
A Gamified Tool for Motivating Developers to
Remove Warnings of Bug Pattern Tools

Satoshi Arai
Dept. Computer Science and Engineering

Waseda University
Tokyo, Japan

www.31o4-xy@fuji.waseda.jp

Kazunori Sakamoto
National Institute of Informatics

Tokyo, Japan
exkazuu@nii.ac.jp

Hironori Washizaki
and Yoshiaki Fukazawa

Dept. Computer Science and Engineering
Waseda University

Tokyo, Japan
{washizaki, fukazawa}@waseda.jp

Abstract—Static analysis tools such as bug pattern tools are
useful to detect bugs early in software development. However,
existing tools sometimes yield so many warnings that developers
tend to ignore such warnings.

To deal with this problem, we propose a gamified tool for
motivating developers to remove such warnings. Our tool employs
the gamification technique that calculates points by counting
removed warnings with respect to each developer and each team.
The points give developers the feedback and urge them to compete
with each other. We confirmed that developers removed about
150% warnings with our tool in comparison with the case where
they did not use our tool through an experiment.

I. INTRODUCTION

Bug pattern tools detect code fragments that seem to be
faulty or to cause faults as warnings by analyzing source code.
The automated detection can reduce costs of code inspection,
and it can improve code quality. There are many existing tools,
for example, FindBugs [1] and PMD 1 are bug pattern tools
supporting Java.

Although the effectiveness of bug pattern tools has already
been evaluated in various research studies [2], [3], [4], existing
tools sometimes yield so many warnings that developers tend
to ignore all the warnings [5], [6]. To deal with this problem,
some researchers devote to improve the precision of the
detection [7]. However, it is very difficult to remove all false
positives.

As another approach, we propose a gamified tool, named
Game-based Bug Catcher (GBC), for motivating developers
to remove such warnings. GBC makes it more fun to re-
move warnings of FindBugs with a gamification technique.
Gamification is defined as a technique to apply game design
techniques to non-game experiences [8], [9]. GBC calculates
points on the basis of the number of warnings developers
removed. The points give developers the feedback and urge
them to compete with each other.

We investigate two research questions (RQs) as follows:

• RQ1: Can we apply the gamification technique to
existing bug pattern tools?

• RQ2: How effectively GBC can reduce warnings re-
ported by FindBugs?

1PMD, http://pmd.sourceforge.net/.

1 String m(String s) {// NM_METHOD_NAMING_CONVENTION
2 int num = 2;
3 if (s.equals("EAGLES2014")) {
4 num = 1;
5 } else if (s.equals(null)) { // EC_NULL_ARG
6 num = 0;
7 }
8 String ret = null;
9 switch (num) { // SF_SWITCH_NO_DEFAULT

10 case 1 :
11 ret = "Bug"; // SF_SWITCH_FALLTHROUGH
12 case 2 :
13 // SF_DEAD_STORE_DUE_TO_SWITCH_FALLTHROUGH
14 ret += "Pattern";
15 }
16 return ret;
17 }

Fig. 1. Sample Java code that contains five warnings

The contributions of this paper are:

• A gamified tool that motivates developers to remove
warnings.

• Results of an experiment that indicate that our tool
overall reduced warnings.

II. PROBLEMS IN EXISTING BUG PATTERN TOOLS

GBC uses FindBugs that is one of the most famous bug
pattern tools supporting Java. FindBugs reports warnings that
consist of the name, description, category, and rank. For ex-
ample, Figure 1 shows source code that contains five warnings
reported by FindBugs. Note that we add the names of warnings
as comments in the source code.

The source code consists of 17 lines and surprisingly
contains a warning per 3.4 lines. These warnings are able to be
both true positives and false positives. When warnings occur
in this frequency, a large project may bother with too many
warnings. The source code is not real code, and this calculation
cannot be directly applied to real software development, but it
is still not a trivial example.

The problems of static analysis tools including bug pattern
tools are found by various researchers. One of the most sig-
nificant problems is too many warnings due to false positives
as the example [7], [5], [6], [10], [11], [12]. To deal with the
problem, there have already existed various approaches such
as an improvement in the detection accuracy by enhancing



Fig. 2. Overview of GBC

algorithms or by combining multiple tools [7]. Although these
approaches partially alleviate the problem, it is very difficult
to remove false positives completely.

III. GAMIFIED TOOL FOR MOTIVATING DEVELOPERS TO
REMOVE WARNINGS

We developed GBC for motivating developers to remove
warnings as another approach to deal with the problem. Figure
2 shows the overview of GBC. GBC finds who wrote the
code fragments corresponding to each warning and who fixed
the code fragments to remove corresponding warnings. GBC
calculates points by counting removed or added warnings with
respect to each developer and team.

GBC consists of three components: the information ana-
lyzer, score calculator, result display. The information analyzer
consists of the bug pattern analyzer and author identifier. The
bug pattern analyzer analyzes warnings reported by FindBugs
and understands which bug patterns each warning corresponds
to. The author identifier identifies who wrote or fixed the code
fragment corresponding to each bug pattern. The score calcu-
lator consists of the two score calculators for bug patterns and
developers. The score calculators calculate the point of each
warning and the total point of each developer, respectively.
The result display consists of the individual score display and
team score display. The score displays show the point of each
developer and the point of each team, respectively. Figure 3
shows the individual score display.

Fig. 3. Screenshot of individual score display

A. Bug Pattern Analysis using FindBugs and Git

We employed FindBugs to detect code fragments corre-
sponding to bug patterns. We also employed Git 2 to identify
who wrote or fixed the code fragments. Git is a famous version
control system that stores edit histories. GBC identifies an
author of each commit by analyzing the edit histories. Then,
GBC collects each set of warnings in two versions using
FindBugs and detects which warnings are added or removed
by analyzing the difference of the two sets of warnings.

2Git, http://git-scm.com/.



B. Introduction of Gamification Technique

Gamification techniques can motivate users by adding
game elements in non-game contexts. For example, Foursquare
3 uses gamification techniques. Foursquare provides a feature
that shares the locations where users checked in. Foursquare
gives users badges by referring to the number of the locations
and the kinds of the locations. Users are motivated to use
Foursquare frequently to collect badges.

Gamification techniques began to be applied to various
fields including software engineering [13], [14], [15]. We
implemented the calculator components that analyze the rank
of bug patterns. FindBugs gives each bug pattern the rank that
indicates how serious the bug pattern is. We define a point of a
bug pattern as 21−rank because the rank is an integer between
0 and 21. When a developer removes a warning corresponding
to a bug pattern, he/she gets the point of the bug pattern. The
team point is the summation of the points of the team members.
In this way, GBC encourages developers to compete with each
other, thus, GBC motivates developers to remove warnings.

IV. EVALUATION

To investigate RQ1 and RQ2, we conducted an experiment.
We gathered six bachelor or master students who studied
computer science.

A. Experimental Setup

The experiment uses two open source software (OSS)
programs, namely, bukkit 4 (SA) and twitter4j-core 5 (SB),
as subject programs. bukkit is a server program for a famous
game software Minecraft. twitter4j-core is a core library for
handling Twitter API from Java programs. bukkit and twitter4j-
core have 26,917 and 18,123 lines of code, respectively.

We conducted the experiment with the following steps.

1) We divide the six students into two groups (GA and
GB).

2) We deploy the two OSS programs in our Git reposi-
tory. The students acquire them and put them on their
local machines.

3) GA removes warnings in SA with GBC within 30
minutes. We handle GBC to show the point informa-
tion in another display. In contrast, GB removes them
without GBC within 30 minutes.

4) After the task for SA, GA removes warnings in SB

without GBC within 30 minutes. In contrast, GB

removes them with GBC within 30 minutes.

B. Results

Table I shows the results of the experiment. The columns
of “Group”, “OSS”, “GBC”, “Total”, “Removed”, and “Ratio”
indicate that the group which removed warnings, the name
of the OSS program where they removed warnings, whether
they removed warnings with GBC or without GBC, the total
number of the warnings that FindBugs reported, the number

3Foursquare, https://ja.foursquare.com/.
4https://github.com/Bukkit/Bukkit
5https://github.com/yusuke/twitter4j

of the warnings removed by the corresponding group, and the
ratio of the removed warnings.

Figures 4 and 5 show the numbers of removed warnings
with respect to each group. We cannot compare the results of
GA and GB because they have not the same skills. Thus, we
compare the results in the same group.

TABLE I. REMOVED WARNINGS OF FINDBUGS WITH OR WITHOUT
GBC

Group OSS GBC Total Removed Ratio
GA SA Yes 168 26 15.48%

SB No 150 13 8.67%
GB SA No 168 41 24.40%

SB Yes 150 59 39.33%

Fig. 4. Experiment results of GA

Fig. 5. Experiment results of GB

The results show that both GA and GB with GBC removed
more warnings than the case where they removed warnings
without GBC. They also show that the ratios of removed
warnings with GBC are bigger than the case where they
removed warnings without GBC. Thus, we can conclude that
GBC motivated developers to remove warnings, and we can
answer yes to RQ1.

We also collected information from the six students through
interviews and questionnaires. Five of them said that removing
warning with GBC is better than removing warning without
GBC. In the interview, a student said that he tried to fix source
code aggressively because GBC motivated him to remove
warnings. Another student said that he prioritized the number



of removed warnings rather than the correctness and accuracy
because GBC urged to remove warnings quickly. For the case
where they did not use GBC, a student said that he did
not want to remove them because it was a tedious task to
remove warnings. In contrast, another student said that he
could concentrate on removing warnings because a factor such
as GBC did not urge him to compete with others. Overall, GBC
is effective to motivate developers to remove warnings, but we
should keep in mind that our gamification technique were not
effective to all students who do not like the competition.

V. THREATS TO VALIDITY

Some students have not strong skills of FindBugs and Git.
They may learn something through the experiment, and it may
have an affect on the results. However, both groups removed
more warnings when they used GBC. Thus, we can ignore
such learning.

The experiment setting has two differences from real
software development. 1) The examinees removed warnings in
the OSS programs that they did not write. 2) The examinees
removed warnings within only 30 minutes. To validate GBC
more carefully, we plan to apply GBC to a long-term software
development.

VI. RELATED WORK

Thung et al. compares three static analysis tools, FindBugs,
PMD, and Jlint in terms of false negatives [5]. They applied the
three tools to three OSS programs and found that FindBugs
and PMD are more effective to prevent false negatives than
Jlint. However, there are still false detection problems in all
the three tools.

Nanda et al. developed a new tool that executes multiple
static analysis tools to deal with the costs of selecting tools
and the problem of too many warnings [7]. Their tool collects
feedback from users to improve the detection accuracy. In con-
trast, our approach motivates developers to remove warnings
instead of the improvement in the detection accuracy.

Singer et al. proposed a gamified tool that adds gamifi-
cation techniques into Git to motivate developers to commit
change history more frequently [13]. Their tool observes
commits and reports the summary of the commits on Web
pages and e-mails. They confirmed that their tool can suc-
cessfully motivate developers due to the competition, but the
competition bothered some developers. Our approach employs
similar gamification techniques, and we got similar experimen-
tal results.

VII. CONCLUSION

Bug pattern tools are effective but have some problems.
One of the most significant problems is that they yield
sometimes too many warnings to make developers hesitate
to remove them. To deal with the problem, we propose a
gamified tool, named GBC, to motivate developers to remove
warnings of FindBugs. GBC urges developers to remove
warnings through the competition by counting the number of
removed warnings with respect to each developer and team.
We conducted the experiment and confirmed that developers
removed more warnings when they used GBC.

In future work, we will add other gamification techniques
not related to the competition into GBC because there are
some people who do not like the competition. We also plan to
conduct a more realistic and long-term experiment similar to
real software development to deal with threats to validity.

ACKNOWLEDGMENT

This material is based upon work partially supported by
HAYAO NAKAYAMA Foundation for Science & Technology
and Culture.

REFERENCES

[1] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not.,
vol. 39, pp. 92–106, December 2004.

[2] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou,
“Evaluating static analysis defect warnings on production software,”
in Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, ser. PASTE
’07. New York, NY, USA: ACM, 2007, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/1251535.1251536

[3] N. Rutar, C. Almazan, and J. Foster, “A comparison of bug finding tools
for java,” in Software Reliability Engineering, 2004. ISSRE 2004. 15th
International Symposium on, Nov 2004, pp. 245–256.

[4] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M. Schwalb,
“An evaluation of two bug pattern tools for java,” in Software Testing,
Verification, and Validation, 2008 1st International Conference on, April
2008, pp. 248–257.

[5] F. Thung, Lucia, D. Lo, L. Jiang, F. Rahman, and P. T.
Devanbu, “To what extent could we detect field defects? an
empirical study of false negatives in static bug finding tools,”
in Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 50–59. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351685

[6] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don&#039;t software developers use static analysis tools to find
bugs?” in Proceedings of the 2013 International Conference
on Software Engineering, ser. ICSE ’13. Piscataway, NJ,
USA: IEEE Press, 2013, pp. 672–681. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2486788.2486877

[7] M. G. Nanda, M. Gupta, S. Sinha, S. Chandra, D. Schmidt,
and P. Balachandran, “Making defect-finding tools work for you,”
in Proceedings of the 32Nd ACM/IEEE International Conference
on Software Engineering - Volume 2, ser. ICSE ’10. New
York, NY, USA: ACM, 2010, pp. 99–108. [Online]. Available:
http://doi.acm.org/10.1145/1810295.1810310

[8] S. Deterding, M. Sicart, L. Nacke, K. O’Hara, and D. Dixon,
“Gamification. using game-design elements in non-gaming contexts,” in
CHI ’11 Extended Abstracts on Human Factors in Computing Systems,
ser. CHI EA ’11. New York, NY, USA: ACM, 2011, pp. 2425–2428.
[Online]. Available: http://doi.acm.org/10.1145/1979742.1979575

[9] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design
elements to gamefulness: defining ”gamification”,” in Proceedings of the
15th International Academic MindTrek Conference: Envisioning Future
Media Environments, ser. MindTrek ’11. ACM, 2011, pp. 9–15.

[10] N. Ayewah, D. Hovemeyer, J. Morgenthaler, J. Penix, and W. Pugh,
“Using static analysis to find bugs,” Software, IEEE, vol. 25, no. 5, pp.
22–29, Sept 2008.

[11] D. Hovemeyer and W. Pugh, “Finding more null pointer bugs, but
not too many,” in Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering,
ser. PASTE ’07. New York, NY, USA: ACM, 2007, pp. 9–14.
[Online]. Available: http://doi.acm.org/10.1145/1251535.1251537

[12] S. Kim and M. D. Ernst, “Which warnings should i fix first?”
in Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on The Foundations of Software Engineering, ser. ESEC-FSE ’07.
New York, NY, USA: ACM, 2007, pp. 45–54. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287633



[13] L. Singer and K. Schneider, “It was a bit of a race: Gamification of
version control,” in Games and Software Engineering (GAS), 2012 2nd
International Workshop on, June 2012, pp. 5–8.

[14] N. Chen and S. Kim, “Puzzle-based automatic testing: Bringing humans
into the loop by solving puzzles,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE 2012. New York, NY, USA: ACM, 2012, pp. 140–149. [Online].
Available: http://doi.acm.org/10.1145/2351676.2351697

[15] N. Tillmann, J. De Halleux, and T. Xie, “Pex4fun: Teaching and
learning computer science via social gaming,” in Software Engineering
Education and Training (CSEE T), 2011 24th IEEE-CS Conference on,
May 2011, pp. 546–548.


