

Validating Security Design Pattern Applications Using Model Testing

 2

Abstract

Software developers are not necessarily security experts, confirming potential threats and

vulnerabilities at an early stage of the development process (e.g., in the requirement- and

design-phase) is insufficient. Additionally, even if designed software considers security at an

early stage, whether the software really satisfies the security requirements must be confirmed. To

realize secure design, we propose an application to validate security patterns using model testing.

Our method provides extended security patterns, which include requirement- and design-level

patterns as well as a new model testing process using these patterns. After a developer specifies

threats and vulnerabilities in the target system during an early stage of development, our method

can validate whether the security patterns are properly applied and assess if these vulnerabilities

are resolved.

Keywords-component; Security Patterns; Model Testing; Test- Driven Development; UML;

I. INTRODUCTION

 Due to the increased number of business services on open networks and distributed

platforms, security has become a critical issue. Software must be supported with security

measures (Maruyama, Washizaki, & Yoshioka, 2008), which are addressed in every phase of

software development from requirements engineering to design, implementation, testing, and

deployment. However, threats and vulnerabilities within a system cannot be sufficiently

identified during the early development stage. Due to the vast number of security concerns and

the fact that not all software engineers are security specialists, creating software with adequate

security measures is extremely difficult.

Patterns, which are reusable packages that incorporate expert knowledge, represent

frequently recurring structures, behaviors, activities, processes, or “things” during the software

 3

development process. Many security patterns have been proposed to resolve security issues

(Bschmann, Fernandez-Buglioni, Schumacher, Sommerlad, & Hybertson, 2002). For example,

Bschmann et al (2006) propose 25 design-level security patterns. By referring to these patterns,

developer can realize software with high security level efficiently.

Although UML-based models are widely used for design, especially for model-driven

software development, whether the patterns are applied correctly is often not verified

(Maruyama, Washizaki, & Yoshioka, 2008). Therefore, it is possible to apply a security pattern

inappropriately. Additionally, properly applying a security pattern does not guarantee that threats

and vulnerabilities will be resolved. These issues may result in security damage. Thus, we

propose an application to validate security patterns using model testing. Our method confirms

that security patterns are properly applied and assesses whether vulnerabilities are resolved. Our

research aims to answer the following two Research Questions (RQs):

• RQ1: Can our method validate an appropriate application of the security design pattern in

a design model?

• RQ2: Can our method validate the presence of vulnerabilities identified at the

requirement stage before and after applying patterns?

Herein we answer these two research questions. Because the Security Pattern alone does

not provide systematic guidelines with respect to applications, we formally extended existing

security patterns. Then we proposed a new testing process to validate applied patterns and a tool

to support model testing. Our method provides three major contributions:

• New extended security patterns using Object Constraint Language (OCL) expressions,

which include requirement- and design-level patterns;

 4

• A new model-testing process based on Test-Driven Development (TDD) to validate

appropriate pattern applications and the existence of vulnerabilities using these extended

patterns;

• A tool to support pattern application by creating a script to execute model testing

automatically.

This paper is organized as follows. Section II describes the background and problems

with security software development. Section III describes related works. Section IV details our

new method, which integrates the security patterns. Section V applies our pattern to a case study.

Section VI describes the threats to validity of our method. Finally, Section VII summarizes this

paper.

II. BACKGROUND AND PROBLEMS

In this section, we overview common existing techniques for secure design.

A. Security Requirement Patterns (SRPs)

The security requirement pattern (SRP) is an existing technique to identify assets, threats,

and countermeasures (Kaiya, Okubo & Yoshioka, 2012). A security pattern is reusable as a

security package and includes security knowledge, allowing software developers to design secure

systems like a security expert. Various types of security patterns exist. For example, SRPs are

used at the requirement level, while security design patterns (SDPs), which are described in

Section C, are applied at the design stage level.

The “Structure” of a SRP uses the Misuse case with the Assets and Security Goal

(MASG) model (Okubo, Taguch & Yoshioka, 2009), which is an extension of the misuse case

(Andreas & Sindre, 2000) that provides the structure of assets, threats, and countermeasures at

 5

the requirement level. The MASG model can model attackers, attacks, and countermeasures as

well as normal users and their requirements. In addition to the elements of the misuse case

diagrams, the MASG model consists of the following:

• Data assets: Assets to be protected;

• Use case assets: Functions related to assets;

• Security goals: Reasons to protect assets.

Identifying assets improves threat recognition, while identifying security goals

determines what security measures are important in the target system. The MASG model also

contains a security requirement analysis process. First, the assets of the system are identified, and

the security goals are defined. Next, threats that may violate the goals are defined, and security

countermeasures against these threats are determined (Kaiya, Okubo & Yoshioka ,2012). Finally,

security countermeasures that satisfy the security goals are confirmed.

Figure 1. Sample MASG model for a shopping website

 6

Figure 1 shows a typical example of the MASG model: a partially modeled shopping

website. The function “make a payment” has several assets, which could be threatened. In the

model, "Disclosure" is a threat for "make a payment", while "personal information" is an asset.

"Spoofing", "Elevation of privilege", and “SQL Injection” enable Disclosure. In addition, each

countermeasure, such as “I&A (Identification and Authentication)”, “Authorization”, or “Input

and Data Validation”, are effective to mitigate threats. Although the MASG model helps

comprehensively detect security issues at the requirement level, it does not indicate whether the

identified threats actually exist in the software system.

B. Security Design Patterns (SDPs)

SDPs are an established technique to satisfy security specifications. A SDP includes

“Name”, “Context”, “Problem”, “Solution”, “Structure”, “Dynamics”,“Consequences”, and “See

Also”. The pattern descriptions can be reused in multiple systems. As examples of SDPs,

Bschmann et al (2006) propose 25 design-level security patterns.

Figure 2. Structure of RBAC

Figure 2 shows the structure of Role Based Access Control (RBAC) as an example of a

SDP. The RBAC pattern, which is a representative pattern for access control, describes how to

assign precise access rights to roles in an environment where access to computing resources must

be controlled to preserve confidentiality and the availability requirements.

 6

"Spoofing", "Elevation of privilege", and “SQL Injection” enable Disclosure. In addition, each

countermeasure, such as “I&A (Identification and Authentication)”, “Access Control”, or “Input

and Data Validation”, are effective to mitigate threats. Although the MASG model helps explore

security issues comprehensively at the requirement level, it does not indicate whether the

identified threats actually exist in the developing system.

B. Security Design Patterns

To satisfy security specifications, the use of Security Design Patterns (SDPs) is an

established technique. The SDP includes “Name”, “Context”, “Problem”, “Solution”,

“Structure”, “Consequences”, and “See Also”. The pattern descriptions can be reused in multiple

systems. As examples of SDP, reference [2] shows 25 design-level security patterns.

proposed to address security concerns. UMLsec is defined in
the form of a UML profile using standard UML extension
mechanisms. Stereotypes with tagged values are used to
formulate the security requirements, and then the constraints
are used to verify whether the security requirements hold
during specific types of attacks. However, developers who are
not security specialists have difficulty in employing UMLsec
and must receive special training, which involves both time and
money.

B. Security Requirement Patterns
The security requirement pattern is an existing technique to

identify assets, threats, and countermeasures [7]. A security
pattern is reusable as a security package and includes security
knowledge, allowing software developers to design secure
systems like a security expert. Various types of security
patterns exist. For example, the security requirement pattern
(SRP) is used at the requirement level, while the security
design pattern, which is described in Section C, is applied at
the design stage level.

The “Structure” of SRP uses the Misuse case with the
Assets and Security Goal (MASG) model [8], which is an
extension of the misuse case [9] that provides the structure of
assets, threats, and countermeasures at the requirement level.
This enables developers to model attackers, attacks, and
countermeasures as well as normal users and their requirements.
In addition to the elements of misuse case diagrams, the MASG
model consists of the following elements:

� Data assets: Assets to be protected
� Use case assets: Functions related to assets
� Security goals: Reasons to protect assets

Identifying assets improves threat recognition, while
identifying security goals determines what security measures
are important in the target system. The MASG model also
contains a security requirement analysis process. First, the
assets of the system are identified, and the security goals are
defined. Next, threats that may violate the goals are defined,
and security countermeasures against these threats are
determined [7]. Finally, the security countermeasures that
satisfy the security goals are confirmed.

Figure 1. Sample MASG model for a shopping website

Figure 1 shows a typical example of a MASG model: a
partially modeled shopping website. The function “make a
payment” has several assets, which could be threatened. In the
model, "Disclosure" is a threat for "make a payment", while
"personal information" is an asset. "Spoofing", "Elevation of
privilege", and “SQL Injection” enable Disclosure. In addition,
each countermeasure, such as “Identification and
Authentication (I&A)”, “Access Control”, or “Input and Data
Validation”, effectively mitigate these threats. Although the
MASG model comprehensively explores security issues at the
requirement level, it does not determine whether the identified
threats actually exist in the design model.

C. Security Design Patterns
To satisfy security specifications, the use of Security

Design Patterns (SDPs) is an established technique. The SDP
includes “Name”, “Context”, “Problem”, “Solution”,
“Structure”, “Consequences”, and “See Also”. The pattern
descriptions can be reused in multiple systems.

Figure 2. Structure of SDP� (Password Design and Use pattern)

Figure 3. Structure of SDP� (RBAC pattern)

Figures 2 and 3 show examples of the SDP structure. The
Password Design and Use pattern describes the best security
practice to design, create, manage, and use password
components to support the I&A requirements. In addition to
configuring or managing passwords, engineers and
administrators use password constraints to build or select
password systems. The RBAC pattern, which is a
representative pattern for access control, describes how to
assign precise access rights to roles in an environment where
access to computing resources must be controlled to preserve
confidentiality and the availability requirements.

D. Motivating example
As an example of a pattern application, Fig. 4 shows a

portion (“make a payment”) of a UML class diagram to realize
a payment process on the Web. A SDP alone is insufficient to

<<asset>>
make a

payment

<<misuse>>

Disclosure

<<misuse>>
Elevation of
privilege

<<misuse>>

Spoofing

<<misuse>>

SQL
Injection

enables

enables

enables
<<countermeasure>>

Input and Data
Validation

prevents

<<countermeasure>>

Access Control

<<countermeasure>>

I&A

prevents

prevents

include

include

include

User

Attacker

Attacker

Attacker

<<asset>>
personal info

<<goal>>
keep personal info

secret

<<goal>>

confidentiality

op
era

tio
nal

ize
s

operat
ionalize

s

operationalizes

cycle, it is the task of the designer to ensure that all required
security requirements are included in the specifications and
that adequate protection mechanisms are implemented to
refer those specifications. In the following sections we will
review several approaches which refer to this demand.

A. Specification Techniques
Several specification techniques for representing

different security policies in a model-driven software
development process have been proposed. SecureUML [20]
is a modeling language based on RBAC, used to formalize
access control requirements and integrate them into
application models. It is basically a RBAC language with
authorization constraints that are expressed in Object
Constraint Language (OCL).

UMLSec [17] is an UML extension that enables
specifying security concerns in the functional model. It uses
standard UML extension mechanisms; stereotypes with
tagged values are used to formulate the security
requirements, and the constraints are used to check whether
the security requirements hold in the presence of particular
types of attacks.

B. Access Control Patterns
An alternative to refer security policies is by using

security patterns. Security patterns accumulate extensive
security knowledge and provide guidelines for secure
system development and evaluation.

Access control is one of the core issues in systems and
database security. In an environment with resources whose
access has to be controlled, authorization patterns can be
used to describe, for each entity, the resources it may have
access to, and which access privileges it has. Figure 1
describes the authorization pattern as defined in [19]. The
Authorization_rule association, together with the Right
association class, defines the access privileges of the Subject
to the related ProtectionObject. The Right association class
includes the type of access allowed (e.g. read, write,
execute), a predicate representing a condition that must be
true for the authorization to hold, and a copy flag signifying
a condition that indicates whether the right can be
transferred or not. An operation checkRights can be used in
the Subject or Object to check the validity of a request.

The Role-Based Access Control (RBAC) pattern [19] is
a specialization of the authorization pattern that has become
the most commonly used for access control since it reduces
the cost of administering access control policies and the
amount of errors in the process. RBAC is derived from the
notion that in organizations, users have different roles that
require different skills and responsibilities, and therefore
they should have different rights of access to data, which are
based on their role. Consequently, the RBAC
mechanism [3] describes for each user which privileges they
can acquire based on their roles or their assigned tasks. To
support the RBAC mechanism at the analysis and design
stages of the development lifecycle, a corresponding pattern
was developed [19]. The RBAC pattern is shown in Figure
2. Users are assigned to Roles, while Roles are given Rights
that are permitted to Users in that Role. As in the

authorization pattern, the association class Right defines the
access types that a user within a Role is authorized to apply
on the ProtectionObject. Correct implementation of the
RBAC pattern will ensure effective and secure access
control to the database.

C. Secure Software Development with Security Patterns
Security patterns alone are not sufficient for supporting

the development lifecycle, since they do not provide
systematic guidelines regarding to their application
throughout the entire software lifecycle. In order to provide
such information to the designers, several methodologies for
developing secure software were proposed in the literature.
Fernandez et al. [6] proposed a methodology for integrating
security patterns into each one of the software development
stages. Other methodologies present the use of the aspect-
oriented software design approach to model security
patterns as aspects and weave them into the functional
model [9] [12], or the use of agent oriented security pattern
language together with the Tropos methodology to develop
secure information systems [10] [11].

D. Patterns Validation
Although some of the methods mentioned above provide

tools for checking some aspects of the model, they do not
have the ability to validate the correct application of the
patterns, which will ensure generation of a secure
application or a database scheme. Without systematic
validation of the involved patterns, we risk in having design
problems that will propagate throughout the development
process.

To the best of our knowledge, the only work in this area
is of Peng, Dong, and Zhao [21], which presents a formal
verification method to analyze the behavioral correctness of
a design pattern implementation. Their method exploits the
partial order relationship between the sequence diagram of a
general design pattern and that of its implementation.
However, this method does not verify the structural
correctness of the implementation. Therefore, there is a need
to develop an approach to automatically and fully validate
the implementation of patterns.

-id
Subject

-id
ProtectionObject*

*

-access_type
-predicate
-copy_flag
+checkRights()

Right

Authorization_rule *

*

Figure 1. The general Authorization pattern (adopted

from [19]).

-id
-name

Role
-id
-name

ProtectionObject

-access_type
-predicate
-copy_flag
+checkRights()

Right

*
*-id

-name

User
*

*

Authorization_rule *
*

MemberOf*

*

Figure 2. The basic RBAC pattern (adopted from [19]).

Figure 2. Structure of RBAC

Figures 2 shows structure of Role Based Access Control (RBAC) as examples of the

SDP. The RBAC pattern, which is a representative pattern for access control, describes how to

assign precise access rights to roles in an environment where access to computing resources must

be controlled to preserve confidentiality and the availability requirements.

C. Motivating example

As an example of a pattern application, Fig. 3 shows a portion (“make a payment”) of a

UML class diagram to realize a payment process on the Web.

 7

C. Motivating example

As an example of an applied pattern, Fig. 3 shows a portion (“make a payment”) of a

UML class diagram that realizes a payment process on the Web.

Figure 3. “Make a payment” portion of a class diagram for payment processing

A SDP alone cannot support the development lifecycle because it lacks systematic

guidelines with respect to applications in the entire lifecycle (Dong, Peng & Zhao, 2008).

Consequently, formally describing what rules must be verified is difficult (Abramov, Shoval &

Sturm, 2009). In addition, most SDPs do not specifically mention systematic guidelines until the

relations with Security Requirements are defined. Under the present conditions, even if a

developer intends to apply a SDP such as RBAC (Fig. 2) to the structul model (Fig. 3), a

developer may inappropriately apply a security measure to an identified threat. Additionally, the

appropriateness of the applied pattern to the model and the pattern’s ability to resolve

vulnerabilities are often inadequately verified. Consequently, these situations may lead to

inappropriately applying patterns and unresolved vulnerabilities.

 7

+ make_a_payment

<<control>>
Payment_Controller

<<boundary>>
Payment_UI

User

<<entity>>
user

<<entity>>
product

<<entity>>
payment_info

User

purchasing system

Administrator

make a
payment

confirm purchase
products

post a profit

register
products

part of Class Diagram

Figure 3. “Make a payment” portion of a class diagram for payment processing

A SDP alone is insufficient to support the development lifecycle because it lacks

systematic guidelines with respect to applications in the entire lifecycle [9]. Consequently,

formally describing what rules must be verified is difficult [10]. In addition, most SDPs do not

specifically mention the systematic guidelines until the relations with the Security Requirements

are defined [1]. Under the present conditions, even if a developer intends to apply a SDP like

RBAC (Fig. 2) to the model (Fig. 3), it is possible that a developer may inappropriately apply a

security measure to an identified threat. Additionally, the appropriateness of the applied pattern

to the model and the pattern’s ability to resolve vulnerabilities are inadequately verified.

Therefor, these present situations could cause inappropriate pattern application and unresolved

vulnerabilities.

 8

 Figure 4. Example of an inappropriate pattern application

Figures 4 shows an example of an inappropriate pattern application where the RBAC is

applied to the model shown in Fig. 3. Due to the lack of systematic guidelines with respect to the

application and a method to validate patterns, it is possible that a developer may apply patterns

inappropriately (e.g., like NG design in Fig. 4). The NG design implies that the access right

depends on the user not on the role. Moreover, the appropriate functional behavior of the access

control cannot be confirmed until the design model is tested. Thus, the applied measures may not

mitigate or resolve the threats and vulnerabilities. Figure 5 shows the conventional pattern

application process.

 9

 Figure 5. Conventional pattern application process

D. Test-Driven Development (TDD)

TDD is a software development technique that uses short development iterations based

on prewritten test cases to define desired improvements or new functions. Here our testing

process employs TDD. TDD requires that developers generate automated unit tests to define

code requirements prior to writing the actual code (Choi, Kim & Yoon, 2009). The test case

represents requirements that the program must satisfy (Astels, Beck, Boehm, Fraser McGregor,

Newkirk & Poole, 2003).

Our method employs USE (Büttnera, Gogollaa & Richtersb, 2007), which is a tool in the

UML-based simulation environment that runs tests to specify and validate information systems

based on subsets of UML and OCL (Kleppe & Warmer, 1999). OCL is a semiformal language

that can express constraints for a variety of software artifacts as well as specify constraints and

other expressions in modeling languages. USE was initially implemented in Java at Bremen

University (Germany) to evaluate OCL expressions via simulations. To verify the OCL

constraints, a developer can create an instance of a class in USE and then input a value as a test

case.

 10

Our method initially executes test scripts in a design model that does not consider

security in USE (Test First). These test scripts are generated automatically. Then our method

detects vulnerabilities to threats identified in the requirement stage. Next, SDPs are applied, and

the tests are re-executed to confirm that the vulnerabilities are resolved. In our validation

method, we use OCL expressions as the requirements, and then we validate that the target model

satisfies these requirements.

III. Related Works

Recently, UML-based models have been used for design. Previous research has adopted

UML-based models to describe security patterns (Jurjens, Popp, & Wimmel, 2002), (Dam,

Foley, Feiner & Hughes, 1995), (Finkelstein, Honiden & Yoshioka, 2004).

To model security concerns, modeling techniques such as UMLsec (Jurijens, 2005) and

SecureUML (Basin, Doser & Loddersted, 2002) have been proposed to address security

concerns. UMLsec is defined in the form of a UML profile using standard UML extension

mechanisms. Stereotypes with tagged values are used to formulate the security requirements,

while constraints are used to verify whether the security requirements hold during specific types

of attacks.

SecureUML focuses on modeling access control policies and how these policies can be

integrated into a model-driven software development process. It is based on an extended model

of role-based access control (RBAC) and uses RBAC as a meta-model for specifying and

enforcing security. RBAC lacks support for expressing access control conditions that refer to the

state of a system, such as the state of a protected resource. In addressing this limitation,

SecureUML introduces the concept of authorization constraints. Authorization constraints are

preconditions for granting access to an operation.

 11

Although these techniques can support modeling security-related concerns in UML,

developers who are not security specialists have difficulty employing these approaches because

of their peculiar semantics. Our method adopts security design patterns and it enables developers

who are not security specialist to realize secure design easily compared with these approaches.

Additionally, our tool enables them to design without using peculiar semantics.

There are several articles about verifying security pattern applications. Abramov at al.

(2009) have suggested using a stereotype for a database application to validate security patterns.

Although their method can validate applied pattern structurally, it cannot confirm that the pattern

behavior in the model resolves vulnerabilities to threats.

Dongs at al. (2009) have proposed an approach to verify the compositions of security

patterns using model checking. They presented the guideline to specify the behavior of security

patterns in the model specification language. They defined the synchronous message,

asynchronous message, and alternative flows of a UML sequence diagram and transform them

into CCS specifications. Although this approach formally defines the behavioral aspect of

security patterns and provide transformation scripts to check properties of the security patterns

by model checking, it does not formally analyze the security requirements of the target system.

Therefore, even if the verification of security patterns application can be executed appropriately,

it does not guarantee that threats and vulnerabilities are resolved. On the other hand our method

sets security requirements and security design requirements firstly, then we validate these

requirements.

Model checking is a method to verify a formula against a logic model algorithmically

(Clarke, Emerson, Edmund & Sistla, 1986). This verification technique can be automated by

model checker. There are several articles about the verification of security specifications using

 12

model-checking tools such as SPIN (Josang, 1995), (Jiang & Liu, 2008), but a specific language,

which developers must learn, is necessary for model checking. Additionally, due to the general

scale of development, describing security specifications using specific language is time

consuming compared with our method.

IV. OUR VALIDATION METHOD

In this section, we explain our method. Firstly, we explain the process of our validation

method. Next, we show examples of Ex-SRP and Ex-SDP. Finally, we apply our method to a

purchasing system on the Web as an example validation process.

A. Process of Our Validation Method

Figure 6 shows the process of our method. We prepare extended SRPs (Ex-SRPs) and

extended SDPs (Ex-SDPs) beforehand. These new SRPs and SDPs are expansions of existing

ones, and can be used to validate whether the applied patterns are appropriate and the presence of

vulnerabilities in the target model.

In this paper, we adopt UML notation to describe the target system because UML-based

models are widely used for system design and most of the security design patterns describe these

structure and behavior using UML notation. Additionally, we use a class diagram as a static

structure and communication diagram as a dynamic behavior of the system. To separate

application's concerns, we describe a system with three types of classes: boundaries, controls and

entities. Boundaries are objects that interface with system actors, controls are objects that

mediate between boundaries and entities, and entities are objects representing system data

(Pilgrim, 2013).

 13

 Figure 6. Process of our method

Figure 7. Overall structures of Ex-SRPs and Ex-SDPs

Figure 7 shows the overall structures of Ex-SRPs and Ex-SDPs. In addition to an existing

SRP and SDP, extended patterns contain Security Requirements and Pattern Requirements,

respectively. The whole purpose of SRP is identifying assets, threats, and countermeasures in the

 14

target system. SRP consists of “Context”, “Problem”, “Solution” and Structure”. The “Structure”

of SRP uses the Misuse case with the Assets and Security Goal (MASG) model like Fig. 1,

which is an extension of the misuse case (Andreas & Sindre, 2000) that provides the structure of

assets, threats, and countermeasures at the requirement level.

On the other hand, Ex-SDP describes how to design security measure in order to realize

countermeasures identified by Ex-SRPs. For example, Role-Based Access Control, Multilevel

Security and Reference Monitor (Bschmann et al, 2006) are design patterns related to

Authorization. Below we briefly describe the Ex-SRPs and Ex-SDPs. Sections IV.B and IV.C

provide a concrete example of patterns and the validation process, respectively.

Ex-SRPs

• Context: The context for the application of this pattern and system environments:

• Problem: The problem raised by threats against the target function:

• Solution: The security goal that the application of the pattern is expected to satisfy:

• Structure: we adopt MASG model like Fig.1 for representing this section. This model

describes assets, threats, and countermeasures at the requirement level. Security

Requirements is the requirements each countermeasure must satisfy. If a model does not

satisfy the Security Requirements, then the measures do not remove vulnerabilities, and

the system may contain threats. In TDD, these requirements represent test cases that must

be satisfied.

Herein we assume that there are nine types of countermeasures: “Input and Data

Validation”, “Identification and Authentication”, “Authorization”, “Configuration

Management”, ”Sensitive Data”, ”Session Management”, “Cryptography”, “Exception

Management”, and “Auditing and Logging”. These countermeasures can be referenced in the

 15

Security Frame Category (Mackman & Maher, 2007), which is Microsoft’s systematic

categorization of threats and vulnerabilities. We assume these nine categories as typical

countermeasures are at the requirement level because these categories represent the critical areas

where security mistakes are most often made. Developers can use these categories to divide

system architecture for further analysis, and to help them identify application vulnerabilities.

Table 1 shows the explanation of each countermeasure.

Table 1.
Explanation of each countermeasure

 16

Ex-SDPs

• Context: The situation in which the pattern applies and the functional design

specifications for which the countermeasures are required:

• Problem: The problem raised by threats against the target function:

• Solution: The objectives for security countermeasures:

• Structure: The structure must constantly satisfy the Pattern Requirements:

• Dynamics: The behavior must constantly satisfy the Pattern Requirements:

• Pattern Requirements: To meet the requirements (constraints), the structure and

behavior must be satisfied when a pattern is applied. If a model does not satisfy the

Pattern Requirements, then the pattern is applied inappropriately:

• Consequences: This section describes how the threats are mitigated by countermeasures.

Our method involves six steps (Fig. 6).

1. Identify threats and countermeasures in the system. Ex-SRPs identify the types of assets,

threats, and countermeasures present in the developing software while considering the

functional requirements as well as determine their associations at the requirement level.

2. Execute a test to validate that the input model satisfies the Security Requirements. A

design class diagram, which does not consider security, is used to execute tests to

validate whether the Security Requirements (in OCL) are satisfied because whether the

input model satisfies the Security Requirements can be confirmed at this stage (i.e.,

vulnerabilities to threat identified at the requirement stage can be detected).

3. Select Ex-SDPs. After confirming that the target model does not satisfy the Security

Requirements, Ex-SDPs related to the “countermeasures” of Ex-SRP are selected.

 17

4. Set Security Design Requirements using Pattern Requirements. Security Design

Requirements, which are combinations of each Pattern Requirement, are set as

requirements that the model must satisfy.

5. Apply Ex-SDPs. Specifically, the structure and behavior of Ex-SDPs are applied to the

input model that does not consider security by binding pattern elements to the model

based on stereotypes.

6. Execute tests to validate the appropriateness of each Ex-SDP (i.e., whether the Security

Design Requirements are satisfied is confirmed).

Figure 8. Testing process of our method (conceptual)

Figure 8 shows the conceptual testing process of our method, which is based on TDD.

Generally, TDD is used in cord level. However our testing process employs TDD in design level.

B. Examples of Ex-SRP and Ex-SDP

In addition to explaining Ex-SRP and Ex-SDP concretely, we describe how the model

uses these extended patterns to satisfy the Security and Pattern Requirements. Expansion details

 18

are described as examples of the Authorization (countermeasure of Ex-SRP) and RBAC

(Ex-SDP).

1) Authorization

Table 2 and figure 9 show the Security Requirements of Authorization, which state that

only actors with access rights can execute processes that require access control. In Table 2, the

concept of Authorization is described by a decision table, while Fig. 9 is an OCL statement of

this concept.

Table 2.
Security Requirements of Authorization (conceptual)

Figure 9. Security Requirements of Authorization (OCL)

In the Authorization security test, two conditions (“has access rights” and “does not have

access rights”) are used to validate whether an actor can execute a target process. If an actor who

does not have access rights can execute a process requiring authorization, then the target model

does not satisfy the Security Requirements and the Authorization measure for the vulnerabilities

 14

6. Tests are executed to validate the appropriateness of each Ex-SDP; that is, whether

the Security Design Requirements are satisfied is confirmed.

B. Examples of Ex-SRP and Ex-SDP

In addition to explaining Ex-SRP and Ex-SDP concretely, we describe how the model

uses these extended patterns to satisfy the Security Requirement and the Pattern Requirement.

Expansion details are described as examples of the Access Control (Countermeasure of Ex-SRP)

and RBAC (Ex-SDP).

1) Access Control

Table 1 and Fig. 8 show the Security Requirements of Access Control, which is only

actors who has access right can execute processes that require access control. In Table 1, concept

of Access Control described by decision table, while Fig. 8 is an OCL statement of this concept.

Table 1. Security Requirements of Access Control (conceptual)

context controller
 inv Security Requirement :
 if self.UI.Actor.right = true then
 self.subject_function = true
 else
 self.subject_function = false
 endif

Figure 8. Security Requirements of Access Control (OCL)

 19

is improperly considered. Consequently, the system may be vulnerable to threats. In IV.C, we

explain the concrete conditions for test execution.

Figure 10 shows an example of the test script for model testing. In our tool, developers

can set attributes, methods, and the relation of each element. Then design target system is

developed using UML notation. Additionally, developer can input concrete test cases into the

target model and our tool creates the test script (Fig. 10), which is translated to execute the test in

USE. To use this test script, a developer can create instances of an input model and validate

whether above Security Requirements (in OCL) are satisfied.

Figure 10. Example of the test script

 15

Figure 9 shows an example of test script for model testing. In our tool, developer can set

attribute, method and relation of each element, and then design target system using UML

notation. Additionally, developer can input concrete test cases to target model and out tool create

the test script (Fig. 9), which was translated to execute test in USE. To use this test script, a

developer can create instances of an input model and validate whether above Security

Requirements (OCL) is satisfied.

In Access Control security test, two conditions (“has access right” and “dose not have

access right”) are used to validate whether an actor can execute a target process. If actor who

dose not have access right could execute process that requires access control, a developer find

out target model dose not satisfy Security Requirements. If a model does not satisfy this Security

Requirements, then the Access Control measure for the vulnerabilities is improperly considered,

and the system may be vulnerable to threats. In IV.C, we explain concrete condition of test

execution.

----------Create instances
!create Actor_1 : Actor
!create UI : UI
!create Subject_function : Subject_function
!create entity_1 : entity

--------- Insert associations
!insert (Actor_1, UI) into assignedTo

--------- Set Test Case
!set Actor_1.name := ‘XXXX’
!set Actor_1.right := true
!set entity_1.attribute := y

--------- Execute Method
!openter Subject_function subject_function()

・
・

・
・

・
・

・
・

Figure 9. Example of test script

 20

2) Role-Based Access Control (RBAC)

Figure 11. Structure and behavior of RBAC

Figure 11 shows the structure and behavior of RBAC. In our method, we represent

pattern elements using stereotypes. In RBAC, stereotypes, such as <<RBAC>>, <<User Data >>,

<<Role>> and <<Right>>, are elements of the pattern. When a developer applies a pattern,

pattern elements are bound based on stereotypes.

In Fig. 11, “Subject Controller” using the RBAC controller behaves as access control. To

employ RBAC, if rights are not specified in the role that an actor belongs, this system assumes

that the actor does not have access permission and the actor cannot execute processes requiring

Authorization. This security capability is realized because this pattern satisfies the Pattern

Requirements of RBAC.

 21

 Table 3.
 Pattern Requirements of RBAC (conceptual)

Figure 12. Pattern Requirements of RBAC (OCL)

Table 3 and Fig. 12 show the Pattern Requirements of RBAC in the decision table and

the OCL statement form, respectively for “if rights are given in role which an actor belongs, then

the actor is considered to have access permission and actor can access asset”.

Figure 13 shows the test script to validate whether the model-applied pattern satisfies the

Pattern Requirements. Similar to Fig. 10, a developer provides concrete test cases to the target

model in our tool, then our tool outputs the test script, which is then translated to execute a test in

USE. Both the Security and Pattern Requirements can be validated simultaneously using an OCL

statement. The former determines the presence of vulnerabilities at the design level, while the

latter confirms if the pattern is appropriately applied.

 17

context subject_controller
 inv access_control:
 if self.RBAC.Right->exists(p |
 p.right = true and
 p.role_id = p.Role.id and
 p.role_id = p.Role.User_Data.role_id)
 then
! self.UI.Actor.right = true and self.subject_function = true
 else
! self.UI.Actor.right = false and self.subject_function = false
 endif

Figure 11. Pattern Requirements of RBAC (OCL)

Table 2 and Fig. 11 show the Pattern Requirements of RBAC in decision table and OCL

statement form, respectively. Table 2 shows Pattern Requirements: “if right is given in role

which actor belong, actor is considered that have access permission and actor can access asset”.

Fig. 11 is an OCL statement of this Pattern Requirements.

 22

 Figure 13. Example of a test script

C. Example of the Validation Process

To confirm that our method realizes secure design, here we Jiang our method to a

purchasing system on the Web as an example validation process. We assumed the assets, threats,

and countermeasures using the MASG model in Fig. 1.We initially identified and modeled the

assets, threats, and countermeasures in the system by referring to the Ex-SRPs of the requirement

called "commercial transaction on the Web". Next we executed tests of the model that security is

not considered to validate whether vulnerabilities to threats identified by Ex-SRPs are detected.

Figure 14 shows the model that does not consider security and Table. 4 show the

explanation of each element in this model. In Fig. 14, the system does not have a function to

 18

----------Create instances
!create Actor_1 : Actor
!create UI : UI
!create Subject_function : Subject_function
!create RBAC : RBAC
!create User_Data : User_Data
!create Role : Role
!create Right : Right

--------- Insert associations
!insert (Actor_1, UI) into assignedTo

--------- Set Test Case
!set Actor_1.name := XXXX

!set User_Data.id := z
!set User_Data.pass := ‘xxxxxx’
!set User_Data.name := ‘XXXX’

!set Role.id := y
!set Role.name := ‘xxxxxx’

!set Right.id := x
!set Right.role_id := y

--------- Execute Method
!openter RBAC access_control()
!openter Subject_function subject_function()

・
・

・
・

・
・

Figure 12. Example of test script

Figure 12 shows test script to validate whether model applied pattern satisfies Pattern

Requirements. In the same way as Access Control, a developer gives concrete test cases to target

model in our tool, then our tool outputs the test script like Fig. 12, which was translated to

execute test in USE. Using an OCL statement to describe the Security Requirements and the

Pattern Requirements can simultaneously validate both requirements. The former determines the

presence of vulnerabilities in design level, while the latter confirms the pattern is appropriately

applied.

C. Example of the Validation Process

Here we apply our method to a purchasing system on the Web as an example validation

process and we confirm our method can realize secure design. We initially identified and

 23

check the condition to execute “make a payment” process. In other words, even if this user is not

a regular user, the process can be executed.

 Figure 14. Model that does not consider security

 Table 4.
 Explanation of each element

 After confirming that these vulnerabilities exist in the input model, we set Security

Design Requirements and applied Ex-SDPs. Finally we executed tests to confirm that the

Security Design Requirements are satisfied due to an appropriately applied pattern.

 24

Step 1: Identify threats and countermeasures in the system.

Referring to Fig. 1, “I&A”, “Input and Data Validation”, and “Authorization” are

countermeasures for “Spoofing”, “Elevation of Privilege”, and “SQL Injection” in the “make a

payment” process, respectively. For simplicity, each threat has one countermeasure.

Step 2: Execute a test to validate that the input model satisfies the Security Requirements.

Then by referencing the Security Requirements used for each Ex-SRP countermeasure,

the set for the Security Requirements should be satisfied in the “make a payment” process. Table

5 and Fig. 15 show the Security Requirements for the “make a payment” process.

 Table 5.
 Security Requirements for the “make a payment” process (conceptual)

Figure 15. Security Requirements for the “make a payment” process (OCL)

The Security Requirements for the “make a payment” process include: “actor is regular

user”, “actor has access permission”, and “valid data is inputted”. If these requirements, which

are a combination of “I&A”, “Input and Data Validation”, and “Authorization”, are met, then the

 20

context payment_controller
 inv SecurityRequirement :
 if self.payment_UI.User.registered_user = true and
 self.payment_UI.User.right = true and
 self.payment_UI.is_safe_input = true then
 self.make_a_payment = true
 else
 self.make_a_payment = false
 endif! !

Figure 13. Security Requirements of the “make a payment” process (OCL)

Security Requirements for the “make a payment” process is if the conditions are as

follows: “actor is regular user”, “actor has access permission” and “valid data is inputted”, the

actor could execute the “make a payment process”. These requirements are a combination of

multiple Security Requirements: “I&A”, “Input and Data Validation”, and “Access Control”.

These requirements represent test cases in the TDD process.

Next, we executed a model test to determine whether the input model that does not

consider security satisfies the Security Requirements in Fig. 13. More specifically, we validate

each test case 1 ~ 8 behave expected action as table. 3. If the Security Requirements are not

satisfied, then the appropriate countermeasures are not taken, and the threats identified using Ex-

SRP are possible.

 25

actor can execute the “make a payment process”. These requirements represent test cases in the

TDD process.

Next, we executed a model test to determine whether the input model that does not

consider security satisfies the Security Requirements in Fig. 15 (i.e., we validate whether each

test case 1 ~ 8 behaves according to the expected action in Table 5). If the Security Requirements

are not satisfied, then the appropriate countermeasures are not taken, and the threats identified

using Ex-SRP may exist.

Figure 16. Conditions of the Security Test in USE

Figure 16 shows a case where the “regular user”, “has access permission”, and “uses

valid input data” are all “false” (Table 5, test case 8). Because the input model lacks object

constraints, an actor may carry out “make_a_payment = true” (i.e., an actor can execute the

“make a payment” process without being a regular user or permission). Hence, the input model

not considering security does not satisfy the Security Requirements of the “make a payment”

process, and the OCL evaluation in USE becomes "false" in Fig. 16.

 21

Figure 14. Conditions of the Security Test in USE

Figure 14 shows a case where “regular user”, “have access permission”, and “use valid

input data” are all false (test case 8, Table 3). Because the input model lacks object constraints,

an actor may carry out “make_a_payment = true”; that is, an actor can execute the “make a

payment” process without being a regular user or permission. Hence, the input model not

considering security does not satisfy the Security Requirements of the “make a payment”

process, and the evaluation of OCL on USE becomes "false" in Fig. 14.

Table 4 shows the results of the eight test cases where only case 1 satisfies the Security

Requirements in Table 3 and Fig. 13. In this way, countermeasures “I&A”, “Input and Data

Validation”, and “Access Control” are confirmed necessary.

Table 4. Results of the Security Test

 26

Table 6 shows the results of the eight test cases where only case 1 satisfies the Security

Requirements in Table 5 and Fig. 15, confirming the necessity of countermeasures “I&A”,

“Authorization” and “Input and Data Validation”.

 Table 6.
 Results of the Security Test

Step 3: Select Ex-SDPs.

We selected Ex-SDP related to the countermeasures of Ex-SRP, and then adding these to

the structure to realize security capabilities. We selected Password design and Use, RBAC and

Prevent SQL Injection for “I&A”, “Authorization” and “Input and Data Validation”, respectably.

Step 4: Set Security Design Requirements using the Pattern Requirements.

Table 6 and Fig. 17 show the combinations of each Pattern Requirement necessary for the

“make a payment” process, which are referred to as “Security Design Requirements”.

 27

Table 6.
Security Design Requirements of the “make a payment” process (conceptual)

Figure 17. Security Design Requirements of the “make a payment” process (OCL)

 24

context payment_controller
 inv check_id_and_pass:
 if self.password_design_and_use.User_Data->exists(p |
 p.id = self.password_design_and_use.Login_UI.id and
 p.pass = self.password_design_and_use.Login_UI.pass)
 then
! self.Payment_UI.actor.regular_user = true
 else
! self.Payment_UI.actor.regular_user = false
 endif

context payment_controller
 inv access_control:
 if self.RBAC.Right->exists(p |
 p.right = true and
 p.role_id = p.Role.id and
 p.role_id = p.Role.User_Data.role_id)
 then
! self.Payment_UI.actor.right = true
 else
! self.Payment_UI.actor.right = false
 endif

context payment_controller
 inv sanitize_input_data_payment_UI:
 if self.Payment_UI.Prevent_SQL_Injection.sanitize_input_data = true
 then
 self.Payment_UI.valid_input_data = true
 else
! self.Payment_UI.valid_input_data = false
 endif

context payment_controller
 inv sanitize_input_data_login_UI:
 if self.password_design_and_use.Login_UI.Prevent_SQL_Injection.sanitize_input_data = true
 then
 self.password_design_and_use.Login_UI.valid_input_data = true
 else
! self.password_design_and_use.Login_UI.valid_input_data = false
 endif

context payment_controller
 inv security design requirement:
 if self.Payment_UI.actor.regular_user = true and
 self.Payment_UI.actor.right = true and
 self.Payment_UI.valid_input_data = true and
 self.password_design_and_use.Login_UI.valid_input_data = true
 then
 self.make_a_payment = true
 else
! self.make_a_payment = false
 endif

Figure 15. Security Design Requirements of the “make a payment” process (OCL)

Step 5: Apply Ex-SDP

We apply these Ex-SDPs, i.e. “Password Design and Use", "RBAC”, and "Prevent SQL

Injection". During pattern application, we bind the pattern elements with a stereotype on our tool.

Figure 16 shows a condition of pattern application on our tool. And figure 17 shows the structure

after applying the pattern to an input model.

 28

Step 5: Apply Ex-SDPs and bind pattern elements.

We applied these Ex-SDPs (i.e., “Password Design and Use", "RBAC”, and "Prevent

SQL Injection"). During pattern application, we bind these pattern elements to a stereotype in

our tool. Figure 18 shows the conditions to apply a pattern using our tool, while figure 19 and 20

show the structure and behavior after applying the patterns to model that does not consider

security. In other words, these are models that consider security. As compared with the model in

Fig. 14, there are several conditions (see Table. 6) to execute make a payment process. Table 7

shows the explanation of added element.

Figure 18. Conditions of pattern application in our tool

 29

Figure 19. Model that consider security (structure)

Figure 20. Model that consider security (behavior)

 30

 Table 7.
 Explanation of added element

Step 6: Execute test to validate input model satisfies the Security Design Requirements.

To validate whether the patterns are applied appropriately to the “make a payment”

process, each Pattern Requirement must be validated (i.e., the structure and behavior of the

model must be confirmed after applying the patterns). We executed model tests to confirm that

the model in Fig. 19, 20 satisfies the Security Design Requirements in Fig. 17. Specifically, we

confirmed that test cases 1 ~ 8 behave as expected (Table 6). First, concrete test cases are

inputted into the model created in Step 4, which generates a test script. Then this script is

translated to execute test in USE. Finally the OCL statement using this test script in USE is

evaluated. Figure 21 shows the conditions of the Security Design Test in USE.

 31

Figure 21. Conditions of the Security Design Test in USE

Figure 21 shows a case where access permission is not given for the “Role” of the actor,

but and the system does not sanitize the input data in “Login UI” (Table 6, test case 4). Prior to

applying patterns, USE outputs “make_a_payment = true” (i.e., an actor can execute the “make a

payment” process, even if the actor does not have permission or inputs invalid data). After the

patterns are applied, USE outputs "make a payment = false", and the actor cannot execute the

“make_a_payment” process because access permission is not specified in the “Role” and the

system assumes invalid data is used in “Login UI”. Consequently, the OCL statements are true in

Fig. 21. By executing all the test cases, we confirm that the output model after the pattern

application satisfies the Security Design Requirements of the “make a payment” process.

To summarize, we applied Ex-SDPs for the “make_a_payment” process, which requires

“I&A”, “Input Data and Validation”, and “Authorization”, and then executed a model test. If

patterns are applied appropriately, then the output model will simultaneously satisfy the Security

Design Requirements and the Security Requirements. The initial input model did not satisfy the

Security Requirements of the “make a payment” process. However, the output model applied

patterns to satisfy the Security Design Requirements of the “make a payment” process. In this

 26

~ 8 behave expected action as table. 6. To execute tests, first, we input concrete test cases to the

model created in Step 4. Then we get the test script, which was translated to execute test in USE.

Finally we evaluate OCL statement using this test script in USE. Figure 18 shows the conditions

of the Security Design Test in USE.

TABLE V. Security Design Requirements for the “make a payment”
process

Figure 19. Security Design Requirements of “make a payment” (OCL)

To validate whether the model shown in Fig. 18 satisfies
the Security Design Requirements in Fig. 19, we executed
model tests in USE using the Security Design Test Template.

Figure 20 shows the conditions of the Security Design Test in
USE.

Figure 20. Conditions of the Security Design Test in USE

Figure 20 shows a case where the inputted ID and Password
into <<Login_UI>> exists in <<User_Data>>, but access
permission is not given for the “Role” of the actor and the
system does not sanitize the “UI” input data (case 4, Table V).
Prior to applying patterns, an actor can execute the “make a
payment” process, even if the actor does not have permission
or inputs invalid data because USE outputs “make_a_payment
= true”. After patterns are applied, USE outputs "make a
payment = false" and the actor cannot execute the
“make_a_payment” process because access permission is not
specified in “Role” and the system assumes invalid data is used
in “UI”. By executing all the test cases, we confirm that the
output model after a pattern application satisfies the Security
Design Requirements for the “make a payment” process.

 Step 6: Finally we re-executed the Security Test to validate
that the output model with a pattern application satisfies both
the Security Design Requirement and the Security
Requirement. If it satisfies the Security Requirement, then the
countermeasures appropriately resolve vulnerabilities in the
“make a payment” process.

To summarize, we applied Ex-SDPs for the
“make_a_payment” process that required “I&A”, “Input Data
and Validation”, and “Access Control”, and executed a model
test in USE. The Security Test confirmed that the initial input
model did not satisfy the Security Requirement of the “make a
payment” process. Then the Security Design Test evaluated
whether the output model applied patterns to satisfy the
Security Design Requirement of the “make a payment” process.
Finally, the Security Test was re-executed to verify that the
revised model applied patterns to satisfy the Security
Requirement. In this manner, the appropriate application of
security design patterns and the existence of vulnerabilities to
threats identified at a requirements stage before and after
pattern application could be validated.

D. Limitations
Our method has a few limitations. Because tests are

executed based on threats and countermeasures identified in the
requirement stage, the presence of threats not identified in the

1 2 3 4 5 6 7 8

Conditions

the same ID and Password that are
inputted into “Login_UI” exist in
"User_Data”,

Yes Yes Yes Yes No No No No

Conditions access permission is given in “Role” to
which an actor belongs Yes Yes No No Yes Yes No No

Conditions

sanitize input data in UI Yes No Yes No Yes No Yes No

Actions

consider regular user � � � �

Actions

consider non-regular user � � � �

Actions

considers that an actor have access
permission � � � �

Actions
consider that an actor does not have
access permission � � � �

Actions

consider that valid input data is used � � � �
Actions

consider that invalid input data is used � � � �

Actions

execute “make a payment” process �

Actions

not execute “make a payment” process � � � � � � �

context payment_controller
 inv check_id_and_pass:
 if self.password_design_and_use.User_Data->exists(p |
 p.id = self.password_design_and_use.Login_UI.id and
 p.pass = self.password_design_and_use.Login_UI.pass)
 then
! self.Payment_UI.actor.regular_user = true
 else
! self.Payment_UI.actor.regular_user = false
 endif

context payment_controller
 inv access_control:
 if self.RBAC.Right->exists(p |
 p.right = true and
 p.role_id = p.Role.id and
 p.role_id = p.Role.User_Data.role_id)
 then
! self.Payment_UI.actor.right = true
 else
! self.Payment_UI.actor.right = false
 endif

context payment_controller
 inv sanitize_input_data_payment_UI:
 if self.Payment_UI.Prevent_SQL_Injection.sanitize_input_data = true
 then
 self.Payment_UI.valid_input_data = true
 else
! self.Payment_UI.valid_input_data = false
 endif

context payment_controller
 inv sanitize_input_data_login_UI:
 if self.password_design_and_use.Login_UI.Prevent_SQL_Injection.sanitize_input_data = true
 then
 self.password_design_and_use.Login_UI.valid_input_data = true
 else
! self.password_design_and_use.Login_UI.valid_input_data = false
 endif

context payment_controller
 inv security design requirement:
 if self.Payment_UI.actor.regular_user = true and
 self.Payment_UI.actor.right = true and
 self.Payment_UI.valid_input_data = true and
 self.password_design_and_use.Login_UI.valid_input_data = true
 then
 self.make_a_payment = true
 else
! self.make_a_payment = false
 endif

Figure 18. Conditions of the Security Design Test in USE

Figure 18 shows a case that access permission is not given for the “Role” of the actor

belongs and the system does not sanitize the input data in “Login UI”. This is a test case 4 in

Table. 6. Prior to applying patterns, USE outputs “make_a_payment = true”; that is, an actor can

execute the “make a payment” process, even if the actor does not have permission or inputs

invalid data. After patterns are applied, USE outputs "make a payment = false" and the actor

cannot execute the “make_a_payment” process because access permission is not specified in

“Role” and the system assumes invalid data is used in “Login UI”. Consequently, evaluate of

OCL statements are true in Fig. 18. By executing all the test cases, we confirm that the output

model after a pattern application satisfies the Security Design Requirements of the “make a

payment” process.

 32

manner, the appropriate application of security design patterns and the existence of

vulnerabilities to threats identified at a requirements stage can be validated before and after

pattern application.

D. Limitations

Our method has a few limitations. Because test cases are created based on threats and

countermeasures identified in the requirement stage, the presence of threats not identified in the

requirement stage cannot be verified. In addition, the criterion for selecting Ex-SDP may be

impractical because the range is influenced by the security policy, platform, and risk analysis.

V. CASE STUDY AND DISCUSSION

Here we apply our method to a student information management system (Kaiya, Kobashi,

Okubo, Washizaki & Yochioka, 2013) as a case study and to evaluate RQ1 and RQ2. This

system, which does not directly consider security, was created by a masters course student

majoring in software engineering. Table 8 shows the scale of the target system, and Figure 22

shows a model of the target system.

Table 8. Scale of the target system

 28

Controller

Actor

VIew

Model

Figure 19. Model of student information management system

 33

Figure 22. Model of the student information management system

In the case study, we applied our method to the “delete function” of the “Student

Controller” (Fig. 22). After referencing the Ex-SRP, we identified threats to the delete process

(“Elevation of privilege” and “SQL Injection”) and assumed that “Authorization” and “Input and

Data Validation” are effective countermeasures. In other words, when an actor deletes student

 28

Controller

Actor

VIew

Model

Figure 19. Model of student information management system

 34

data, the system lacks a function to determine whether the actor has a permission to do so or if

the inputted data is valid. Referencing Ex-SRP, we set the Security Requirements, which are a

combination of “Authorization” and “Input and Data Validation”.

Figure 23. Security Requirements of the “delete student data” process (OCL)

 We then validated whether the input model satisfies the Security Requirements and

whether the vulnerabilities are resolved upon applying the patterns. After confirming that the

input model does not satisfy the Security Requirements, we applied Ex-SDPs. We selected

"RBAC" and "Prevent SQL Injection" as Ex-SDPs. The model applied patterns to realize an

“Authorization” function because “Student Controller” calls elements of <<RBAC>> to verify

the actor’s role as rights depend on the role. In addition, this model can realize an "Input and

Data Validation" function via the sanitizing process in <<Delete_UI>>.

 To confirm whether the structure and behavior of the applied patterns operate

appropriately, we validated the Security Design Requirements (Table 9) of the “delete student

data” process using model tests.

 29

In case study, we applied our method to “delete function” of “Student Controller” in Fig.

19. In other words, we apply our method to use case “Delete student data”. After referencing the

Ex-SRP, we identified the threats to the delete process (“Elevation of privilege” and “SQL

Injection”) and assumed that “Access Control” and “Input and Data Validation” are effective

countermeasures. In other words, when an actor delete certain student data, the system does not

have a function to determine whether an actor has a permission to delete or if the inputted data is

valid. Referencing the Ex-SRP, we set Security Requirements in Figure 20 that should be

satisfied during the delete process. These Requirements are combination of “Access Control”

and “Input and Data Validation.

context StudentController
 inv SecurityRequirement :
 if self.DeleteUI.Actor.right = true and
 self.DeleteUI.Actor.valid_input_data = true then
 self.delete = true
 else
 self.delete = false
 endif! !

Figure 20. Security Requirements of “delete student data” process (OCL)

 We then validated whether the input model satisfies the Security Requirements and

whether the vulnerabilities are resolved upon applying patterns. After confirming that the input

model does not satisfy the Security Requirements, we applied Ex-SDPs. We selected "RBAC"

and "Prevent SQL Injection" as Ex-SDPs. Model applied patterns could realize an “Access

Control” function because “Student Controller” calls elements of <<RBAC>> and checks

actor’s role and right depend on each role. In addition, this model could realize an "Input and

Data Validation" function via a sanitizing process in <<Delete_UI>>.

 35

Table 9. Security Design Requirements of the “delete student data” process (conceptual)

We executed model tests for the four test cases in Table 9 and confirmed that the model

after pattern application satisfies the Security Design Requirements. Thus, our method correctly

applies patterns (RQ1) in both the “delete student data” process and in III.C.

Finally we validated whether the model after pattern application satisfies the Security

Requirements of the “delete student data” process. To satisfy Security Design Requirements, the

target model must satisfy the Security Requirements. Consequently, the first test confirmed the

existence of vulnerabilities identified in the requirement stage before pattern application, while

the second test validated that the vulnerabilities are removed after pattern applications. Thus, the

proposed method answers RQ2.

 36

VI. THREATS TO VALIDITY

A. Threats to internal validity

In the case study, a developer familiar with our method or security patterns applies

patterns. Therefore, there is a possibility that general developers could proceed with our process

inappropriately. Additionally, even if they validate pattern application and resolve vulnerabilities

appropriately, it takes long time rather than other existing approaches because of lack of the

understanding of our method. Although our tool provides a flow of the validation process and it

also executes test automatically, we should confirm that the expected outcome is achieved by

developers unfamiliar with our method.

B. Threats to external validity

We did not verify whether our method is applicable to any type of system. Therefore, it is

difficult to generalize the case study results. Moreover, the number of security patterns we used

and experiment tester is not enough. Hence, it is possible that several security patterns could be

not available in our method. Although we used representative patterns and a typical model for

software development and confirmed that our method is useful for that, we should confirm that

our method is applicable to more general patterns and large-scale examples.

VII. CONCLUSION AND FUTURE WORK

If a software developer is not a security expert, patterns may be inappropriately applied.

Additionally, threats and vulnerabilities may not be mitigated even if patterns are applied

correctly. Herein we propose a validation method for a security design pattern using a model test

in the UML model simulation environment. Specifically, assets, threats, and countermeasures are

identified in the target system during an early stage of development. We validated both the

 37

appropriateness of the applied patterns and the existence of vulnerabilities identified in the first

stage of the design model.

This method offers three significant contributions. First, Ex-SRP and Ex-SDP, which are

new extended security patterns using OCL expressions, include requirement- and design-level

patterns. Second, a new model-testing process based on TDD validates correct pattern

applications and the existence of vulnerabilities using these extended patterns. Finally, a tool to

support pattern application automatically generates a script to test the model. In the future, we

intend to experiment using more general and large-scale examples as well as consider

applications based on the dependencies among patterns, which should realize more practical

uses.

 38

REFERENCES

Maruyama, k., Washizaki, H., & Yoshioka, N. (2008). A Survey on Security Patterns (pp.

 35-47).

Bschmann, F., Fernandez-Buglioni, E., Schumacher, M., Sommerlad, P., & Hybertson, D.

 (2006). SECURITY PATTERNS : Integrating Security and Systems Engineering (Wiley

 Software Patterns Series).

Heyman, T., Joosen, W., Scandariato, R., & Yskout, K. (2007). An analysis of the security 	 	 	 	

 patterns landscape. in Proceedings of the Third International Workshop on Software

 Engineering for Secure Systems, ser. SESS ’07. IEEE Computer Society. doi:

 10.1109/SESS.2007.4.

Lai, R., Nagappan, R., & Steel, C. (2005). Core Security Patterns: Best Practices and Strategies

 for J2EE, Web Services, and Identity Management.

Bondareva, K., & Milutinovich, J. (2014). Unified Modeling Language. Retrieved September 10,

 2014, from http://www.omg.org/gettingstarted/what_is_uml.htm.

Kaiya, H., Okubo, T., & Yoshioka, N. (2012). N. Effective Security Impact Analysis with

 Patterns for SoftwareEnhancement. IJSSE 3(1): 37-61 2012. doi: 10.1109/ARES.2011.79.

Okubo, T., Taguch, K., & Yoshioka, N. (2009). Misuse Cases + Assets + Security Goals.

 International Conference on Computational Science and Engineering. doi:

 10.1109/CSE.2009.18.

Andreas L., & Sindre, G. (2000). Eliciting security requirements by misuse cases. IEEE

 Computer Society. doi: 10.1109/TOOLS.2000.891363.

Dong, J., Peng, T., & Zhao, Y. (2008). Verifying Behavioral Correctness of Design Pattern

 Implementation. SEKE, page 454-459.

 39

Abramov, J., Shoval, P., & Sturm, A. (2009). Validating and Implementing Security Patterns for

 Database Applications. SPAQu.

Dong, J., Peng, T., & Zhao, Y. (2009). Automated verification of security pattern compositions.

 Information and Software Technology, vol 52, pages 274–295. doi:

 10.1016/j.infsof.2009.10.001

Choi, B., Kim, H., & Yoon, S. (2009). Performance testing based on test-driven development for

 mobile applications. ICUIMC. doi: 10.1145/1516241.1516349.

Astels, D., Beck, K., Boehm, B., Fraser, S., McGregor, J., Newkirk, J., & Poole. C. (2003).

 Discipline and practices of TDD : (test driven development). OOPSLA. doi:

 10.1145/949344.949407.

Büttnera, F., Gogollaa, M., & Richtersb,M. (2007). USE: a UML-based specification

 environment for validating UML and OCL. Science of Computer Programming (vol 69).

 doi: 10.1016/j.scico.2007.01.013.

Kleppe. A & Warmer, J. (1999). The Object Constraint Language: Precise Modeling with UML

 (Addison-Wesley Object Technology Series).

Ju ̈rjens, J., Popp, G., & Wimmel, G. (2002). Towards using security patterns in model-based

 system development. PLoP. doi: 10.1.1.18.8894.

Adamczyk, P., Hafiz, M., & Johnson, R. (2007). Organizing security patterns. IEEE Software,

 vol.24, no.4, pp.52– 60. doi: 10.1109/MS.2007.114.

Finkelstein, A., Honiden, S., & Yoshioka, N. (2004). Security patterns: a method for

 constructing secure and efficient inter-company coordination systems. Enterprise

 Distributed Object Computing Conference pp.84–97. doi: 10.1109/EDOC.2004.1342507.

Dam, A., Foley, J. D., Feiner, S., & Hughes, J. (1995). Computer Graphics: Principles and

 40

 Practice in C (2nd Edition).

Jurijens, J. (2005). Secure Systems Development with UML.

Basin, D., Doser, J., & Loddersted, T. (2002). SecureUML: A UML-Based Modeling Language

 for Model-Driven Security. doi: 10.1007/3-540-45800-X_33.

Clarke, E., Emerson, A., Edmund, M., & Sistla, A. (1986). Automatic verification of finite- state

 concurrent systems using temporal logic specifications. doi: 10.1145/5397.5399.

Josang, A. (1995). Security protocol verification using spin.INRS-Telecommunications,

 Montreal, Canada.

Jiang, Y., & Liu, X. (2008). Formal analysis for network security properties on a trace semantics.

 doi: 10.1109/ICACTE.2008.31.

Pilgrim, P. (2013) Java EE 7 Developer Handbook. Paperback, Packt Publishing.

Mackman, A., & Maher, P. (2007). Web Application Security Frame. Microsoft Patterns &

 Practices. http://msdn.microsoft.com/en-us/library/ms978518.

Kaiya, H., Kobashi.T., Okubo, T. Washizaki, H., & Yochioka, N. (2013). SSR-Project.

 https://github.com/SSR-Project

