tendency
which are defined by the GQM method. There are nine patterns
and these patterns can support identifying tendency of projects
and products. Project stakeholders can identify the tendency of
project state and product quality by using Trend Patterns.

We implement a tool as Jenkins Plugin which visualizes an
evaluation results based on GQM model. This tool is called
GQM Plugin. Jenkins is a popular tool for continuous
integration which is a framework that performs build, test, and
inspection regularly and automatically, and results are provided
to project stakeholders as feedback.

Additionally, we perform case study in software
development project. In our case study, we can recognize that
there is a problem about project and product, then this problem
remains unresolved. As project stakeholders identify the
problem, it motivates them to improve these problems.

Our main contribution are:

 We propose an approach to recognize tendency of
projects and products.

 We propose Trend Patterns to recognize tendency of
project state and product quality.

 We implements a tool named GQM Plugin as Jenkins
plugin which is visualize an evaluation results and
tendency of project and product.

 We perform case study in two software development
projects, then we can identify the problem of product.

II. APPROACH

A. Overview

Our approach is intended for use in a specific process. Fig.
1 shows an overview of this process.

1) Create GQM model: First of all, project stakeholders

must define project goals, and then create an appropriate

GQM model throgh some workshops. Simultaneously, the

Fig. 1. Process overview

metrics’ thresholds should be defined. And then, they develop

and test a software product.

2) Mesure Metrics: Metrics, which are defined in GQM

model, are measured by other Jenkins plugins, such as

Cobertura Plugin1, Clover Plugin2, or Checkstyle Plugin3.

3) Collect and Evaluation: Our tool, GQM Plugin,

collects some metrics information from other Jenkins Plugin’s

output, then evaluates metrics and questions based on GQM

model and threshold. They are evaluated as one of three

categories: “Error”, “Warning”, and “Normal”. “Error”

metrics/questions indicate that they hardly meet the threshold,

and they should be improved quickly. “Warning”

metrics/questions indicate that they almost meet the threshold

but they should be more improved. “Normal”

metrics/questions indicate that they meet the threshold.

4) Establish Reports and Feedback: After finishing

evaluation, GQM Plugin establish a report and three types of

trend graph: GQM Report, Metrics Trend Graph (MTG),

Question Trend Graph (QTG), and Metrics Value Trend

Graph (MVTG). According to these report and trend graphs,

project stakeholders identify tendency of project state and

product quality, then they can improve own project and

product.

B. GQM Report and Trend Graphs

GQM Report denotes metrics value and evaluation results

based on GQM model. The evaluation results are described by

three color, and according to this report, project stakeholders

can recognize what metrics and questions are evaluated as

“Error”, “Warning”, or “Normal”. If there are “Error” or

“Warning” metrics/questions, they are identified as must be

improved. This report helps project stakeholders to realize

what factor adversely affects the achievement of project goals.

MTG and QTG indicate how many metrics/questions are

evaluated as “Error”, “Warning”, or “Normal”. MVTG

1 https://wiki.jenkins-ci.org/display/JENKINS/Cobertura+Plugin
2 https://wiki.jenkins-ci.org/display/JENKINS/Clover+Plugin
3 https://wiki.jenkins-ci.org/display/JENKINS/Checkstyle+Plugin

describes value of metrics in each builds. Metrics which is

described in MVTG are Lines-of-Code (LOC), test coverage,

the number of coding standard violation, the number of

warnings about JavaDoc, and the number of open/close issue

managed on GitHub. These three trend graph describes each

value in time-series. Therefore according to these trend graph,

project stakeholders can recognize the time-series variation of

metrics values and evaluation results. Additionally, according

to MTG and QTG, they can also recognize the tendency of

project state and product quality using Trend Patterns.

C. Trend Patterns

We define nine patterns of MTG and QTG. We summarize

the patterns in Table I. In Table I, “Up” means the number of

error/warning metrics/questions is decreasing, “Stable” means

it is not changed, and “Down” means it is increasing. Addi-

tionally, main patterns (Puu, Pss, Pdd) are shown in Fig. 2.

The Puu is best pattern and the Pdd is worst pattern. When the

end of project (e.g., at the release of a product), project is re-

quired to have Pdd.

Project stakeholders identify the tendency of project state

and product quality by comparing trend pattern and own MTG

and QTG. This process is performed every end of project cy-

cle. If they have bad pattern (e.g., Pdd, Psd, and so on), project

is not able to achieve the project goal probably.

TABLE I. TREND PATTERNS

Met-

rics

State

Questions State

Up Stable Down

Up

Puu:
Project state and

product quality is

improving.
Project goal may

be achieved.

Pus:
Some metrics are

improved, but

they are insuffi-
cient to achieve

project goal.

Other metrics
should be im-

proved.

Pud:
Project state and

product quality is

worsened, while
many metrics are

improved. Stake-

holders should
realize worsened

questions and

improve them as
soon as possible.

Stable

Psu:

Project state and
product quality

are improved,

while some
metrics are may

be worsened.

Stakeholders
should check

these metrics by

GQM Report.

Pss:

Project state and
product quality is

not changed. The

number of er-
ror/warning

should be de-

crease.

Psd:

Project state and
product quality

are worsened, and

some metrics are
may be worsened.

Stakeholders

should check
these metrics by

GQM Report and

improve them as
soon as possible.

Down

Pdu:

Project state and
product quality is

improved, while

some metrics turn
worse newly.

Stakeholders

should realize
these new

metrics.

Pds:

Some metrics are
worsened, but

they do not ad-

versely affect the
achievement goal.

Stakeholders

should realize
what metrics are

worsening.

Pdd:

Project state and
product quality is

worsening. Pro-

ject process must
be changed to be

improve the state

and quality.

Thus, project stakeholders should change the project process

to improve error/warning metrics and questions as soon as

possible.

III. INDUSTRIAL CASE STUDY

A. Case Study Design

We performed an evaluation experiment to assess effec-

tiveness of approach and GQM Plugin. The objects of evalua-

tion is two actual software development projects, project A

and project B. Both projects are web software development

projects in same organization. We define the project goal as

“To ensure the functionality”, “To ensure the maintainability”,

and “To decrease the remedy time for bugs caused by the

source code”, then we create GQM model, whose parts are

shown Table II. “Stay time” in Table II means time from de-

tection to correction of defects. This GQM model contained

three goals, 13 questions, and 21 metrics. In this evaluation,

our tool collects metrics information from Cobertura Plugin,

Checkstyle Plugin, and Reliability Plugin4, then we evaluate

these metrics information without project stakeholders.
Additionally, we carried out questionnaire survey to assess

usefulness of our approach for project stakeholders.

B. Results

In project A we collects metrics information by Reliability

Plugin, and in project B we collects them by Reliability Plugin

and Cobertura Plugin. Fig.3 shows MTG and QTG of project

A, Fig.4 shows project B, and Table III shows metrics value of

each module in both of projects. In Fig. 3 and Fig. 4, the y-

axis denotes the number of error/warning/normal metrics or

questions, while x-axis denotes the number of build.

All modules of both of projects has one error metrics and

two error questions, and the number of error metrics and ques-

tions does not change in each build. According to GQM Re-

port, we can identify that error metrics is “Stay time” and error

question is “Are the defects corrected quickly”.

Fig. 2. Main trend pattern (Puu, Pss, Pdd)

Fig. 3. MTG and QTG of project A

4 We have developed other plugin. This plugin predicts the number of defects.

The algorithm is described in [5]. It is private plugin.

Fig. 4. MTG and QTG of project B

TABLE II. PARTS OF THE GQM MODEL

Goal Question Metric

To ensure the

functionality

… …

Are there enough
tests on important

modules?

Test Coverage

Fun-Out

Are there few

defects?

The density of

defects

of uncorrected

defects

of corrected

defects

of potential
defects

Are the defects

corrected quick-
ly?

Stay time

Importance of

defects

… …

TABLE III. PROJECT METRICS VALUE

Metrics

Name

Module Name

M-A1 M-A2 M-A3 M-A4 M-B

of
uncorrect

ed

defects

3 5 2 1 50

of

corrected

defects

68 91 29 23 1153

of

potential

defects

-5 -13 -4 -4 37

Stay time
9 days

over

6 days

over

7 days

over

8 days

over

9 days

over

Test
coverage

- - - - 93.5%

IV. DISCUSSION

In both of projects, the number of error metrics and
questions does not change in each build. According to this
result, we can recognize these projects has Pss of Trend
Patterns, these projects’ state and product quality is not change.
Additionally, error metrics and questions are not many. So
these projects may be able to achieve the own project goal.

However, we can identify the problem that all modules of
these projects have same error, that time from detection to
correction of defects is so many. This probably causes the
increase of the cost for correcting the defects. Therefore, we
should improve this problem.

In this case study, we define 21 metrics in GQM model to
recognize a project state and product quality. However,
according to questioner survey result, our approach and GQM
Plugin motivate to improve metrics values, but metrics is
insufficient to recognize a product quality. Additionally, period
using the GQM tool is too short to improve a process and
product. Therefore, we cannot assess the effectiveness for
identifying the tendency of project and product.

We can identify the problem about time to correct defects.
However, we cannot identify the other problem of project state
and product quality. Thus, we should inspect whether our
approach and GQM Plugin can identify the other problem or
not.

V. RELATEDWORK

The Software Project Control Center (SPCC) introduced in
[6] is useful for systematic quality assurance and management
of software development projects [7]. Using SPCC, a project
manager can understand the state of a project and check the
quality more easily. From this, the Specula approach has been
proposed [7], [8]. This approach collects measurement data
based on the GQM model. The collected data is interpreted,
evaluated, visualized, and feedback to project stakeholders. If
the control center is used in first iteration of the software
development projects, the projects can make a quite good start
[9]. Similar to our approach, interpretation and visualization
are based on the GQM method. Because our approach also
includes the trend pattern, whether a goal is attainable is easier
to determine.

The Empirical Approach to Software Engineering (EASE)
project developed project measurement platform called
Empirical Project Monitor (EPM) [10], [11]. EPM collects
project management data automatically from some tools such
as configuration management system, CVS, mailing list
management system, mailman, issue trucking system, GNUTS.
The collected information includes changes for source code
and time of check-in/check-out from configuration
management system, fault report and fault correction report
from mailing list system or issue trucking system [12]. EPM
analyze and visualize these data and feedback to software
development project. In [13], Monden creates the model of
detecting main software project delay causes using the GQM
method. Using EPM involved in using other tools, CVS,
GNUTS, and mailman. Because only using Jenkins, our
approach apply the software development projects more easily.

VI. CONCLUSION AND FUTUREWORK

In this paper, we propose an approach which defines the
measured metrics by GQM method, presents a metrics’ time-
series variation, and support identifying tendency of projects
and products based on Trend Pattern. Also we implement a
GQM Plugin as Jenkins plugin. This plugin collects metrics
information, and evaluate metrics and question based on GQM
model. After evaluating, GQM plugin establish GQM Report

and three trend graphs. From these report and trend graphs,
project stakeholders can recognize a project state and product
quality. Also, they can identify some insufficient items which
are needed for achieve project goals.

In a case study, we can recognize the problem, time from
detection to correction of defects. So our approach is effective
for identifying problem of project state and product quality.
However, metrics which are defined in GQM model and period
using GQM Plugin is insufficient to identify the tendency of
project and quality.

In the future work, we adopt our approach and GQM
Plugin to software development project continuously to assess
the effectiveness of them in long term. Additionally, we extend
our GQM model to collect more kinds of metrics information
to propose more detailed trend of project state and product
quality to project stakeholders. By this, we can identify a
tendency of project state and product quality more exactly from
many aspects.

ACKNOWLEDGMENT

We thank the developers and quality managers that
cooperated with us while creating the GQM model and
industrial case study.

REFERENCES

[1] H. Washizaki, et al., “A Framework for Measuring and Evaluating
Program Source Code Quality,” PROFES 2007, 2007.

[2] M.C. Paulk, et al., “Capability maturity model (version 1.1),” IEEE
Software, vol.10, no.4, , pp.18-27, 1993.

[3] Team, CMMI Product “Capability Maturity Model® Integration
(CMMI) version 1.1,” CMMI for Systems Engineering and Software
Engineering (CMMI-SE/SW, V1.1), 2001.

[4] V.R. Basili, et al., “Goal Question Metric Approach,” Encyclopedia of
Software Engineering, John Wiley & Sons, Inc., , pp. 528-532, 1994.

[5] K. Honda, et al., “A generalized software reliability model considering
uncertainty and dynamics in development,” PROFES 2013, 2013.

[6] J. Munch, et al. “Software Project Control Centers: Concepts and
Approaches,” Journal of Systems and Software 70(1), , pp.3-19, 2003.

[7] J. Heidrich, et al., “Goal-Oriented Setup and Usage of Custom-Tailored
Software Cockpits,” PROFES 2008, 2008.

[8] P. Liggesmeyer, et al., “Visualization of Software and Systems as
Support Mechanism for Integrated Software Project Control,” HCI 2009,
pp. 846-855, 2009.

[9] M. Ciolkowski, et al., “Evaluating software Project Control Centers in
Industrial Environments,” ESEM 2007, 2007.

[10] M. Ohira, et al., “Empirical Project Monitor; A Tool for Mining
Multiple Project Data,” MSR 2004, 2004.

[11] Y. Mitani, et al., “A Proposal for Analysis and Prediction for Software
Projects using Collaborative Filtering, In-Process Measurements and a
Benchmarks Database,” MENSURA 2006, 2006.

[12] M. Ohira, et al., “Empirical Project Monitor: A System that
Automatically Collects and Analyzes Quantitative Development Data
toward Process Improvement,” Technical report of the Institute of
Electronics, Information, and Communication Engineers, Software
Science in Japanese, pp. 13-18, 2004.

[13] A. Monden, et al., “Customizing GQM Models for Software Project
Monitoring,” IEICE Trans., Vol. E95-D, No. 9, pp. 2169-2182, 2012.

