
IEICE TRANS. FUNDAMENTALS/COMMUN./ELECTRON./INF. & SYST., VOL. E85-A/B/C/D, No. xx JANUARY 20xx

1

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

PAPER

Recovering Traceability Links between Requirements and Source

Code using the Configuration Management Log*

Ryosuke TSUCHIYA

†
, Nonmember, Hironori WASHIZAKI

†
, Yoshiaki FUKAZAWA

†
, Members,

Tadahisa KATO
††

, Masumi KAWAKAMI
††

 and Kentaro YOSHIMURA
†††

, Nonmembers

SUMMARY Traceability links between requirements and source code

are helpful in software reuse and maintenance tasks. However,

manually recovering links in a large group of products requires

significant costs and some links may be overlooked. Here, we propose

a semi-automatic method to recover traceability links between

requirements and source code in the same series of large software

products. In order to support differences in representation between

requirements and source code, we recover links by using the

configuration management log as an intermediary. We refine the links

by classifying requirements and code elements in terms of whether they

are common to multiple products or specific to one. As a result of

applying our method to real products that have 60KLOC, we have

recovered valid traceability links within a reasonable amount of time.

Automatic parts have taken 13 minutes 36 seconds, and non-automatic

parts have taken about 3 hours, with a recall of 76.2% and a precision

of 94.1%. Moreover, we recovered some links that were unknown to

engineers. By recovering traceability links, software reusability and

maintainability will be improved.

key words: traceability recovery, configuration management log,

commonality and variability analysis, software product line

1. Introduction

Traceability in software development is the ability to

trace the relationships between artifacts. These

relationships are called traceability links. Traceability

links are formed between the following pairs of artifacts:

the requirements specification document and source code

that implements the requirements, design documents and

test cases, requirements and design, etc. In this paper, we

focus on links between requirements and code elements

(e.g., function, class, file). For example, in CUnit [18]

(the target of our evaluation experiments), the

requirement “Running tests in Automated mode” links

with the file Automated.c implements the requirement.

 Traceability links can be helpful in several software

engineering tasks such as maintenance and reuse [12]. If

engineers can grasp the relationships between

requirements and source code, they can effortlessly

identify the code elements implementing the

requirements that they want to reuse or maintain (e.g.,

bug fix, modifications for change request [4]).

 It is not practical from the viewpoint of cost that

engineers manually recover all traceability links of large

products. Moreover, there are links that are difficult to

find manually, for example, if there is no apparent

similarity in notation between the requirements and code,

or if there is no description of the relationship in the

documents. We call these “non-explicit traceability links.”

 We propose a framework to recover traceability

links between requirements and source code in the same

series of large software products. In order to support

differences in representation between requirements and

code elements (e.g., notation, language), we recover

links by applying natural language processing and

document retrieval to the configuration management log.

However, the granularity of links recovered from the log

is large, so we refine the links by conducting the

commonality and variability analysis.

 Our proposed method is semi-automatic; if any of

the recovered links were unknown to engineers,

engineers must manually judge whether they are non-

explicit traceability links or false positives. If the

accuracy of the recovery method is poor, or support

information is missing, the decisions take significant

costs. Our framework enables engineers to judge the

validity of links with practical costs by reliable accuracy

and support information.

 The following are the Research Questions addressed

in this study.

RQ1 How accurately can we recover candidate

traceability links semi-automatically?

RQ2 Can non-explicit traceability links be manually

recovered from candidate links suggested by our

method?

RQ3 Can we recover traceability links within a

reasonable amount of time?

 In order to evaluate, we applied the framework to

two products: open source software CUnit and a network

 Manuscript received January xx, 20xx.
 Manuscript revised March xx, 20xx.
 † The authors are with Dept. Computer Science of Waseda

University, Tokyo, 169-8555, Japan.
 †† The authors are with Yokohama Research Laboratory of

Hitachi, Ltd., Kanagawa, 244-0817, Japan.
 ††† The author is with Hitachi Research Laboratory of Hitachi,

Ltd., Ibaraki, 319-1292, Japan.
 * This paper is an extended version of a paper presented at

the 17th International Software Product Line Conference
[1]. We have added some descriptions that explain how our
framework supports software reuse and maintenance in the
sections 2.1 and 3.9. Moreover, we have added some
discussions to the section of evaluation.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

2

control system developed by a company. CUnit has more

than 7KLOC, and the network control system has more

than 60KLOC. In CUnit, we recovered traceability links

with a recall of 76.0% and a precision of 70.4%. In the

network control system, we recovered traceability links

with a recall of 76.2% and a precision of 94.1%.

Therefore, our framework is effective in the recovery of

traceability links regardless of the size of the product or

the development organization. The following are our

contributions.

 We have proposed a method to semi-automatically

recover traceability links using the configuration

management log.

 We have proposed a method to refine traceability links

by conducting the commonality and variability analysis.

 We have developed a tool that can recover links in

large products within a reasonable amount of time.

 We have proposed a framework including the process

to recover traceability links using the tool.

 We have applied the framework to actual products that

have over 60KLOC, and have confirmed its validity.

By recovering links between requirements and source

code using our framework, software reusability and

maintainability is improved with practical costs.

 The remainder of the paper is organized as follows.

First, we provide some background information (Section

2). Then, we describe our framework to recover

traceability links (Section 3). In Section 4, we present

our evaluation of the framework by conducting

experiments on two targets. In Section 5, we discuss

related works. Finally, we provide a conclusion and

future works (Section 6).

2. Background

2.1 Software Reuse and Maintenance with Traceability

Traceability links between requirements and source code

facilitate the identification of code elements for reuse or

modification especially when engineers do not have

advanced knowledge of the previous product. In fact, in

order to handle frequent software change requests,

engineers are recommended to reduce the cost of

identifying code elements impacted by change requests

using traceability links.

Empirical studies have verified the effectiveness of

traceability links in software reuse [3] and maintenance

tasks [4]. Although these studies are not industrial

records, both explicitly show traceability benefits by

conducting experiments that conform to actual reuse and

maintenance tasks.

Software Product Line Engineering (SPLE) has

been widely recognized as an efficient method for

software reuse. SPLE aids software development by

using reusable core assets (e.g., feature, architecture, and

code elements) [5]. In the extractive approach to develop

core assets, we need to analyze the commonality and

variability of existing products. Furthermore, SPLE

requires relationships between those core assets (e.g.,

traceability links between features and code elements) to

reuse them efficiently [6][7][8].

As described above, traceability links are essential

for software reuse and maintenance. However, we must

consider the cost of traceability recovery and

management. If the recovery and management cost

exceeds the benefits of traceability links (i.e., amounts of

cost reduction in software reuse and maintenance), it

does not meet the needs of engineers. Therefore,

automatic support methods are required to minimize the

cost of recovering and managing traceability links.

Many previous studies have proposed automatic or

semi-automatic methods to recover traceability links

(described in section 5.2). However, these methods have

a common weakness ― they depend on the

representation being similar between the requirements

and source code (described in section 2.2). We focus on

overcoming this weakness in this paper.

2.2 Configuration Management Log

If the identifier of code elements (e.g., file name,

function name) and requirements are represented using

the same notation and language, automatic recovery of

traceability links using previous methods is easy.

However, this is often not the case. For instance, while

the purpose is described in the requirements, the

identifier that signifies the means can be given to the

code elements. In another case, the identifier can be the

short form of requirements. The most difficult case is

when the language is different between the requirements

and source code in previous methods.

In the above cases, it is difficult to recover links by

comparing the requirements and the identifier of code

elements. In order to support differences in expression,

an intermediary is required. Here, we focus on the

configuration management log that contains information

related to requirements and source code. It is composed

of revisions that include messages and file paths.

The two targets of our evaluation experiments use the

version management system Apache Subversion (SVN)

[19]. Figures 1 shows an excerpt from a log of CUnit as

specific examples of the revision of SVN. It shows that

the revision has a message and a file path. By examining

these logs, we have confirmed that words related to

requirements appear in the messages of the log. For

example, in Figure 1, the word "XML" appears in the

message. This word is strongly correlated with the

requirement “Running tests in Automated mode” because

this functional requirement is the only one that outputs

results in XML format. If these words are recorded along

with file paths, we can recover traceability links without

depending on the notation.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

3

Fig. 1 Revision modifying a single file.

Fig. 2 Commonality and variability analysis.

2.3 Commonality and Variability Analysis

Traceability links between requirements and functions

cannot be recovered using file paths in the configuration

management log. Therefore, we use the Commonality

and Variability Analysis (CVA) on the same series of

software products so that we can recover traceability

links between requirements and functions. We will

explain how to recover links with functions by CVA in

section 3.7.

CVA is used to analyze to which products elements

(e.g., requirements, code elements) belong. CVA

classifies elements as common to some products or as

specific to a product. Figure 2 shows a concrete example:

the requirements “Running tests in Automated mode” is

common to three products, whereas the requirement

“Activation of suites and tests” belongs to product Z only.

CVA is used to support the development of core

assets in SPLE. There are several methods of CVA in

software elements (e.g., requirements, architecture). In

the following paragraphs, we describe the methods that

we have previously proposed.

We have proposed a method of CVA of the

requirements in legacy software products [9]. This

method measures the similarity of sentences using the

vector space model, and analyzes whether or not the

requirements are common to multiple products. In the

vector space model proposed by Salton et al. [10], a

sentence is represented by one vector that depends on the

valid words in the sentence. The contents of the sentence

are determined by the direction of the vector.

There is a method of CVA of code elements using

code clone detection [11]. A code clone is a code

fragment that is identical or similar to another in the code.

2.4 Motivating Example

In many products, the notation and the abstraction level

are different between the requirements and the identifier

of code elements. In CUnit, the requirement “Lookup of

individual suites and tests” links with the functions

CU_get_suite() and CU_get_test() that belong to the file

TestDB.c. There are some overlapping words between

the requirements and the identifiers, but they cannot be

easily associated through comparison. In the network

control system used as a target of our evaluation

experiments, the identifier of code elements is written in

English, while the requirements are written in Japanese.

Non-explicit traceability links exist in most

products. In CUnit, the user manual describes most

traceability links between requirements and code

elements. However, information on the relevant

requirements of some files (e.g., MyMem.c) is not

mentioned. This information may be unnecessary if

CUnit is used as a testing framework, but it is useful for

derived development based on CUnit. In the network

control system, there are many traceability links that

engineers have not grasped because the number of

requirements and files is quite large.

3. Traceability Link Recovery Framework

3.1 Overview

We propose a framework to recover traceability links

between requirements and source code in the same series

of large software products. Figure 3 shows the overview

of our framework. The targets of our framework are

series of large software products developed by one

organization. As inputs, the assets of requirements and

source code are required for each product. Assets of

requirements are documents about product requirements

written in natural language. In our framework, we focus

on requirements that are concrete and objective (i.e.,

software functional and non-functional requirements).

Our framework mainly treats links with component level.

However, we can optionally treat links with function

level by refining links with components. In this paper,

“component” means source code files or classes. And,

“function” means a subroutine as part of the component.

(e.g., methods of Java classes)

Traceability links can be recovered by finding

revisions that contain words related to requirements in

the configuration management log. For refining these

links, CVA is conducted prior to recovering links. Finally,

we refine traceability links using the CVA results in order

to enhance accuracy.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

4

Fig. 3 Overview of our framework.

Our framework is divided into the following seven

steps.

Step (1). CVA of Requirements

Step (2). CVA of Code Elements

Step (3). Keyword Setting

Step (4). Classification of Revisions

Step (5). Recovery of Traceability Links

Step (6). Auto Refine of Traceability Links

Step (7). Manual Refine of Traceability Links

The following sections describe each step in detail.

3.2 CVA of Requirements

We use the method mentioned in section 2.3 for CVA of

requirements to measure the similarity of requirements.

Each requirement is treated as a sentence in this

method, and the vector space model is applied to

represent each sentence by a vector determined by the

valid words (nouns, verbs, and adjectives) in the

sentence. For a sentence 𝑆𝑥 containing 𝑀 valid words,

i.e., 𝑣1 , 𝑣2 , ⋯ , 𝑣𝑀 , w 𝑣𝑝 , 𝑆𝑥 (1 ≤ p ≤ M) is the

number of appearance of 𝑣𝑝 in 𝑆𝑥 . 𝑆𝑥 is represented

by the M-dimensional vector 𝑑𝑥
 defined as follows:

𝑑𝑥
 = w 𝑣1 , 𝑆𝑥 , w 𝑣2, 𝑆𝑥 , ⋯ , w 𝑣𝑀 , 𝑆𝑥

The similarity between the two sentences 𝑆𝑖 and

𝑆𝑗 is obtained as the cosine of the angle between the two

sentence vectors 𝑑𝑖
 and 𝑑𝑗

 (cosine similarity).

𝑆𝑆𝑖𝑚 𝑆𝑖 , 𝑆𝑗 (Sentence Similarity, 0 ≤ 𝑆𝑆𝑖𝑚 ≤ 1) is

defined using the cosine similarity as follows:

𝑆𝑆𝑖𝑚 𝑆𝑖 , 𝑆𝑗 =
𝑑𝑖
 𝑑𝑗

 𝑑𝑖
 𝑑𝑗

 By measuring the similarity SSim between the

requirements in each product, each requirement is

classified as being common to some products or as being

specific to one product. If SSim exceeds a threshold set

by the users, the corresponding requirements are judged

to be identical. The classification result is represented as

a subset of the set of all products targeted. For instance,

in Figure 2, the set of all products targeted is {X, Y, Z}.

The requirement “Running tests in Automated mode”

belongs to {X, Y, Z}. On the other hand, the requirement

“Lookup of individual suites and tests” belongs to {Y}.

3.3 CVA of Code Elements

In this step, CVA of code elements is conducted at the

granularity of both components and functions. Source

code is needed as input. In the same way as requirements,

code elements are classified as either common or specific.

As in a previous study, we use code clone detection for

the analysis.

Each code element is composed of tokens (e.g.,

operation, identifier). 𝑇𝑜𝑘𝑒𝑛 𝐸𝑥 represents the total

number of tokens for a code element 𝐸𝑥 . 𝐶𝑙𝑜𝑛𝑒 𝐸𝑥 , 𝐸𝑦

represents the number of tokens of code clones between

𝐸𝑥 and 𝐸𝑦 . The similarity between 𝐸𝑥 and 𝐸𝑦 is

determined by the ratio of the number of code clone

tokens to the total number of tokens. 𝐶𝐸𝑆𝑖𝑚 𝐸𝑥 , 𝐸𝑦

(Code Element Similarity, 0 ≤ 𝐶𝐸𝑆𝑖𝑚 ≤ 1) is defined

by the following formula:

𝐶𝐸𝑆𝑖𝑚 𝐸𝑥 , 𝐸𝑦 =
𝐶𝑙𝑜𝑛𝑒 𝐸𝑥 , 𝐸𝑦 ∗ 2

𝑇𝑜𝑘𝑒𝑛 𝐸𝑥 + 𝑇𝑜𝑘𝑒𝑛 𝐸𝑦

If 𝐶𝐸𝑆𝑖𝑚 𝐸𝑥 , 𝐸𝑦 exceeds a threshold set by the users,

𝐸𝑥 and 𝐸𝑦are determined to be identical. This similarity

measurement is conducted for all code elements that

share code clones, and each code element is classified by

the products to which it belongs. The classification result

is represented in the same way as requirements.

3.4 Keyword Setting

We utilize words related to requirements appear in the

messages of the configuration management log. In this

step, keywords that characterize each requirement are set

so that they can be used to identify the components

related to the requirements in a later.

First, as candidates of keywords, words that have a

large TF-IDF value are extracted from the documents

that describe the summary of requirements. TF-IDF is a

method for word weighting using term frequency and

inverse document frequency. In addition, proper nouns,

including abbreviations, are extracted as candidates.

Then, engineers set the keywords by adding,

deleting, modifying, or combining the candidate words.

3.5 Classification of Revisions

If we use revisions that simultaneously modify

components of multiple domains to recover traceability

links, unrelated requirements and components may be

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

5

linked. Unfortunately, simultaneous revisions often occur.

Therefore, in order to extract useful information while

avoiding false positives, our framework automatically

classifies revisions into the following three types based

on the number of domains they affect. Here, domain is a

directory that has files implementing the same feature.

Type A. Revisions modifying components of a single

domain.

Traceability links recovered from this type are the

most reliable. The revision in Figure 1 is classified

as this type.

Type B. Revisions modifying components of multiple

domains below the threshold number.

Because poorly related features are simultaneously

modified in some cases, traceability links recovered

from this type of revision should be distinguished

from traceability links recovered from Type A

revisions.

Type C. Revisions modifying components of multiple

domains greater than or equal to the threshold

number.

This type of revision causes false positives, so it is

removed from targets of search in the latter steps.

The threshold number is set by users. As a guideline, if

there are a lot of Type A revisions, users expect Type B

revisions the reliability rather than their number, so they

should set a low threshold number. Conversely, if there

are few Type A revisions, users require a lot of Type B

revisions, so they should set a high threshold number.

At the end of this step, a refined log with the

revisions classified and Type C revisions removed is

outputted. This refined log is used in the following steps.

3.6 Recovery of Traceability Links

3.6.1 Traceability Links Recovery Method

In this method, revisions that have message containing

the keywords set in Step (3) (Keyword Setting) are

identified to determine the implementation points. The

number of keyword appearance must be above the

threshold number, which is tuned to the number of words

in the revision message. When most of revision messages

have the large number of words, we need to set the large

number to the threshold of keyword appearance. Then,

the requirements connected with the keywords are linked

with the modified components written as file paths in the

revision. For example, CUnit has the requirement

“Running tests in Automated mode.” If the word “XML”

is set as a keyword of this requirement, the method

searches for revisions that have a message containing the

word “XML” in the configuration management log to

determine the implementation points. One such

implementation point would be in the revision in Figure

1. In this revision, the component Automated.c is

modified. As a result, a traceability link between the

requirement “Running tests in Automated mode” and the

component Automated.c is recovered. The same

operation is conducted for all requirements to identify

and link the related components.

3.6.2 Types of Traceability Links

For each traceability link recovered, the requirement and

the component should belong to the same group of

products as classified by CVA. If not, this information

can be used to refine traceability links. We classify

traceability links into five types using the CVA results.

We first define the following terms.

𝑘 is the number of targeted products. 𝑅𝑖 represents

the set of requirements for each product. Then, 𝑅 (the

set of requirements in all targeted products) is defined by

the following formula:

𝑅 = 𝑅𝑖

𝑘

𝑖=1

Likewise, 𝐶𝑖 represents the set of components for each

product. Then, 𝐶 (the set of components in all targeted

products) is defined by the following:

𝐶 = 𝐶𝑖

𝑘

𝑖=1

If 𝔓 𝐶 represents the power set of 𝐶, then, 𝜑 (the

relationship between 𝑅 and 𝔓 𝐶 obtained from the

configuration management log) is defined as following:

𝜑: 𝑅 → 𝔓 𝐶

Similarly, if 𝔓 𝑃 represents the power set of the

targeted products 𝑃, then, 𝐼𝑅 (the relationship between

requirements and the set of products that have the

requirements) and 𝐼𝐶 (the relationship between

components and the set of products that have the

components) are defined by the following:

𝐼𝑅 : 𝑅 → 𝔓 𝑃

𝐼𝐶 : 𝐶 → 𝔓 𝑃

Finally, 𝑐 (one of the components 𝜑 𝑟 linked to the

requirement 𝑟) is defined by the following:

𝑟 ∈ 𝑅 ↦ 𝜑 𝑟 ⊂ 𝐶

𝑐 ∈ 𝜑 𝑟

𝐼𝑅 𝑟 is the set of products that have the requirement 𝑟.

𝐼𝐶 𝑐 is the set of products that have the component 𝑐.

Then, as a result of the comparison between 𝐼𝑅 𝑟 and

𝐼𝐶 𝑐 , traceability links between 𝑟 and 𝑐 are classified

into the following five types. Figure 4 shows examples

of when products X, Y and Z are targeted.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

6

Fig. 4 Types of traceability links.

Fig. 5 Recovery of links between requirements and functions.

Type1. 𝐼𝑅 𝑟 = 𝐼𝐶 𝑐

e.g., 𝐼𝑅 𝑟 = 𝐼𝐶 𝑐 = X, Y, Z
The requirement and the component belong to the

same group of products.

Type2. 𝐼𝑅 𝑟 ⊃ 𝐼𝐶 𝑐

e.g., 𝐼𝑅 𝑟 = Y, Z , 𝐼𝐶 𝑐 = {Y}

The set of products that have the component is a

proper subset of the set of products that have the

requirement.

Type3. 𝐼𝑅 𝑟 ⊂ 𝐼𝐶 𝑐

e.g., 𝐼𝑅 𝑟 = Z , 𝐼𝐶 𝑐 = {Y, Z}
The set of products that have the requirement is a

proper subset of the set of products that have the

component.

Type4. 𝐼𝑅 𝑟 ⊈ 𝐼𝐶 𝑐 ∧ 𝐼𝑅 𝑟 ⊉ 𝐼𝐶 𝑐 ∧

 𝐼𝑅 𝑟 ∩ 𝐼𝐶 𝑐 ≠ ∅

e.g., 𝐼𝑅 𝑟 = X, Z , 𝐼𝐶 𝑐 = {X, Y}

Conditions of Type 1, 2 and 3 are not satisfied.

However, the sets of products include common

products. In the example, X is common product.

Type5. 𝐼𝑅 𝑟 ∩ 𝐼𝐶 𝑐 = ∅

e.g., 𝐼𝑅 𝑟 = Z , 𝐼𝐶 𝑐 = {Y}

The sets of products include no common products.

3.7 Auto Refine of Traceability Links

In this step, we refine links using the classification

described in the previous step.

1) Recovery of traceability links between requirements

and functions

When a traceability link between a requirement and a

component is of Type 3, the requirement may link

with functions of the component. If the component

has functions whose results of the CVA are the same

as those of the requirement, these functions may link

with the requirement.

Figure 5 shows an example in three products of

CUnit {2.01, 2.10, 2.12}. The traceability link

between the requirement “Lookup of individual

suites and tests,” which belongs to the product {2.12},

and the component TestDB.c which belongs to the

products {2.01, 2.10, 2.12} is recovered by Step (5).

These CVA results are different, but the component

TestDB.c has functions that belong only to the

product {2.12}. Some of these functions may link

with the requirement “Lookup of individual suites

and tests”. If links of Type 3 are recovered, functions

whose results of the CVA are the same as those of the

requirement are demonstrated to users.

2) Suggestion of the presence of sub requirements

When a traceability link between the requirement and

the component is of Type 2, the granularity of the

requirement may be large. Sub requirements whose

results of the CVA are the same as those of the

component may exist. However, we only suggest the

presence of these because we do not stratify

requirements.

3) Elimination of false positives

Traceability links of Types 4 and 5 may be false

positives because the products to which the

requirement and the component belong are different.

Therefore, these links are removed from the results.

3.8 Manual Refine of Traceability Links

To check the validity of the links recovered, engineers

review the links as follows.

First, engineers look at the traceability matrix to see

if there are any requirements that link with a huge range

of components. If they find such a requirement, a

keyword for the requirement may be a word that is

widely used in the configuration management log. In this

case, the engineers must go back to Step (3) to review

the keyword setting.

Next, for traceability links whose relationship is

hard to understand at a glance, engineers check their

validity by reviewing the revision messages from which

they were recovered. If their validity is confirmed, the

recovery of these non-explicit traceability links is

considered a success.

Finally, engineers identify traceability links

between requirements and functions using information

obtained in Step (6). In Figure 5, functions that belong

only to the product {2.12} have been suggested to link

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

7

with the requirement “Lookup of individual suites and

tests.” However, there is a possibility that these functions

have been suggested to link with other requirements in

the same way. Therefore, engineers have to identify

correct links from candidates obtained in Step (6).

3.9 Application of Framework

3.9.1 Usage of Framework

When engineers would like to reduce the cost of

maintenance tasks (especially modifications for change

request), traceability recovery techniques including our

framework can help them. Traceability links are

particularly required in case that change requests for

software occurs frequently and continuously. If engineers

didn’t ensure links in the development phase, they have

to apply the traceability recovery techniques in the early

phase of maintenance in order to ease the later

maintenance tasks.

However, it’s not sufficient to recover links only

once. Engineers have to manage traceability links

continuously because status of the links is changing with

the passage of time. If they continue to use the first

recovered links, those links may cause misleading.

Our framework can apply to the management of

traceability links because the configuration management

log has records of modification and addition of source

code. For example, when new requirements and

components are added or existing components are

modified after recovering traceability links, the

configuration management log is updated. If we recover

links again using the latest log, we can reflect the

changes and update traceability links.

If engineers introduce SPLE to their product series,

CVA of existing assets is required in order to develop

core assets. Our framework cannot extract core assets

that can be used immediately. However, our framework

can support the extraction of reusable assets by CVA and

the recovery of traceability links between the assets.

3.9.2 Scope of Framework

Our framework targets the software products using the

configuration management log. When engineers would

like to recover traceability links, they cannot use

methods comparing representation between requirements

and source code if documents are written in their native

language (not English). However, if they have the

configuration management log written in their native

language, they can apply our framework to recover links.

Industrial products developed by companies often use

documents written in their mother tongue in the same

manner as the network control system used as a target of

our evaluation experiments. Therefore, approaches

independent of the representation similarity, including

our framework, may contribute to the industry.

Applicable source code languages of our

framework conform to those of the code clone detection

technique. The current applicable languages of our tool

are Java, C and C++. However, by adding features, it’s

possible to apply the other languages supported by the

code clone detection tool (e.g., C#, Visual Basic and

Cobol).

Regarding the variation realization techniques, our

framework is not applicable to some cases because we

conduct CVA of code elements by comparing contents of

functions. When the contents are different between two

same name functions, our framework determines that

they are different functions. However, our framework

doesn’t consider the difference of parameters and the

presence of macro. Therefore, even if parameters are

different between functions, we cannot distinguish

between those functions that have similar contents.

4. Evaluation

4.1 Overview

We carried out experiments targeting two groups of

products, which are different in terms of their size and

development team. One is open source testing

framework CUnit, and the other is the network control

system developed by a company. Both targets are

implemented in the C language. We experimented with

three versions of each target. Table 1 shows the SLOC

and number of requirements of each version.

For CUnit, we extracted the requirements from the

user manual and recovered the traceability links between

them and the 9 components in CUnit. We evaluated the

validity of the results by comparing them with the links

mentioned in the user manual.

We extracted the requirements of the network

control system from its design documents of features. We

targeted 5 modules that cover the basic features of the

network control system. A module is a group of

components. Engineers previously prepared links

between requirements and modules to evaluate the

validity of our results. However, their granularities were

larger than those of the links recovered by our method.

After recovering links between requirements and

components, we linked these requirements with the

module that contains the corresponding components.

This eliminated the difference in granularity. The SLOC

in Table 1 represents the size of the five modules. The

size of the entire system is 1.4 ~ 1.7 MLOC.

We used the log of SVN in both targets to obtain

the revision. CUnit had 156 revisions and the network

control system has 5727 revisions.

First, we recovered traceability links between

requirements and components (or modules in the

network control system) by conducting Steps (1) ~ (5).

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

8

Table 1 SLOC and number of requirements of our target systems.

System Version SLOC Requirements

CUnit 2.01 5931 11

2.10 6225 11

2.12 7760 15

Network control system 3.01 54579 41

3.02 55281 48

3.03 62448 49

Table 2 Recall and precision.

Target Thres Rel Ret Rel∩Ret Recall Precision F-m

CUnit 1 20 27 14 70.0% 51.9% 0.596

Network 1 16 40 13 81.3% 32.5% 0.464

5 16 17 11 68.8% 64.7% 0.667

10 16 7 6 37.5% 85.7% 0.522

With regard to the threshold of keyword appearance, for

CUnit, the threshold number was set to 1 because fe

w words are contained in revision messages. On the

other hand, for the network control system, we set three

different threshold numbers to study the relationship

between keyword appearance and accuracy of

traceability links. The thresholds were 1, 5 and 10.

Next, we confirmed the traceability links between

requirements and functions by conducting Step (6).

Finally, we looked for the non-explicit traceability links

by conducting Step (7). Engineers of the developer team

conducted the review for the network control system, but

we conducted the review ourselves for CUnit because

CUnit is open source software. For the automatic parts,

we used our tool implemented in Java and the code clone

detection tool CCFinderX [20].

4.2 Results

Table 2 shows the results of the recovery of traceability

links for each target. The second column, Thres

(Threshold), contains the threshold numbers of keyword

appearance. The third column, Rel (Relevant), contains

the number of previously known traceability links that

we used to evaluate our method. The fourth column, Ret

(Retrieved), contains the number of traceability links

retrieved by Step (5). The fifth column, Rel∩Ret, gives

the number of traceability links that were both previously

known and retrieved by Step (5). Recall, Precision, and

F-m (F-measure) are defined as follows:

Recall =
Relevant ∩ Retrieved

Relevant

Precision =
Relevant ∩ Retrieved

Retrieved

F − measure = 2 ∙
Precision ∙ Recall

Precision + Recall

We present the accuracy of our method for

recovering known links in this section. In next sections,

we show results for each target in terms of the recovery

of links between requirements and functions, recovery of

non-explicit links, and the time taken to recover links.

Here, we used the results with the highest F-measure.

(For the network control system, the threshold number is

5.) However, we can also apply Step (6) and Step (7) to

the other cases.

4.2.1 CUnit

3 of the 27 links retrieved for CUnit by Step (5) were of

Type 3. These were links between requirements that

belong to the product {2.12} and components that belong

to the products {2.01, 2.10, 2.12}. We extracted

functions that belong to the product {2.12} from these

components using our tool, and found that some of these

functions were mentioned in the user manual as being

related to the corresponding requirements.

13 of the 27 links retrieved by Step (5) were not

mentioned in the user manual. By reviewing the revision

messages for these links, we determined that 5 of the

links were valid. These links were concerned with the

component MyMem.c, which manages the memory.

Therefore, MyMem.c links with requirements regarding

adding, deleting, and initializing tests. However, the

relationship between MyMem.c and those requirements

were not mentioned in the user manual. When we

included these 5 links to Relevant, Recall became 76.0%,

Precision 70.4%, and F-measure 0.731.

Regarding the time taken to recover links in CUnit,

most of our framework is automated, and the running

time of our tool was 1 minute 40 seconds. The semi-

automated parts of our framework (Steps (3) and (7))

took 30 minutes each.

4.2.2 The Network Control System

3 of the 17 links retrieved by Step (5) were of Type 3.

These were links between requirements that belong to

the products {3.02, 3.03} and components that belong to

the products {3.01, 3.02, 3.03}. We extracted functions

that belong to the products {3.02, 3.03} from these

components using our tool, and found that the identifiers

of some of these functions used the short form of the

requirements.

6 of the 17 links retrieved by Step (5) were not

mentioned by engineers. By reviewing revision messages,

we determined that 5 of the links were valid. When we

included these 5 links to Relevant, Recall became 76.2%,

Precision 94.1%, and F-measure 0.842.

Regarding the time taken to recover links in the

network control system, the running time of our tool was

13 minutes 36 seconds. Step (3) took approximately 2

hours, and Step (7) took approximately 1 hour.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

9

4.3 Discussion

4.3.1 Research Questions

RQ1 How accurately can we recover candidate

traceability links semi-automatically?

For CUnit, Recall was 70.0%, and Precision was 51.9%.

For the network control system, Recall was 68.8%, and

Precision was 64.7%.

With regard to false negatives, we failed to recover

approximately 30% of known links. We have not been

able to recover traceability links involving components

that have not been modified in the period of the

configuration management. For example, if a component

that is reused from past assets is not modified, only the

record of adding it remains. This will make it difficult for

our framework to recover traceability links involving this

component. However, traceability links of reusable past

assets tend to be known to engineers, so the engineers

may recover these links easily.

With regard to Precision, it was high enough to

judge the validity of remain links (i.e., non-explicit

traceability links or false positives).

RQ2 Can non-explicit traceability links be

manually recovered from candidate links

suggested by our method?

In CUnit, 5 of 13 traceability links that were not

mentioned in the user manual were refined as non-

explicit traceability links. Consequently, Recall became

76.0%, and Precision became 70.4%. In the network

control system, 5 of 6 traceability links that were not

grasped by engineers were refined as non-explicit

traceability links. Consequently, Recall became 76.2%,

and Precision became 94.1%. The results show that non-

explicit traceability links can be successfully recovered.

With regard to false positives, when the name of an asset

treated by multiple requirements is set as the keyword of

these requirements, a revision message containing the

keyword will cause the components tied to the revision

to be linked with all of these requirements. If the same

keyword needs to be used for multiple requirements, the

possibility of the number of false positives increasing

should be considered.

In both targets, we could recover links between

requirements and functions. This shows that using CVA

is effective in the recovery of links with functions.

RQ3 Can we recover traceability links within a

reasonable amount of time?

In CUnit, the automatic parts took 1 minute 40 seconds,

and the non-automatic parts took about 1 hour. In the

network control system, the automatic parts took 13

minutes 36 seconds, and the non-automatic parts took

about 3 hours. These results show that traceability links

can be recovered within a reasonable amount of time.

Moreover, when we applied our framework to 35

modules (200 KLOC) of the network control system, the

running time of our tool was 58 minutes 12 seconds.

4.3.2 Threshold of Keyword Appearance

For CUnit, we didn’t set the threshold number to over 2

because there were not any revisions including 2 or more

keywords. In the configuration management log of CUnit,

most of revisions have one line message. In the case that

revision messages have the small number of words, we

have to set the small threshold number.

For the network control system, we set three

different thresholds. Table 2 shows the relationship

between the threshold and the accuracy. In the case of the

small threshold, Recall is high. On the other hand, in the

case of the large threshold, Precision is high. Therefore,

users need to adjust the threshold number in accordance

with the purpose. If users put emphasis on completeness,

they should set a small threshold. If they give priority to

correctness, they should use a large threshold.

4.3.3 Scalability of Framework

The number of components is small in our experiments.

When we selected targets of experiments, there were

some conditions. The target needs to have some versions

with the configuration management log (The scope of

our framework). And, the information of previously

known traceability links is required in order to evaluate

the accuracy. Except for CUnit, we could not find

products satisfying the conditions from open source

software. On the other hand, we prepared the previously

known traceability links for only five modules in the

network control system because of engineer’s time

constraints.

If we apply our framework to products including

more components, the time cost and the accuracy of

recovery are influenced. The time taken in automatic

parts of our framework will increase because the code

clone detection is conducted as many times as the

number of combinations between code elements. And,

the manual refine of links becomes difficult with

increasing the number of components. Therefore, it

increases not only cost but also misjudgment of users. As

a result, the accuracy of recovery will decrease.

However, the execution of recovering all links is

not repeated frequently. Therefore, the automated

process of our framework doesn’t have to finish

recovering links of the large product in a few minutes.

Regarding the manual process, in the use case in which

users want to recover links of the specific requirements

or components, the time cost of our framework may be

allowable.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

10

4.3.4 Qualitative Comparison with Previous Methods

Most of previous methods compare the representation

between requirements and source code to recover links.

Therefore, these methods are not effective for software

using a non-English language. If we apply these methods

to the network control system (using Japanese), the

accuracy of recovery would be inferior to our framework.

On the other hand, in CUnit, there are many words

shared between requirements and source code. So,

previous methods can recover links with higher accuracy

than our framework. However, our framework has the

ability recovering non-explicit traceability links which

may be overlooked by previous methods.

In countries of non-English speaking, the

documents are often written in their native languages.

Therefore, our framework is effective for software

developed in those countries. On the other hand, many of

the open source software projects have the configuration

management log including low quality log messages in

comparison with commercial products. Our framework is

not effective for such software.

Previous methods and our framework have the

strengths and weaknesses respectively. Therefore, we

should selectively use them depending on the situation.

And, we would like to combine our framework and

previous methods to improve the accuracy and the

applicable scope.

4.4 Limitations

4.4.1 Dependence of Log Messages

Our frame work is highly dependent on the quality of log

messages. If engineers do not record detailed information

about modifications in log messages, our framework

cannot work well. For example, if a revision only

contains “Fix” in the log message, our framework cannot

use such a revision to recover links. As in Figure 1, at

least one meaningful phrase is required for each revision.

4.4.2 Threats to Validity

We manually set the keywords for each requirement and

empirically got the trends of unsuitable or effective

keywords. This may have affected the accuracy and costs

of our evaluation, and is a threat to internal validity. In

the future, we should confirm the influence of having

multiple people set keywords on accuracy and costs.

The two targets we used are different in terms of

software domain and the development organization.

These factors should not significantly affect the validity

of our framework.

In our evaluation, Relevant consisted of links

known in advance and correct links recovered by our

framework. However, there should be some links that

were not known and could not be recovered. Therefore,

if we include these links to Relevant, Recall may become

lower. We should conduct experiments using benchmarks

in order to evaluate our framework more accurately.

5. Related Work

5.1 Traceability Issues and Benefits

Arkley et al. have conducted a survey of nine software

projects using questionnaires and interviews [2]. They

have identified three issues related to traceability: the

usability of tools and the necessity of additional input

data; a lack of understanding on how to employ the

traceability information; and a lack of perception of

direct benefits to the main development process.

Researchers in the traceability field should aim to

overcome these issues. Traceability recovery tools,

including our tool, have not been able to completely

overcome the issue of usability. We should reduce the

manual process and additional input data in the future.

Mäder et al. have conducted a controlled

experiment with 52 subjects performing real

maintenance tasks on two third-party development

projects: half of the tasks with and the other half without

traceability [4]. Through the experiment, they have

shown that subjects with traceability performed on

average 21% faster on a task and created on average 60%

more correct solutions. This empirical study has affirmed

the usefulness of requirements traceability. In order to

maximize traceability benefits, the cost of recovering and

maintaining traceability links should be reduced. We

believe that studies of traceability recovery, including

our study, address this important issue.

5.2 Traceability Recovery

Antoniol et al. have proposed a method to recover

traceability links between code and documentation using

information retrieval technologies, such as the

probabilistic model and the vector space model [12].

They compare the identifier in source codes with the

words in documents to recover links. In contrast, we

recover links using the configuration management log.

Our framework can recover links even if the identifier in

source codes and the words in documents are different.

Marcus et al. have proposed a method to recover

links between documentation and source code using

latent semantic indexing (LSI) [13]. They measure the

similarity of latent semantic between documentation and

source code to recover links, which significantly

decreases the dependency on the similarity of

representation. However, LSI cannot deal with linguistic

differences. They use the comments and identifier names

within the source code. Hence, they require that the same

language be used in the documentation and source code

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

11

in order for their method to work well.

Dagenais et al. have proposed a method to recover

traceability links between an API and learning resources

by using code-like terms in documents and analyzing

their contexts [14]. Our framework does not require

code-like terms in documents because it uses the

configuration management log to recover links.

There are additional studies that have compared the

representation between requirements and source code to

recover links [15] [16]. Our framework is intended to

cover the weakness of their methods rather than to be

upward-compatible with them. Our method does not

depend on the representation, but it may be inferior to

their methods for targets in which there is little

difference in the representation between requirements

and code. So the completeness and correctness of the

traceability link recovery may be improved by

combining our framework with previous methods.

Kaiya et al. have proposed a method to find change

impacts on source codes caused by requirements changes

[17]. They use documents written in Japanese, and

identify requirements from Japanese sentences and

implementation points from English sentences. In our

method, we use the configuration management log. In

the log, requirements and implementation points are

distinguished as messages and file paths, so our

framework does not depend on the language of targets.

6. Conclusion and Future Work

We have proposed a framework that includes the process

to recover traceability links between requirements and

source code. We have recovered links using the

configuration management log, and have refined the

links by applying CVA and having engineers review

them. Moreover, we have applied the framework to

actual products that have more than 60KLOC, and have

confirmed its validity. Our framework enables cost

reduction of the recovery of traceability links, and the

recovery of non-explicit traceability links. Recovering

traceability links may increase the reusability and

maintainability of software. For future work, we will

consider the hierarchical structure of requirements and

code elements, and aim to improve our methods for

keyword setting and refining links. And, we should

conduct comparison experiments with previous methods

in order to argue that our framework can cover the

weakness of previous methods.

Acknowledgments

We thank Kentaro Kumaki for providing a prototype tool

of the CVA of requirements.

References

 [1] R. Tsuchiya, H. Washizaki, Y. Fukazawa, T. Kato, M. Kawakami

and K. Yoshimura, “Recovering traceability links between

requirements and source code in the same series of software

products,” the 17th International Software Product Line

Conference (SPLC’13), pp.121-130, 2013.

 [2] P. Arkley and S. Riddle, “Overcoming the traceability benefit

problem,” the 13th IEEE International Conference on

Requirements Engineering (RE’05), pp.385-389, 2005.

 [3] R. Pooley and C. Warren, “Reuse through requirements

traceability,” the 3rd International Conference on Software

Engineering Advances (ICSEA’08), pp.65-70, 2008.

 [4] P. Mäder and A. Egyed, “Assessing the effect of requirements

traceability for software maintenance,” the 28th IEEE

International Conference on Software Maintenance (ICSM’12),

pp.171-180, 2012.

 [5] K. C. Kang, J. Lee and P. Donohoe, “Feature-oriented product

line engineering,” Software, IEEE, vol.19, no.4, pp.58-65, 2002.

 [6] W. Jirapanthong and A. Zisman, “Supporting product line

development through traceability,” the 12th Asia-Pacific IEEE

Software Engineering Conference (APSEC’05), 2005.

 [7] S. A. Ajila and A. B. Kaba, “Using traceability mechanisms to

support software product line evolution,” the IEEE International

Conference on Information Reuse and Integration (IRI’04),

pp.157-162, 2004.

 [8] S. Mohalik, S. Ramesh, J. V. Millo, S. N. Krishna and G. K.

Narwane, “Tracing SPLs precisely and efficiently,” the 16th

International Software Product Line Conference (SPLC’12),

vol.2, pp.186-195, 2012.

 [9] K. Kumaki, R. Tsuchiya, H. Washizaki and Y. Fukazawa,

“Supporting commonality and variability analysis of

requirements and structural models,” MAPLE 2012, SPLC’12,

vol.2, pp.115-118, 2012.

 [10] G. Salton and M. J. McGill, “Introduction to modern information

retrieval,” McGraw-Hill, New York, 1983.

 [11] K. Yoshimura, D. Ganesan and D. Muthig, “Defining a strategy

to introduce a software product line using existing embedded

systems,” EMSOFT '06 Proceedings of the 6th ACM & IEEE

International conference on Embedded software, pp.63-72, 2006.

 [12] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia and E. Merlo,

“Recovering traceability links between code and documentation,”

IEEE Transactions on Software Engineering, vol.28, no.10,

pp.970-983, 2002.

 [13] A. Marcus and J. I. Maletic, “Recovering documentation to

source code traceability links using latent semantic indexing,”

the 25th International Conference on Software Engineering

(ICSE’03), pp.125–135, 2003.

 [14] B. Dagenais and M. P. Robillard, “Recovering traceability links

between an API and its learning resources,” the 34th

International Conference on Software Engineering (ICSE’12),

pp.47-57, 2012.

 [15] X. Chen, “Extraction and visualization of traceability

relationships between documents and source code,” the 25th

IEEE/ACM International Conference on Automated Software

Engineering, pp.505–510, 2010.

 [16] A. De Lucia, R. Oliveto, and G. Tortora, “ADAMS re-trace:

traceability link recovery via latent semantic indexing,” the 30th

International Conference on Software Engineering (ICSE’08),

pp.839–842, 2008.

 [17] H. Kaiya, A. Osada, K. Hara and K. Kaijiri, “Design,

implementation and evaluation of a system for finding change

impacts on source codes caused by requirements changes,”

IEICE Trans D, vol.J93-D, no.10, pp.1822-1835, 2010.

 [18] CUnit, http://sourceforge.net/projects/cunit/

 [19] Apache Subversion, http://subversion.apache.org/

 [20] CCFinderX, http://www.ccfinder.net/

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX

12

 Ryosuke Tsuchiya received the B.E.

degree in Information and Computer Science

from Waseda University, Tokyo, Japan in

2013. He is now a master course student of

Department of Information and Computer

Science, Waseda University. His research

interests include software engineering

especially software traceability.

Hironori Washizaki is an associate

professor at Waseda University, Tokyo,

Japan. He is also a visiting associate

professor at National Institute of

Informatics, Tokyo, Japan. He obtained his

Doctor’s degree in Information and

Computer Science from Waseda University

in 2003. His research interests include

software reuse, patterns and quality

assurance. He has served as members of

program committee for many international conferences including ASE,

SEKE, PROFES, APSEC and PLoP. He has also served as members of

editorial board for several journals including Journal of Information

Processing.

Yoshiaki Fukazawa received the B.E.,

M.E. and D.E. degrees in electrical

engineering from Waseda University, Tokyo,

Japan in 1976, 1978 and 1986, respectively.

He is now a professor of Department of

Information and Computer Science, Waseda

University. Also he is Director, Institute of

Open Source Software, Waseda University.

His research interests include software

engineering especially reuse of object-

oriented software and agent-based software.

Tadahisa Kato received the B.S. and M.S.

degrees in mathematics from Tokyo Institute

of Technology, Tokyo, Japan, in 2003, 2005.

He is currently a researcher at Yokohama

Research Laboratory, Hitachi Ltd, japan. He

is working on research of software

development methods and applying these

methods to actual product development. His

research interests include software product

line, model-based development and formal

method.

Masumi Kawakami received the B.E.

and M.E. degrees in knowledge-based

information engineering from Toyohashi

University of Technology, Aichi, Japan, in

1998. He is currently a senior researcher at

Yokohama Research Laboratory, Hiatachi

Ltd, Japan. He is working on research of

software development method and applying

these method to actual product development.

His research interests include model-based

development, software product line and test automation.

Kentaro Yoshimura is a Senior

Researcher of Hitachi Research Laboratory

at Hitachi, Ltd. Yoshimura received his

Ph.D. degree in Information Science and

Technology from Osaka University in 2009.

His research interests are centered on

software product line engineering and

legacy software system analysis.

