
Do open source software projects
conduct tests enough?

Ryohei Takasawa1, Kazunori Sakamoto2,
Akinori Ihara3, Hironori Washizaki1, Yoshiaki Fukazawa1

1 Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
3 Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan

Abstract. Do open source software projects provide and maintain tests?
What metrics are correlated with the test success? This paper answers
these questions by executing tests of 452 open source software projects
in GitHub and measuring 13 metrics from 77 projects. Only 117 projects
passed all test cases. Additionally, the results are correlated with the
comment density, public documented API density, and test coverage.

1 Introduction

The number of Open Source Software (OSS) projects is increasing [1]. Because
the source code in OSS is more readily available than commercial software,
empirical studies on OSS are being actively conducted. For example, Hars et al.
analyzed the reasons why developers participate in OSS projects [2]. Schryen et
al. compared OSS and Closed Source Software (CSS) in terms of vulnerability
[3], while other studies have examined OSS from various viewpoints. However,
little is known about the test activities on OSS.

It is unclear what percentage of OSS projects pass all their test cases and
then how carefully we should treat OSS projects in general. Moreover, executing
tests is a simple and good way to evaluate OSS projects, but such tasks are
time consuming. It is also unclear whether there are useful metrics to estimate
test quality such as test results (passed or failed) and test coverage without
execution.

Thus, we conducted large-scale analysis of OSS projects by collecting 791
Maven projects from GitHub, executing tests of 452 projects and measuring 13
metrics from 77 projects. As a result, only 117 projects passed all their test cases
and comment metrics (comment density and public documented API density)
and test coverage are useful metric to estimate test results.

The research questions (RQs) of this paper are following.

RQ1 What percentage of OSS projects pass all their test cases?
RQ2 Which metrics are useful to estimate whether OSS projects are well tested

without execution?

The contributions of this paper are following.



2 R. Takasawa, K. Sakamoto, A. Ihara, H. Washizaki, Y. Fukazawa

– We show only 14.8% OSS projects passed all their test and we recommend
users and contributors to treat OSS projects carefully.

– We find comment metrics are useful to evaluate OSS projects quickly without
execution.

2 Experimental Setup

We collected projects in GitHub4, a famous project hosting service. We targeted
projects that use Maven5, which is the most poplular project management tool
for Java, because it automates projects’ build, reporting and documentation,
including testing and measuring. We used Maven to test projects and measure
metrics through SonarQube6, a metrics management platform.

We collected all the found projects with a search query indicating that target
projects contain the pom.xml file which is a build file for Maven. We limited the
size of the pom.xml file is 8,798-8,894 or 9,001-9,189 or 9,501-9,562 bytes in order
to avoid the limitation of the search result of GitHub, which shows 1,000 projects
at a maximum.

We chose 13 metrics7 : lines of code, number of statements, number of files,
comment density, lines of comments, cyclomatic complexity per files, total cy-
clomatic complexity, line coverage, branch coverage, public documented API
density, duplicated lines density, violations, violations per file.

Lines of code, number of statements and number of files are a popular index
of the scale of a project. In this paper, lines of code exclude comments. Comment
density is defined as the ratio of the lines of comments from the lines of code
and comments. Line coverage and branch coverage are the ratio of the executed
program elements (line or branch) in testing. Public documented API density is
defined as the ratio of public APIs with document from all public APIs which
are public classes, interfaces, methods, constructors, annotations and fields. Du-
plicated lines density is defined as the ratio of duplicated lines from all lines.
Violations is defined as the number of issues found in static code analysis.

3 Experimental Results

Although 791 projects were gathered from GitHub, the metrics in some projects
could not be measured due to build failures, especially failures caused by omis-
sions of the dependency on the configuration file. Therefore, the experiment
included 452 projects (57.1%) that were built without errors.

Next we executed tests and collected the metrics from these 452 projects.
Test cases were not run in 276 projects (34.9%). In 59 projects (7.46%), tests
cases were run but failed. Only 117 (14.8%) passed the tests.

4 http://github.com/
5 http://maven.apache.com
6 http://www.sonarqube.org/
7 http://docs.codehaus.org/display/SONAR/Metric+definitions



Do open source software projects conduct tests enough? 3

In order to measure meaningfully, we targeted projects which have 10 or more
test cases and 1 or more files. Then we analyzed the averages of the metrics values
for the 51 projects that successfully passed all the test case runs (successful
projects) and the 27 projects that failed some test cases (failed projects).

Table 1 shows the results. Although successful projects had higher values of
most metrics than failed projects, only 4 metrics listed in Table 1 had statistically
significant difference in the average values (p < 0.05).

Table 1. Results of metrics

Comment Density Documented API Density Line Coverage Branch Coverage

Success Failure Success Failure Success Failure Success Failure

average 18.9% 10.8% 52.4% 35.0% 50.5% 31.0% 43.6% 23.2%

dispersion 0.0102 0.0100 0.0957 0.103 0.107 0.0704 0.0918 0.0727

p value 0.00121 (< 0.05) 0.0223 (< 0.05) 0.0170 (< 0.05) 0.00769 (< 0.05)

4 Discussion

Surprisingly, 14.8% of projects have test cases and pass all of them (RQ1). Pham
et al. found that projects with test cases have more contributions from outside
developers than those without test cases [4]. Speaking in terms of psychological
aspects [5], not fixing failed test cases can be harmful because their presence
may cause developers to ignore future failed test cases, increasing the number of
failed test cases.

Thus, a method to aid developers in writing test cases should improve OSS
projects. We recommend that users of OSS projects pay attention to the exis-
tence of test cases and the OSS quality. Because most OSS projects lack the
ability to test the contributions from outside developers, we also recommend
that contributors write test cases to assure the quality of their contributions.

Although reviewing and executing existing test cases is a simple and effective
way to evaluate OSS quality, it is a costly task. Arafat et al. mentioned that
successful OSS projects are consistently well documented and commented [6].
Our results show that the comment metrics and test coverage affect the test
results. Because the comment metrics can be measured without execution, it is
useful to evaluate OSS projects quickly (RQ2).

5 Threats to Validity

The experiment only used Maven projects, which may cause limitations. How-
ever, measuring metrics or running test code is difficult without using tools.
Consequently, this issue is unavoidable when studying metrics or testing.



4 R. Takasawa, K. Sakamoto, A. Ihara, H. Washizaki, Y. Fukazawa

There are other repository hosting services besides GitHub (e.g., Source-
Forge8 or Google Code9). The difference of the service may affect the experi-
mental results, thus, we will conduct more experiments on other services.

6 Conclusion

Herein we mined OSS projects in GitHub, and we found that most of projects
do not have test code. Furthermore, we found a correlation between the testing
results and metric values.

The answers (As) to the research questions are as follows:

A1 Only 14.8% of the projects passed their test cases. Thus, users should pay
attention to the quality of OSS projects and contributors should write their
own test cases.

A2 The comment metrics and test coverage are correlated with the test results,
thus, the comment metrics can be used as lightweight metrics to evaluate
OSS projects without execution.

We plan to publish our data set and create a platform to search specific
characteristics of OSS projects. For example, users can search projects by the
percentage of successful test cases. This platform may make it easier to conduct
studies on OSS projects.

References

[1] Amit Deshpande, et al.: The Total Growth of Open Source, IFIP Advances in
Information and Communication Technology, Vol. 275, 197–209 (2008).

[2] Alexander Hars, et al.: Working for Free? -Morivations of Participating in Open
Source Projects, International Journal of Electronic commerce, Vol. 6, 25–69
(2002).

[3] Guido Schryen, et al.: Open source vs.closed source software: towards measurring
security, In Proc. of the 24th Annual SCM Symposium on Applied Computing,
2016–2013 (2009).

[4] Raphael Pham, et al.: Creating a Shared Understanding of Testing Culture on
a Social Coding Site. In Proc. of the 35th International Conference on Software
Engineering, 112–121 (2013).

[5] Wilson, James Q., and George L. Kelling: Broken windows. Atlantic monthly 249.3
29–38 (1982).

[6] Oliver Arafat, et al. The Commenting Practice of Open Source. In Proc. of 24th
ACM SIGPLAN conference companion on Object oriented programming systems
languages and applications, 857–864 (2009).

8 http://sourceforge.net/
9 http://code.google.com/


