
Continuous Product-Focused Project Monitoring with

Trend Patterns and GQM

Hidenori Nakai, Kiyoshi Honda, Hironori Washizaki,

Yoshiaki Fukazawa

Waseda University

Dept. of Computer Science and Engineering

Tokyo, Japan

hide-and-seek@toki.waseda.jp, khonda@ruri.waseda.jp,

{washizaki, fukazawa}@waseda.jp

Ken Asoh, Kaz Takahashi, Kentarou Ogawa, Maki

Mori, Takashi Hino, Yosuke Hayakawa, Yasuyuki

Tanaka, Shinichi Yamada, Daisuke Miyazaki

Yahoo Japan Corporation

Tokyo, Japan

{keasoh, katakaha, keogawa, makimori, tahino, yhayakaw,

yasutana, shyamada, daimiyaz}@yahoo-corp.jp

Abstract— It is important for project stakeholders to identify

a state of projects and quality of products. Although metrics are

useful for identifying them, it is difficult for project stakeholders

to select appropriate metrics and determine the purpose of

measuring metrics. We propose an approach which defines the

measured metrics by GQM method, and supports identifying

tendency of projects and products based on Trend Pattern. Addi-

tionally, we implement a tool as Jenkins Plugin which visualizes

an evaluation results based on GQM method. We perform an

experiment with OSS and industrial case study with two software

development projects. In our experiment, we can identify the

problem and project tendency. In our industrial case study, we

can also identify the problem that project contains. As our future

work, we adopt our approach and GQM Plugin to software de-

velopment project continuously to assess the effectiveness of them

in long term.1

Keywords—GQM, Visualization, Trend Pattern, Software En-

gineering

I. INTRODUCTION

It is important for project stakeholders to recognize a state
of projects (e.g., test is insufficient) and quality of products
(e.g., there are many defects). If they identify a state and
quality, they can identify some defects more quickly and
decrease costs for improve them. For example, as problems of
source code quality affect the overall systems[2], their quickly
detection helps project stakeholders to decrease costs.
Additionally, this motivates to improve the process and quality.

Often metrics are used for identifying the state, quality, and
tendency of projects and products (e.g., metrics are used for
evaluation of the reusability of C language program source
code[3]). In CMM[4]/CMMI[5] which provides the roadmap,
it is required for quantitative project management and
improvement of the process that some metrics should be
calculated and analyzed. However, it is difficult for project
stakeholders to select appropriate measuring metrics and
determine the purpose of measuring because they do not
understand the purpose of a metrics and what metrics they

1 The idea of our approach and GQM Plugin is included in [1]. In this paper

we added overview of trend patterns and OSS experiment.

should measure. One way to resolve this problem is the Goal-
Question-Metric (GQM) method[6]. The GQM method is used
for describing relationship between metrics and measurement
purpose (this is often equal with project goal) by using
questions. Questions are evaluated for determining whether
measurement purpose (project goal) is achieved or not. These
items are described as a model.

In this paper, we propose the approach which defines
measured metrics using the GQM method. Additionally, we
propose the Trend Patterns of metrics and questions tendency
which are defined by the GQM method. There are nine patterns
and these patterns can support identifying tendency of projects
and products. Project stakeholders can identify the tendency of
project state and product quality by using Trend Patterns.

We implement a tool as Jenkins Plugin which visualizes an
evaluation results based on GQM model. This tool is called
GQM Plugin. Jenkins is a popular tool for continuous
integration which is a framework that performs build, test, and
inspection regularly and automatically, and results are provided
to project stakeholders as feedback.

Additionally, we perform an experiment with OSS and
industrial case study in software development project. In our
experiment with OSS, we can identify the problem that project
contains and project tendency. In our case study, we can
recognize that there is a problem about project and product,
then this problem remains unresolved. As project stakeholders
identify the problem, it motivates them to improve these
problems.

Our main contributions are:

 We propose an approach to recognize tendency of
projects and products.

 We propose Trend Patterns to recognize tendency of
project state and product quality.

 We implement a tool named GQM Plugin as Jenkins
plugin which is visualize an evaluation results and
tendency of project and product.

 We perform an experiment with OSS, then we can
identify the problem of project and its tendency.

 We perform case study in two software development
projects, then we can identify the problem of project.

II. APPROACH

A. Overview

Our approach is intended for use in a specific process. Fig.
1 shows an overview of this process.

1) Create GQM model: First of all, project stakeholders

must define project goals, and then create an appropriate

GQM model through some workshops. Simultaneously, the

metrics’ thresholds are defined to identify the tendency of

project state and product quality, and to assess whether

poroject can achieve project goals or not. These thresholds

need to be inputted manually. After difinition of GQM model

and thresholds, project stakeholders develop and test a

software product .

2) Measure Metrics: Metrics, which are defined in GQM

model, are measured by other Jenkins plugins. This process

are performed by Jenkins automatically and simultaneously

with builds of the code at specific iteration.

3) Collect and Evaluation: Our tool, GQM Plugin,

collects some metrics information from other Jenkins Plugin’s

output, then evaluates metrics and questions based on GQM

model and thresholds. Finally, questions are evaluated based

on results of metric evaluation. Metrics and questions are

evaluated as one of three categories: “Error”, “Warning”, and

“Normal”. “Error” metrics/questions indicate that they hardly

meet the threshold, and they should be improved quickly.

“Warning” metrics/questions indicate that they almost meet

the threshold but they should be more improved. “Normal”

metrics/questions indicate that they meet the threshold. If

many metrics which are connected with a question are

evaluated “Error”, a question is evaluated “Error”.

4) Establish Reports and Feedback: After finishing

evaluation, GQM Plugin establishes a report and three types of

trend graph: GQM Report, Metrics Trend Graph (MTG),

Question Trend Graph (QTG), and Metrics Value Trend

Graph (MVTG). According to these report and trend graphs,

project stakeholders identify tendency of project state and

product quality, then they are also able to improve own project

state and product quality.

GQM Plugin collects some metrics information from other

Jenkins Plugin’s output. GQM Plugin can handle an output of

Cobertura Plugin2, Clover Plugin3, Checkstyle Plugin4 and

Reliability Plugin5. Hence, GQM Plugin can collect data of

test coverage, LOC, the number of coding standard violation,

the number of violation of JavaDoc, issues data managed by

GitHub, predicted issues, and the number of potential defects.

2 https://wiki.jenkins-ci.org/display/JENKINS/Cobertura+Plugin
3 https://wiki.jenkins-ci.org/display/JENKINS/Clover+Plugin
4 https://wiki.jenkins-ci.org/display/JENKINS/Checkstyle+Plugin
5 We have developed other plugin. This plugin predicts the number of defects.

The algorithm is described in [7]. It is private plugin.

Fig. 1. Process overview

They are common Jenkins plugins. Additionally, they can be

introduced easily into software development project. If the

other Jenkins plugins to measure some metrics output metrics

information in same format as Cobertura Plugin and so on,

GQM Plugin can handle an output of the other plugin.

B. GQM Report and Trend Graphs

GQM Report denotes metric values and evaluation results

based on GQM model. The evaluation results are described by

three color, and according to this report, project stakeholders

can recognize what metrics and questions are evaluated as

“Error”, “Warning”, or “Normal”. If there are “Error” or

“Warning” metrics/questions, these metrics/questions

adversely affects the achievement of project goals. On the

other hand, if there are no “Error” or “Warning”

metrics/questions, this indicates that metrics and questions

have enough value to achieve the project goal. Hence, this

report helps project stakeholders to realize what factor

adversely affects the achievement of project goals.

MTG and QTG indicate how many metrics and questions

are evaluated as “Error”, “Warning”, or “Normal”. According

to MTG, QTG, and Trend Patterns (described in follow

section), project stakeholders can identify the tendency of

project state and product quality. If MTG and QTG have bad

pattern, project process should be changed to improve error

and warning metrics/questions.

MVTG describes values of metrics in each builds. Metrics

which are described in MVTG are LOC, test coverage, the

number of coding standard violation, the number of violation

of JavaDoc, and the number of open/close issue managed on

GitHub. According to MVTG, project stakeholders can

recogninze information about project state and product quality.

For example, if LOC is increasing and test coverage is

decreasing (or it is not change), project stakeholders can

identify that test is insufficient.

These three trend graphs describe each values in time-

series. According to these trend graphs, project stakeholders

can recognize the time-series variation of metrics values and

evaluation results. Hence, project stakeholders can recoginize

what becomes large, what is improved, and what is worsening.

If some metrics are worsening and they are evaluated error or

warning, project stakeholders can identify them should be

improved.

C. Trend Patterns

We define nine patterns of MTG and QTG. We summarize

the patterns in Table I. In Table I, “Up” means the number of

error/warning metrics/questions is decreasing (i.e., project

state and product quality are improving), “Stable” means it is

not changed (i.e., project state and product quality are not

changed), and “Down” means it is increasing (i.e., project

state and product quality are worsening). Additionally, these

patterns are shown in Fig. 2. The Puu is best pattern and the

Pdd is worst pattern. When the end of project (e.g., at the re-

lease of a product), project is required to have Puu. If project

does not have Puu, some problems are remain and project goal

may not be yet accomplished.

Project stakeholders identify the tendency of project state

and product quality by comparing trend patterns and own

MTG and QTG. This process is performed every end of pro-

ject cycle. If they have bad pattern (e.g., Pdd, Psd, and so on),

project is not able to achieve the project goal probably. Thus,

project stakeholders should confirm which metrics and ques-

tions are evaluated as error/warning, and change the project

process to improve error/warning metrics and questions as

soon as possible.

TABLE I. TREND PATTERNS

Met-

rics

State

Questions State

Up Stable Down

Up

Puu:

Project state and

product quality
is improving.

Project goal may

be achieved.

Pus:

Some metrics are

improved, but
they are insuffi-

cient to achieve

project goal.
Other metrics

should be im-

proved.

Pud:

Project state and

product quality are
worsened, while

many metrics are

improved. Stakehold-
ers should realize

worsened questions

and improve them as
soon as possible.

Stable

Psu:

Project state and
product quality

are improved,

while some
metrics are may

be worsened.

Stakeholders
should check

these metrics by

GQM Report.

Pss:

Project state and
product quality

are not changed.

The number of
error/warning

should be de-

creased.

Psd:

Project state and
product quality are

worsened, and some

metrics are may be
worsened. Stakehold-

ers should check these

metrics by GQM
Report and improve

them as soon as

possible.

Down

Pdu:

Project state and

product quality
are improved,

while some

metrics turn
worse newly.

Stakeholders

should realize
these new

metrics.

Pds:

Some metrics are

worsened, but
they do not ad-

versely affect the

achievement goal.
Stakeholders

should realize

what metrics are
worsening.

Pdd:

Project state and

product quality are
worsening. Project

process must be

changed to be im-
prove the state and

quality.

Fig. 2. Trend Patterns Overview

If they have good pattern (e.g., Puu), project stakeholders can

identify that project is advancing toward achievement of goal.

If there are no (or a few) error/warning metrics/questions,

project process does not need to be changed.

III. INDUSTRIAL CASE STUDY

A. Case Study Design

We perform an evaluation experiment to assess effective-

ness of approach and GQM Plugin. The objects of evaluation

are OSS project, maven-android-plugin6 project, and two ac-

tual software development projects, project A and project B.

Maven-android-plugin is a maven plugin for android applica-

tion development. Both of project A and project B are web

software development projects in same organization. Project A

develops a platform, and Project B develops a library. Table II

shows overview information about the case study objects. In

this case study, we focus on modules which use Java and PHP

of Project A, and modules which use C++ of Project B.

We define the project goals as “To ensure the functionali-

ty”, “To ensure the maintainability”, and “To decrease the

remedy time for bugs caused by the source code”, then we

create GQM model, whose parts are shown Table III. “Stay

time” in Table III means time from detection to correction of

defects.

TABLE II. CASE STUDY OBJECTS

Name
Maven-android-

plugin
Project A Project B

Domain

Maven plugin for

android
application

development

Platform Library

Language Java
Java
PHP

C++
Scala

Version

Maven-android-

plugin2.6.0 –

3.9.0-rc.3

- -

6 https://github.com/jayway/maven-android-plugin

TABLE III. PARTS OF THE GQM MODEL

Goal Question Metric

To ensure

the

functionalit
y

… …

Are there enough tests

on important modules?

Test Coverage

Fun-Out

Are there enough tests
on modules which have

middle/low importance?

Test Coverage

Fun-Out

Are there few defects?

The density of

defects

of uncorrected
defects

of corrected

defects

of potential

defects

Are the defects correct-

ed quickly?

Stay time

Importance of

defects

… …

This GQM model contains three goals, 13 questions, and 21

metrics. Additionally, we define some thresholds for each

project. Table IV shows information about these thresholds.

In this evaluation, we define thresholds and evaluate these

metrics information without project stakeholders. However,

we create GQM model with stakeholders of Project A and

Project B. Additionally, we carry out questionnaire survey to

assess usefulness of our approach for project stakeholders.

B. Results

In an experiment with OSS, maven-android-plugin, we

collect metrics information by Cobertura Plugin, Checkstyle

Plugin, and Reliability Plugin. Hence, we collect data of test

coverage, LOC, the number of coding standard violation, the

number of violation of JavaDoc, issues data managed by

GitHub, predicted issues, and potential defects. Fig.3 shows

MTG and QTG, and Fig.4 shows a part of MVTG of maven-

android-plugin. In project A we collect metrics information by

Reliability Plugin. In project B we collect metrics information

by Reliability Plugin and Cobertura Plugin. Hence, we can

collect issues data managed by GitHub and predicted issues in

Project A, test coverage, LOC, coding standard violation,

violation of JavaDoc, issues data managed by GitHub, and

TABLE IV. THRESHOLDS

Metrics Name Error Threshold
Warning Thresh-

old

Test coverage 60 % 80 %

of open issue 80 50

of close issue 50 80

of potential issue 60 80

Stay time 3 days 0 day

of violation of JavaDoc 200 100

of coding standard violation 150 100

predicted issues in Project B. Fig.5 shows MTG and QTG of

Project A, Fig. 6 shows Project B.

Table V shows metrics values of each module of maven-

android-plugin, Project A, and Project B in last builds (ver-

sion). In Fig. 3, Fig. 5 and Fig. 6, the y-axis denotes the num-

ber of error/warning/normal metrics or questions, while x-axis

denotes the number of build. In Fig. 4, the y-axis denotes each

value of test coverage, the number of open/close issues, while

x-axis denotes the number of build.

Maven-android-plugin project has four error metric, one

warning metric, and four error questions in last build. Howev-

er, the number of error metrics and questions is decreasing.

According to MVTG of this project, we can identify that test

coverage is not enough in each build. On the other hand, de-

tected issues are almost improved. Additionally, according to

GQM Report, we can identify that error metrics are “Stay

time” and “Test coverage”, warning metric is “The number of

potential defects”, and error questions are “Are there enough

tests on important modules?”, “Are there enough tests on

modules which have middle/low importance?” and “Are the

defects corrected quickly?”.

All modules of both of Project A and Project B have one

error metric and two error questions, and the number of error

metrics and questions does not change in each build. Accord-

ing to GQM Report, we can identify that error metric is “Stay

time” and error question is “Are the defects corrected quick-

ly?”.

Fig. 3. MTG and QTG of maven-android-plugin

Fig. 4. MVTG of maven-android-plugin

Fig. 5. MTG and QTG of Project A

Fig. 6. MTG and QTG of Project B

TABLE V. PROJECT METRICS VALUE

Metrics Name
Module Name

OSS M-A1 M-A2 M-A3 M-A4 M-B

of uncorrected
defects

12 3 5 2 1 50

of corrected

defects
377 68 91 29 23 1153

of potential
defects

135 -5 -13 -4 -4 37

Stay time
11 days

over

9

days
over

6

days
over

7

days
over

8

days
over

9 days

over

Test coverage 14.3% - - - - 93.5%

of coding

standard

violation

14 - - - - -

of violation of

JavaDoc
0 - - - - -

IV. DISCUSSION

In maven-android-plugin projects, the number of error
metrics and questions is decreasing. According to this result,
we can recognize this project has Puu of Trend Patterns. Hence,
we can identify that this project’s state and product quality are
improved, and this project is advancing toward achievement of
goal.

However, this project has some error metrics and questions.
According to experiment result, we can identify the problem
that test is not enough and time from detection to correction of
defects is so long. They probably cause delay of detecting
issues, and the increase of the cost for correcting the defects.
Thus, these problems should be improved. Additionally, this
project also has a warning metric. According to experiment
result, we can identify that it is “The number of potential
defects”. This indicates that there are some undetected defects.
This problem makes the correction of the defects difficult. On
the other hand, this may be caused by low test coverage. Hence,
it is necessary for project stakeholders to improve test coverage,
thereby some problem may be improved simultaneously.

We define the project goals as “To ensure the functionality”,
“To ensure the maintainability”, and “To decrease the remedy
time for bugs caused by the source code”, and create GQM
model presented in Table III. However, these goals and GQM
model are defined without members of this project. Hence,
these goals and GQM model may not be appropriate. To
identify the problem and tendency of project state and product
quality more exactly, we should define the goal and create
GQM model with members of this project.

In both of Project A and Project B, the number of error
metrics and questions does not change in each build.
According to this result, we can recognize these projects have
Pss of Trend Patterns. Hence, we can identify that these
projects’ states and product qualities do not change.

However, we can identify the problem that all modules of
these projects have same error. According to case study result,
we can identify the problem that time from detection to
correction of defects is so long. This probably causes the
increase of the cost for correcting the defects. Thus, we should
improve this problem.

In this case study, we can identify the problem about test
and time from detection to correction of defects. On the other
hand, we do not identify the other problem of project state and
product quality. Thus, we should inspect whether our approach
and GQM Plugin can identify the other problem or not.

Additionally, although we do not assess whether these
projects are able to achieve project goals or not, we confirmed
that our approach is able to recognize that maven-android-
plugin projects has Puu of Trend Patterns and both of Project A
and Project B have Pss of Trend Patterns. However, we define
thresholds without project stakeholders. Hence, these
thresholds may not be appropriate. Thus, we define thresholds
with project stakeholders, then we should inspect whether our
approach and GQM Plugin can recognize that project achieve
the goal or not.

Furthermore, we perform case study with only three
domains. Hence, we do not identify the effectiveness of our
approach and GQM Plugin for other domains. Therefore, we
should adopt our approach and GQM Plugin to other domain
projects to assess the effectiveness.

We define 21 metrics in GQM model to recognize a project
state and product quality. However, according to questioner
survey result, our approach motivate to improve metrics values,
but metrics are insufficient to recognize a product quality. Thus,
we should we extend GQM Plugin to collect more kinds of
metrics information. Additionally, a period using our approach
is too short to assess the effectiveness for identifying the
tendency of project and product.

V. RELATEDWORK

The Software Project Control Center (SPCC) introduced in
[8] is useful for systematic quality assurance and management
of software development projects [9]. Using SPCC, a project
manager can understand the state of a project and check the
quality more easily. From this, the Specula approach has been
proposed [9], [10]. This approach collects measurement data
based on the GQM model. The collected data is interpreted,
evaluated, visualized, and feedback to project stakeholders. If
the control center is used in first iteration of the software
development projects, the projects can make a quite good start
[11]. Similar to our approach, interpretation and visualization
are based on the GQM method. On the other hand, our
approach also includes the trend pattern, the tendency of
project and product is easier to determine.

The Empirical Approach to Software Engineering (EASE)
project developed project measurement platform called
Empirical Project Monitor (EPM) [12], [13]. EPM collects
project management data automatically from some tools such
as configuration management system, mailing list management
system, and issue trucking system. The collected information
includes changes for source code, fault report, fault correction
report, and so on [14]. EPM analyzes and visualizes these data
and feedbacks to project stakeholders. In [15], Monden creates
the model of detecting causes of main software project delay
using the GQM method and EPM. Using EPM involves in
using other tools. On the other hand, GQM Plugin uses only
one platform, Jenkins. Hence, GQM Plugin can be introduced
more easily into a software development project.

In [16], the Continuous Inspection pattern is presented.
Continuous Inspection pattern has four steps. First of all,
project stakeholders create and modify source code. Then,
some tools analyze this code automatically. Next is that some
reports are generated. Finally, some feedbacks are presented to
improve the code. These steps communicate with a continuous
integration server. Additionally, it is also presented how to
adopt the continuous inspection pattern in [16]. However, trend
patterns of project state and product quality are not described in
this publication.

VI. CONCLUSION AND FUTUREWORK

In this paper, we propose an approach which defines the
measured metrics by GQM method, presents a metrics’ time-
series variation, and support identifying tendency of projects
and products based on Trend Patterns. Also we implement a
GQM Plugin as Jenkins plugin. This plugin collects metrics
information, and evaluates metrics and questions based on
GQM model. After evaluating, GQM Plugin establishes GQM
Report and three trend graphs. From these report and trend
graphs, project stakeholders can recognize a project state and
product quality. Also, they can identify some insufficient items
which are needed for achieving project goals.

In an experiment with OSS, we can recognize the problem
about test, time from detection to correction of defects, and
potential defects. Additionally, we can recognize the project
has Puu of Trend Patterns. This indicates that project state and
product quality are improved.

In a case study, we can recognize the problem about time
from detection to correction of defects. Additionally, we can
recognize the project has Pss of Trend Patterns. This indicates
that project state and product quality are not change.

However, metrics which are defined in GQM model and a
period using GQM Plugin are insufficient to identify the
tendency of project and quality. Hence, although do not assess
whether these projects are able to achieve project goals from
Trend Patterns, we confirmed that our approach can recognize
the problem and identify which Trend Patterns project has.

As our future work, we adopt our approach and GQM
Plugin to software development project continuously to assess
the effectiveness of them in long term, and to confirm whether
they can identify an achievement of project goal or not.
Additionally, we also adopt them to other domain projects to
assess versatility. On the other hand, we should extend GQM
Plugin to collect more kinds of metrics information (e.g.,
cohesion, coupling, and code clone) to propose more detailed
trend of project state and product quality to project
stakeholders. By this, we can identify a tendency of project
state and product quality more exactly from many aspects.

ACKNOWLEDGMENT

We thank project stakeholders for their valuable comments
and feedback for our approach and GQM Plugin.

REFERENCES

[1] H. Nakai, et al., “Initial Industrial Experience of GQM-based Product-
Focused Project Monitoring with Trend Patterns”, Poster at APSEC
2014, 2014.

[2] H. Washizaki, et al., “A Framework for Measuring and Evaluating
Program Source Code Quality,” PROFES 2007, 2007.

[3] H. Washizaki, et al., “Reusability Metrics for Program Source Code
Written in C Language and Their Evaluation,” PROFES 2012, pp, 89-
103, 2012.

[4] M.C. Paulk, et al., “Capability maturity model (version 1.1),” IEEE
Software, vol.10, no.4, , pp.18-27, 1993.

[5] Team, CMMI Product “Capability Maturity Model® Integration
(CMMI) version 1.1,” CMMI for Systems Engineering and Software
Engineering (CMMI-SE/SW, V1.1), 2001.

[6] V.R. Basili, et al., “Goal Question Metric Approach,” Encyclopedia of
Software Engineering, John Wiley & Sons, Inc., , pp. 528-532, 1994.

[7] K. Honda, et al., “A generalized software reliability model considering
uncertainty and dynamics in development,” PROFES 2013, 2013.

[8] J. Munch, et al. “Software Project Control Centers: Concepts and
Approaches,” Journal of Systems and Software 70(1), , pp.3-19, 2003.

[9] J. Heidrich, et al., “Goal-Oriented Setup and Usage of Custom-Tailored
Software Cockpits,” PROFES 2008, 2008.

[10] P. Liggesmeyer, et al., “Visualization of Software and Systems as
Support Mechanism for Integrated Software Project Control,” HCI 2009,
pp. 846-855, 2009.

[11] M. Ciolkowski, et al., “Evaluating software Project Control Centers in
Industrial Environments,” ESEM 2007, 2007.

[12] M. Ohira, et al., “Empirical Project Monitor; A Tool for Mining
Multiple Project Data,” MSR 2004, 2004.

[13] Y. Mitani, et al., “A Proposal for Analysis and Prediction for Software
Projects using Collaborative Filtering, In-Process Measurements and a
Benchmarks Database,” MENSURA 2006, 2006.

[14] M. Ohira, et al., “Empirical Project Monitor: A System that
Automatically Collects and Analyzes Quantitative Development Data
toward Process Improvement,” Technical report of the Institute of
Electronics, Information, and Communication Engineers, Software
Science in Japanese, pp. 13-18, 2004.

[15] A. Monden, et al., “Customizing GQM Models for Software Project
Monitoring,” IEICE Trans., Vol. E95-D, No. 9, pp. 2169-2182, 2012.

[16] P. Merson, et al., “Continuous Inspection : A Pattern for Keeping your
Code Healthy and Aligned to the Architecture,” Asian PLoP 2014, 2014.

