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SUMMARY Traceability links between requirements and source code 

are helpful in software reuse and maintenance tasks. However, 

manually recovering links in a large group of products requires 

significant costs and some links may be overlooked. Here, we propose 

a semi-automatic method to recover traceability links between 

requirements and source code in the same series of large software 

products. In order to support differences in representation between 

requirements and source code, we recover links by using the 

configuration management log as an intermediary. We refine the links 

by classifying requirements and code elements in terms of whether they 

are common to multiple products or specific to one. As a result of 

applying our method to real products that have 60KLOC, we have 

recovered valid traceability links within a reasonable amount of time. 

Automatic parts have taken 13 minutes 36 seconds, and non-automatic 

parts have taken about 3 hours, with a recall of 76.2% and a precision 

of 94.1%. Moreover, we recovered some links that were unknown to 

engineers. By recovering traceability links, software reusability and 

maintainability will be improved. 

key words: traceability recovery, configuration management log, 

commonality and variability analysis, software product line 

1. Introduction 

Traceability in software development is the ability to 

trace the relationships between artifacts. These 

relationships are called traceability links. Traceability 

links are formed between the following pairs of artifacts: 

the requirements specification document and source code 

that implements the requirements, design documents and 

test cases, requirements and design, etc. In this paper, we 

focus on links between requirements and code elements 

(e.g., function, class, file).  For example, in CUnit [18] 

(the target of our evaluation experiments), the 

requirement “Running tests in Automated mode” links 

with the file Automated.c implements the requirement. 

 Traceability links can be helpful in several software 

engineering tasks such as maintenance and reuse [12]. If 

engineers can grasp the relationships between 

requirements and source code, they can effortlessly 

identify the code elements implementing the 

requirements that they want to reuse or maintain (e.g., 

bug fix, modifications for change request [4]). 

 It is not practical from the viewpoint of cost that 

engineers manually recover all traceability links of large 

products. Moreover, there are links that are difficult to 

find manually, for example, if there is no apparent 

similarity in notation between the requirements and code, 

or if there is no description of the relationship in the 

documents. We call these “non-explicit traceability links.” 

 We propose a framework to recover traceability 

links between requirements and source code in the same 

series of large software products. In order to support 

differences in representation between requirements and 

code elements (e.g., notation, language), we recover 

links by applying natural language processing and 

document retrieval to the configuration management log. 

However, the granularity of links recovered from the log 

is large, so we refine the links by conducting the 

commonality and variability analysis. 

 Our proposed method is semi-automatic; if any of 

the recovered links were unknown to engineers, 

engineers must manually judge whether they are non-

explicit traceability links or false positives. If the 

accuracy of the recovery method is poor, or support 

information is missing, the decisions take significant 

costs. Our framework enables engineers to judge the 

validity of links with practical costs by reliable accuracy 

and support information. 

 The following are the Research Questions addressed 

in this study. 

RQ1  How accurately can we recover candidate 

traceability links semi-automatically? 

RQ2  Can non-explicit traceability links be manually 

recovered from candidate links suggested by our 

method? 

RQ3  Can we recover traceability links within a 

reasonable amount of time? 

 In order to evaluate, we applied the framework to 

two products: open source software CUnit and a network 
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control system developed by a company. CUnit has more 

than 7KLOC, and the network control system has more 

than 60KLOC. In CUnit, we recovered traceability links 

with a recall of 76.0% and a precision of 70.4%. In the 

network control system, we recovered traceability links 

with a recall of 76.2% and a precision of 94.1%. 

Therefore, our framework is effective in the recovery of 

traceability links regardless of the size of the product or 

the development organization. The following are our 

contributions. 

 We have proposed a method to semi-automatically 

recover traceability links using the configuration 

management log. 

 We have proposed a method to refine traceability links 

by conducting the commonality and variability analysis. 

 We have developed a tool that can recover links in 

large products within a reasonable amount of time. 

 We have proposed a framework including the process 

to recover traceability links using the tool. 

 We have applied the framework to actual products that 

have over 60KLOC, and have confirmed its validity. 

By recovering links between requirements and source 

code using our framework, software reusability and 

maintainability is improved with practical costs. 

 The remainder of the paper is organized as follows. 

First, we provide some background information (Section 

2). Then, we describe our framework to recover 

traceability links (Section 3). In Section 4, we present 

our evaluation of the framework by conducting 

experiments on two targets. In Section 5, we discuss 

related works. Finally, we provide a conclusion and 

future works (Section 6). 

2. Background 

2.1 Software Reuse and Maintenance with Traceability 

Traceability links between requirements and source code 

facilitate the identification of code elements for reuse or 

modification especially when engineers do not have 

advanced knowledge of the previous product. In fact, in 

order to handle frequent software change requests, 

engineers are recommended to reduce the cost of 

identifying code elements impacted by change requests 

using traceability links. 

Empirical studies have verified the effectiveness of 

traceability links in software reuse [3] and maintenance 

tasks [4]. Although these studies are not industrial 

records, both explicitly show traceability benefits by 

conducting experiments that conform to actual reuse and 

maintenance tasks. 

Software Product Line Engineering (SPLE) has 

been widely recognized as an efficient method for 

software reuse. SPLE aids software development by 

using reusable core assets (e.g., feature, architecture, and 

code elements) [5]. In the extractive approach to develop 

core assets, we need to analyze the commonality and 

variability of existing products. Furthermore, SPLE 

requires relationships between those core assets (e.g., 

traceability links between features and code elements) to 

reuse them efficiently [6][7][8]. 

As described above, traceability links are essential 

for software reuse and maintenance. However, we must 

consider the cost of traceability recovery and 

management. If the recovery and management cost 

exceeds the benefits of traceability links (i.e., amounts of 

cost reduction in software reuse and maintenance), it 

does not meet the needs of engineers. Therefore, 

automatic support methods are required to minimize the 

cost of recovering and managing traceability links. 

Many previous studies have proposed automatic or 

semi-automatic methods to recover traceability links 

(described in section 5.2). However, these methods have 

a common weakness ― they depend on the 

representation being similar between the requirements 

and source code (described in section 2.2). We focus on 

overcoming this weakness in this paper. 

2.2 Configuration Management Log 

If the identifier of code elements (e.g., file name, 

function name) and requirements are represented using 

the same notation and language, automatic recovery of 

traceability links using previous methods is easy. 

However, this is often not the case. For instance, while 

the purpose is described in the requirements, the 

identifier that signifies the means can be given to the 

code elements. In another case, the identifier can be the 

short form of requirements. The most difficult case is 

when the language is different between the requirements 

and source code in previous methods. 

In the above cases, it is difficult to recover links by 

comparing the requirements and the identifier of code 

elements. In order to support differences in expression, 

an intermediary is required. Here, we focus on the 

configuration management log that contains information 

related to requirements and source code. It is composed 

of revisions that include messages and file paths. 

The two targets of our evaluation experiments use the 

version management system Apache Subversion (SVN) 

[19]. Figures 1 shows an excerpt from a log of CUnit as 

specific examples of the revision of SVN. It shows that 

the revision has a message and a file path. By examining 

these logs, we have confirmed that words related to 

requirements appear in the messages of the log. For 

example, in Figure 1, the word "XML" appears in the 

message. This word is strongly correlated with the 

requirement “Running tests in Automated mode” because 

this functional requirement is the only one that outputs 

results in XML format. If these words are recorded along 

with file paths, we can recover traceability links without 

depending on the notation. 
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Fig. 1  Revision modifying a single file. 

 
Fig. 2  Commonality and variability analysis. 

2.3 Commonality and Variability Analysis 

Traceability links between requirements and functions 

cannot be recovered using file paths in the configuration 

management log. Therefore, we use the Commonality 

and Variability Analysis (CVA) on the same series of 

software products so that we can recover traceability 

links between requirements and functions. We will 

explain how to recover links with functions by CVA in 

section 3.7. 

CVA is used to analyze to which products elements 

(e.g., requirements, code elements) belong. CVA 

classifies elements as common to some products or as 

specific to a product. Figure 2 shows a concrete example: 

the requirements “Running tests in Automated mode” is 

common to three products, whereas the requirement 

“Activation of suites and tests” belongs to product Z only. 

CVA is used to support the development of core 

assets in SPLE. There are several methods of CVA in 

software elements (e.g., requirements, architecture). In 

the following paragraphs, we describe the methods that 

we have previously proposed. 

We have proposed a method of CVA of the 

requirements in legacy software products [9]. This 

method measures the similarity of sentences using the 

vector space model, and analyzes whether or not the 

requirements are common to multiple products. In the 

vector space model proposed by Salton et al. [10], a 

sentence is represented by one vector that depends on the 

valid words in the sentence. The contents of the sentence 

are determined by the direction of the vector. 

There is a method of CVA of code elements using 

code clone detection [11]. A code clone is a code 

fragment that is identical or similar to another in the code. 

2.4 Motivating Example 

In many products, the notation and the abstraction level 

are different between the requirements and the identifier 

of code elements. In CUnit, the requirement “Lookup of 

individual suites and tests” links with the functions 

CU_get_suite() and CU_get_test() that belong to the file 

TestDB.c. There are some overlapping words between 

the requirements and the identifiers, but they cannot be 

easily associated through comparison. In the network 

control system used as a target of our evaluation 

experiments, the identifier of code elements is written in 

English, while the requirements are written in Japanese. 

Non-explicit traceability links exist in most 

products. In CUnit, the user manual describes most 

traceability links between requirements and code 

elements. However, information on the relevant 

requirements of some files (e.g., MyMem.c) is not 

mentioned. This information may be unnecessary if 

CUnit is used as a testing framework, but it is useful for 

derived development based on CUnit. In the network 

control system, there are many traceability links that 

engineers have not grasped because the number of 

requirements and files is quite large. 

3. Traceability Link Recovery Framework 

3.1 Overview 

We propose a framework to recover traceability links 

between requirements and source code in the same series 

of large software products. Figure 3 shows the overview 

of our framework. The targets of our framework are 

series of large software products developed by one 

organization. As inputs, the assets of requirements and 

source code are required for each product. Assets of 

requirements are documents about product requirements 

written in natural language. In our framework, we focus 

on requirements that are concrete and objective (i.e., 

software functional and non-functional requirements). 

Our framework mainly treats links with component level. 

However, we can optionally treat links with function 

level by refining links with components. In this paper, 

“component” means source code files or classes. And, 

“function” means a subroutine as part of the component. 

(e.g., methods of Java classes) 

Traceability links can be recovered by finding 

revisions that contain words related to requirements in 

the configuration management log. For refining these 

links, CVA is conducted prior to recovering links. Finally, 

we refine traceability links using the CVA results in order 

to enhance accuracy. 
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Fig. 3  Overview of our framework. 

Our framework is divided into the following seven 

steps. 

Step (1). CVA of Requirements 

Step (2). CVA of Code Elements 

Step (3). Keyword Setting 

Step (4). Classification of Revisions 

Step (5). Recovery of Traceability Links 

Step (6). Auto Refine of Traceability Links 

Step (7). Manual Refine of Traceability Links 

The following sections describe each step in detail. 

3.2 CVA of Requirements 

We use the method mentioned in section 2.3 for CVA of 

requirements to measure the similarity of requirements.  

Each requirement is treated as a sentence in this 

method, and the vector space model is applied to 

represent each sentence by a vector determined by the 

valid words (nouns, verbs, and adjectives) in the 

sentence. For a sentence 𝑆𝑥  containing 𝑀 valid words, 

i.e., 𝑣1 , 𝑣2 , ⋯ , 𝑣𝑀 , w 𝑣𝑝 , 𝑆𝑥  (1 ≤ p ≤ M)  is the 

number of appearance of 𝑣𝑝  in 𝑆𝑥 . 𝑆𝑥  is represented 

by the M-dimensional vector 𝑑𝑥
      defined as follows: 

𝑑𝑥
     =  w 𝑣1 , 𝑆𝑥 , w 𝑣2, 𝑆𝑥 , ⋯ , w 𝑣𝑀 , 𝑆𝑥   

The similarity between the two sentences 𝑆𝑖  and 

𝑆𝑗  is obtained as the cosine of the angle between the two 

sentence vectors 𝑑𝑖
     and 𝑑𝑗

     (cosine similarity). 

𝑆𝑆𝑖𝑚 𝑆𝑖 , 𝑆𝑗   (Sentence Similarity, 0 ≤ 𝑆𝑆𝑖𝑚 ≤ 1 ) is 

defined using the cosine similarity as follows: 

𝑆𝑆𝑖𝑚 𝑆𝑖 , 𝑆𝑗  =
𝑑𝑖
    𝑑𝑗

    

 𝑑𝑖
      𝑑𝑗

     
 

 By measuring the similarity SSim between the 

requirements in each product, each requirement is 

classified as being common to some products or as being 

specific to one product. If SSim exceeds a threshold set 

by the users, the corresponding requirements are judged 

to be identical. The classification result is represented as 

a subset of the set of all products targeted. For instance, 

in Figure 2, the set of all products targeted is {X, Y, Z}. 

The requirement “Running tests in Automated mode” 

belongs to {X, Y, Z}. On the other hand, the requirement 

“Lookup of individual suites and tests” belongs to {Y}. 

3.3 CVA of Code Elements 

In this step, CVA of code elements is conducted at the 

granularity of both components and functions. Source 

code is needed as input. In the same way as requirements, 

code elements are classified as either common or specific. 

As in a previous study, we use code clone detection for 

the analysis. 

Each code element is composed of tokens (e.g., 

operation, identifier). 𝑇𝑜𝑘𝑒𝑛 𝐸𝑥  represents the total 

number of tokens for a code element 𝐸𝑥 . 𝐶𝑙𝑜𝑛𝑒 𝐸𝑥 , 𝐸𝑦  

represents the number of tokens of code clones between 

𝐸𝑥  and 𝐸𝑦 . The similarity between 𝐸𝑥  and 𝐸𝑦  is 

determined by the ratio of the number of code clone 

tokens to the total number of tokens. 𝐶𝐸𝑆𝑖𝑚 𝐸𝑥 , 𝐸𝑦  

(Code Element Similarity, 0 ≤ 𝐶𝐸𝑆𝑖𝑚 ≤ 1) is defined 

by the following formula: 

𝐶𝐸𝑆𝑖𝑚 𝐸𝑥 , 𝐸𝑦 =
𝐶𝑙𝑜𝑛𝑒 𝐸𝑥 , 𝐸𝑦 ∗ 2

𝑇𝑜𝑘𝑒𝑛 𝐸𝑥 + 𝑇𝑜𝑘𝑒𝑛 𝐸𝑦  
 

If 𝐶𝐸𝑆𝑖𝑚 𝐸𝑥 , 𝐸𝑦  exceeds a threshold set by the users, 

𝐸𝑥  and 𝐸𝑦are determined to be identical. This similarity 

measurement is conducted for all code elements that 

share code clones, and each code element is classified by 

the products to which it belongs. The classification result 

is represented in the same way as requirements. 

3.4 Keyword Setting 

We utilize words related to requirements appear in the 

messages of the configuration management log. In this 

step, keywords that characterize each requirement are set 

so that they can be used to identify the components 

related to the requirements in a later. 

First, as candidates of keywords, words that have a 

large TF-IDF value are extracted from the documents 

that describe the summary of requirements. TF-IDF is a 

method for word weighting using term frequency and 

inverse document frequency. In addition, proper nouns, 

including abbreviations, are extracted as candidates. 

Then, engineers set the keywords by adding, 

deleting, modifying, or combining the candidate words.  

3.5 Classification of Revisions 

If we use revisions that simultaneously modify 

components of multiple domains to recover traceability 

links, unrelated requirements and components may be 
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linked. Unfortunately, simultaneous revisions often occur. 

Therefore, in order to extract useful information while 

avoiding false positives, our framework automatically 

classifies revisions into the following three types based 

on the number of domains they affect. Here, domain is a 

directory that has files implementing the same feature. 

Type A. Revisions modifying components of a single 

domain. 

Traceability links recovered from this type are the 

most reliable. The revision in Figure 1 is classified 

as this type. 

Type B. Revisions modifying components of multiple 

domains below the threshold number. 

Because poorly related features are simultaneously 

modified in some cases, traceability links recovered 

from this type of revision should be distinguished 

from traceability links recovered from Type A 

revisions. 

Type C. Revisions modifying components of multiple 

domains greater than or equal to the threshold 

number. 

This type of revision causes false positives, so it is 

removed from targets of search in the latter steps. 

The threshold number is set by users. As a guideline, if 

there are a lot of Type A revisions, users expect Type B 

revisions the reliability rather than their number, so they 

should set a low threshold number. Conversely, if there 

are few Type A revisions, users require a lot of Type B 

revisions, so they should set a high threshold number. 

At the end of this step, a refined log with the 

revisions classified and Type C revisions removed is 

outputted. This refined log is used in the following steps. 

3.6 Recovery of Traceability Links 

3.6.1 Traceability Links Recovery Method 

In this method, revisions that have message containing 

the keywords set in Step (3) (Keyword Setting) are 

identified to determine the implementation points. The 

number of keyword appearance must be above the 

threshold number, which is tuned to the number of words 

in the revision message. When most of revision messages 

have the large number of words, we need to set the large 

number to the threshold of keyword appearance. Then, 

the requirements connected with the keywords are linked 

with the modified components written as file paths in the 

revision. For example, CUnit has the requirement 

“Running tests in Automated mode.” If the word “XML” 

is set as a keyword of this requirement, the method 

searches for revisions that have a message containing the 

word “XML” in the configuration management log to 

determine the implementation points. One such 

implementation point would be in the revision in Figure 

1. In this revision, the component Automated.c is 

modified. As a result, a traceability link between the 

requirement “Running tests in Automated mode” and the 

component Automated.c is recovered. The same 

operation is conducted for all requirements to identify 

and link the related components. 

3.6.2 Types of Traceability Links 

For each traceability link recovered, the requirement and 

the component should belong to the same group of 

products as classified by CVA. If not, this information 

can be used to refine traceability links. We classify 

traceability links into five types using the CVA results. 

We first define the following terms. 

𝑘 is the number of targeted products. 𝑅𝑖  represents 

the set of requirements for each product. Then, 𝑅 (the 

set of requirements in all targeted products) is defined by 

the following formula: 

𝑅 =  𝑅𝑖

𝑘

𝑖=1

 

Likewise, 𝐶𝑖 represents the set of components for each 

product. Then, 𝐶 (the set of components in all targeted 

products) is defined by the following: 

𝐶 =  𝐶𝑖

𝑘

𝑖=1

 

If 𝔓 𝐶  represents the power set of 𝐶, then, 𝜑 (the 

relationship between 𝑅  and 𝔓 𝐶  obtained from the 

configuration management log) is defined as following: 

𝜑: 𝑅 → 𝔓 𝐶  

Similarly, if 𝔓 𝑃  represents the power set of the 

targeted products 𝑃, then, 𝐼𝑅 (the relationship between 

requirements and the set of products that have the 

requirements) and 𝐼𝐶  (the relationship between 

components and the set of products that have the 

components) are defined by the following: 

𝐼𝑅 : 𝑅 → 𝔓 𝑃  

𝐼𝐶 : 𝐶 → 𝔓 𝑃  

Finally, 𝑐 (one of the components 𝜑 𝑟  linked to the 

requirement 𝑟) is defined by the following: 

𝑟 ∈ 𝑅 ↦ 𝜑 𝑟 ⊂ 𝐶 

𝑐 ∈ 𝜑 𝑟  

𝐼𝑅 𝑟  is the set of products that have the requirement 𝑟. 

𝐼𝐶 𝑐  is the set of products that have the component 𝑐. 

Then, as a result of the comparison between 𝐼𝑅 𝑟  and 

𝐼𝐶 𝑐 , traceability links between 𝑟 and 𝑐 are classified 

into the following five types. Figure 4 shows examples 

of when products X, Y and Z are targeted. 
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Fig. 4  Types of traceability links. 

 
Fig. 5  Recovery of links between requirements and functions. 

Type1. 𝐼𝑅 𝑟 = 𝐼𝐶 𝑐  

e.g., 𝐼𝑅 𝑟 = 𝐼𝐶 𝑐 =  X, Y, Z  
The requirement and the component belong to the 

same group of products. 

Type2. 𝐼𝑅 𝑟 ⊃ 𝐼𝐶 𝑐  

e.g., 𝐼𝑅 𝑟 =  Y, Z ,  𝐼𝐶 𝑐 = {Y} 

The set of products that have the component is a 

proper subset of the set of products that have the 

requirement. 

Type3. 𝐼𝑅 𝑟 ⊂ 𝐼𝐶 𝑐  

e.g., 𝐼𝑅 𝑟 =  Z ,  𝐼𝐶 𝑐 = {Y, Z} 
The set of products that have the requirement is a 

proper subset of the set of products that have the 

component. 

Type4.  𝐼𝑅 𝑟 ⊈ 𝐼𝐶 𝑐   ∧   𝐼𝑅 𝑟 ⊉ 𝐼𝐶 𝑐   ∧

  𝐼𝑅 𝑟 ∩ 𝐼𝐶 𝑐 ≠ ∅  

e.g., 𝐼𝑅 𝑟 =  X, Z ,  𝐼𝐶 𝑐 = {X, Y} 

Conditions of Type 1, 2 and 3 are not satisfied. 

However, the sets of products include common 

products. In the example, X is common product. 

Type5.  𝐼𝑅 𝑟 ∩ 𝐼𝐶 𝑐 = ∅  

e.g., 𝐼𝑅 𝑟 =  Z ,  𝐼𝐶 𝑐 = {Y} 

The sets of products include no common products. 

3.7 Auto Refine of Traceability Links 

In this step, we refine links using the classification 

described in the previous step. 

1) Recovery of traceability links between requirements 

and functions 

When a traceability link between a requirement and a 

component is of Type 3, the requirement may link 

with functions of the component. If the component 

has functions whose results of the CVA are the same 

as those of the requirement, these functions may link 

with the requirement. 

Figure 5 shows an example in three products of 

CUnit {2.01, 2.10, 2.12}. The traceability link 

between the requirement “Lookup of individual 

suites and tests,” which belongs to the product {2.12}, 

and the component TestDB.c which belongs to the 

products {2.01, 2.10, 2.12} is recovered by Step (5). 

These CVA results are different, but the component 

TestDB.c has functions that belong only to the 

product {2.12}. Some of these functions may link 

with the requirement “Lookup of individual suites 

and tests”. If links of Type 3 are recovered, functions 

whose results of the CVA are the same as those of the 

requirement are demonstrated to users. 

2) Suggestion of the presence of sub requirements 

When a traceability link between the requirement and 

the component is of Type 2, the granularity of the 

requirement may be large. Sub requirements whose 

results of the CVA are the same as those of the 

component may exist. However, we only suggest the 

presence of these because we do not stratify 

requirements. 

3) Elimination of false positives 

Traceability links of Types 4 and 5 may be false 

positives because the products to which the 

requirement and the component belong are different. 

Therefore, these links are removed from the results. 

3.8 Manual Refine of Traceability Links 

To check the validity of the links recovered, engineers 

review the links as follows. 

First, engineers look at the traceability matrix to see 

if there are any requirements that link with a huge range 

of components. If they find such a requirement, a 

keyword for the requirement may be a word that is 

widely used in the configuration management log. In this 

case, the engineers must go back to Step (3) to review 

the keyword setting. 

Next, for traceability links whose relationship is 

hard to understand at a glance, engineers check their 

validity by reviewing the revision messages from which 

they were recovered. If their validity is confirmed, the 

recovery of these non-explicit traceability links is 

considered a success. 

Finally, engineers identify traceability links 

between requirements and functions using information 

obtained in Step (6). In Figure 5, functions that belong 

only to the product {2.12} have been suggested to link 
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with the requirement “Lookup of individual suites and 

tests.” However, there is a possibility that these functions 

have been suggested to link with other requirements in 

the same way. Therefore, engineers have to identify 

correct links from candidates obtained in Step (6). 

3.9 Application of Framework 

3.9.1 Usage of Framework 

When engineers would like to reduce the cost of 

maintenance tasks (especially modifications for change 

request), traceability recovery techniques including our 

framework can help them. Traceability links are 

particularly required in case that change requests for 

software occurs frequently and continuously. If engineers 

didn’t ensure links in the development phase, they have 

to apply the traceability recovery techniques in the early 

phase of maintenance in order to ease the later 

maintenance tasks. 

However, it’s not sufficient to recover links only 

once. Engineers have to manage traceability links 

continuously because status of the links is changing with 

the passage of time. If they continue to use the first 

recovered links, those links may cause misleading. 

Our framework can apply to the management of 

traceability links because the configuration management 

log has records of modification and addition of source 

code. For example, when new requirements and 

components are added or existing components are 

modified after recovering traceability links, the 

configuration management log is updated. If we recover 

links again using the latest log, we can reflect the 

changes and update traceability links. 

If engineers introduce SPLE to their product series, 

CVA of existing assets is required in order to develop 

core assets. Our framework cannot extract core assets 

that can be used immediately. However, our framework 

can support the extraction of reusable assets by CVA and 

the recovery of traceability links between the assets. 

3.9.2 Scope of Framework 

Our framework targets the software products using the 

configuration management log. When engineers would 

like to recover traceability links, they cannot use 

methods comparing representation between requirements 

and source code if documents are written in their native 

language (not English). However, if they have the 

configuration management log written in their native 

language, they can apply our framework to recover links. 

Industrial products developed by companies often use 

documents written in their mother tongue in the same 

manner as the network control system used as a target of 

our evaluation experiments. Therefore, approaches 

independent of the representation similarity, including 

our framework, may contribute to the industry. 

Applicable source code languages of our 

framework conform to those of the code clone detection 

technique. The current applicable languages of our tool 

are Java, C and C++. However, by adding features, it’s 

possible to apply the other languages supported by the 

code clone detection tool (e.g., C#, Visual Basic and 

Cobol). 

Regarding the variation realization techniques, our 

framework is not applicable to some cases because we 

conduct CVA of code elements by comparing contents of 

functions. When the contents are different between two 

same name functions, our framework determines that 

they are different functions. However, our framework 

doesn’t consider the difference of parameters and the 

presence of macro. Therefore, even if parameters are 

different between functions, we cannot distinguish 

between those functions that have similar contents. 

4. Evaluation 

4.1 Overview 

We carried out experiments targeting two groups of 

products, which are different in terms of their size and 

development team. One is open source testing 

framework CUnit, and the other is the network control 

system developed by a company. Both targets are 

implemented in the C language. We experimented with 

three versions of each target. Table 1 shows the SLOC 

and number of requirements of each version. 

For CUnit, we extracted the requirements from the 

user manual and recovered the traceability links between 

them and the 9 components in CUnit. We evaluated the 

validity of the results by comparing them with the links 

mentioned in the user manual. 

We extracted the requirements of the network 

control system from its design documents of features. We 

targeted 5 modules that cover the basic features of the 

network control system. A module is a group of 

components. Engineers previously prepared links 

between requirements and modules to evaluate the 

validity of our results. However, their granularities were 

larger than those of the links recovered by our method. 

After recovering links between requirements and 

components, we linked these requirements with the 

module that contains the corresponding components. 

This eliminated the difference in granularity. The SLOC 

in Table 1 represents the size of the five modules. The 

size of the entire system is 1.4 ~ 1.7 MLOC. 

We used the log of SVN in both targets to obtain 

the revision. CUnit had 156 revisions and the network 

control system has 5727 revisions. 

First, we recovered traceability links between 

requirements and components (or modules in the 

network control system) by conducting Steps (1) ~ (5).  



IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX 

8 

 

Table 1  SLOC and number of requirements of our target systems. 

System Version SLOC Requirements 

CUnit 2.01 5931 11 

2.10 6225 11 

2.12 7760 15 

Network control system 3.01 54579 41 

3.02 55281 48 

3.03 62448 49 

Table 2  Recall and precision. 

Target Thres Rel Ret Rel∩Ret Recall Precision F-m 

CUnit 1 20 27 14 70.0% 51.9% 0.596 

Network 1 16 40 13 81.3% 32.5% 0.464 

5 16 17 11 68.8% 64.7% 0.667 

10 16 7 6 37.5% 85.7% 0.522 

With regard to the threshold of keyword appearance, for 

CUnit, the threshold number was set to 1 because fe

w words are contained in revision messages. On the 

other hand, for the network control system, we set three 

different threshold numbers to study the relationship 

between keyword appearance and accuracy of 

traceability links. The thresholds were 1, 5 and 10. 

Next, we confirmed the traceability links between 

requirements and functions by conducting Step (6). 

Finally, we looked for the non-explicit traceability links 

by conducting Step (7). Engineers of the developer team 

conducted the review for the network control system, but 

we conducted the review ourselves for CUnit because 

CUnit is open source software. For the automatic parts, 

we used our tool implemented in Java and the code clone 

detection tool CCFinderX [20]. 

4.2 Results 

Table 2 shows the results of the recovery of traceability 

links for each target. The second column, Thres 

(Threshold), contains the threshold numbers of keyword 

appearance. The third column, Rel (Relevant), contains 

the number of previously known traceability links that 

we used to evaluate our method. The fourth column, Ret 

(Retrieved), contains the number of traceability links 

retrieved by Step (5). The fifth column, Rel∩Ret, gives 

the number of traceability links that were both previously 

known and retrieved by Step (5). Recall, Precision, and 

F-m (F-measure) are defined as follows: 

Recall =  
Relevant ∩ Retrieved

Relevant
 

Precision =  
Relevant ∩ Retrieved

Retrieved
 

F − measure =  2 ∙
Precision ∙ Recall

Precision + Recall
 

We present the accuracy of our method for 

recovering known links in this section. In next sections, 

we show results for each target in terms of the recovery 

of links between requirements and functions, recovery of 

non-explicit links, and the time taken to recover links. 

Here, we used the results with the highest F-measure. 

(For the network control system, the threshold number is 

5.) However, we can also apply Step (6) and Step (7) to 

the other cases. 

4.2.1 CUnit 

3 of the 27 links retrieved for CUnit by Step (5) were of 

Type 3. These were links between requirements that 

belong to the product {2.12} and components that belong 

to the products {2.01, 2.10, 2.12}. We extracted 

functions that belong to the product {2.12} from these 

components using our tool, and found that some of these 

functions were mentioned in the user manual as being 

related to the corresponding requirements. 

13 of the 27 links retrieved by Step (5) were not 

mentioned in the user manual. By reviewing the revision 

messages for these links, we determined that 5 of the 

links were valid. These links were concerned with the 

component MyMem.c, which manages the memory. 

Therefore, MyMem.c links with requirements regarding 

adding, deleting, and initializing tests. However, the 

relationship between MyMem.c and those requirements 

were not mentioned in the user manual. When we 

included these 5 links to Relevant, Recall became 76.0%, 

Precision 70.4%, and F-measure 0.731. 

Regarding the time taken to recover links in CUnit, 

most of our framework is automated, and the running 

time of our tool was 1 minute 40 seconds. The semi-

automated parts of our framework (Steps (3) and (7)) 

took 30 minutes each. 

4.2.2 The Network Control System 

3 of the 17 links retrieved by Step (5) were of Type 3. 

These were links between requirements that belong to 

the products {3.02, 3.03} and components that belong to 

the products {3.01, 3.02, 3.03}. We extracted functions 

that belong to the products {3.02, 3.03} from these 

components using our tool, and found that the identifiers 

of some of these functions used the short form of the 

requirements. 

6 of the 17 links retrieved by Step (5) were not 

mentioned by engineers. By reviewing revision messages, 

we determined that 5 of the links were valid. When we 

included these 5 links to Relevant, Recall became 76.2%, 

Precision 94.1%, and F-measure 0.842. 

Regarding the time taken to recover links in the 

network control system, the running time of our tool was 

13 minutes 36 seconds. Step (3) took approximately 2 

hours, and Step (7) took approximately 1 hour. 
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4.3 Discussion 

4.3.1 Research Questions 

RQ1  How accurately can we recover candidate 

traceability links semi-automatically? 

For CUnit, Recall was 70.0%, and Precision was 51.9%. 

For the network control system, Recall was 68.8%, and 

Precision was 64.7%. 

With regard to false negatives, we failed to recover 

approximately 30% of known links. We have not been 

able to recover traceability links involving components 

that have not been modified in the period of the 

configuration management. For example, if a component 

that is reused from past assets is not modified, only the 

record of adding it remains. This will make it difficult for 

our framework to recover traceability links involving this 

component. However, traceability links of reusable past 

assets tend to be known to engineers, so the engineers 

may recover these links easily. 

With regard to Precision, it was high enough to 

judge the validity of remain links (i.e., non-explicit 

traceability links or false positives). 

RQ2  Can non-explicit traceability links be 

manually recovered from candidate links 

suggested by our method? 

In CUnit, 5 of 13 traceability links that were not 

mentioned in the user manual were refined as non-

explicit traceability links. Consequently, Recall became 

76.0%, and Precision became 70.4%. In the network 

control system, 5 of 6 traceability links that were not 

grasped by engineers were refined as non-explicit 

traceability links. Consequently, Recall became 76.2%, 

and Precision became 94.1%. The results show that non-

explicit traceability links can be successfully recovered. 

With regard to false positives, when the name of an asset 

treated by multiple requirements is set as the keyword of 

these requirements, a revision message containing the 

keyword will cause the components tied to the revision 

to be linked with all of these requirements. If the same 

keyword needs to be used for multiple requirements, the 

possibility of the number of false positives increasing 

should be considered. 

In both targets, we could recover links between 

requirements and functions. This shows that using CVA 

is effective in the recovery of links with functions. 

RQ3  Can we recover traceability links within a 

reasonable amount of time? 

In CUnit, the automatic parts took 1 minute 40 seconds, 

and the non-automatic parts took about 1 hour. In the 

network control system, the automatic parts took 13 

minutes 36 seconds, and the non-automatic parts took 

about 3 hours. These results show that traceability links 

can be recovered within a reasonable amount of time. 

Moreover, when we applied our framework to 35 

modules (200 KLOC) of the network control system, the 

running time of our tool was 58 minutes 12 seconds. 

4.3.2 Threshold of Keyword Appearance 

For CUnit, we didn’t set the threshold number to over 2 

because there were not any revisions including 2 or more 

keywords. In the configuration management log of CUnit, 

most of revisions have one line message. In the case that 

revision messages have the small number of words, we 

have to set the small threshold number. 

For the network control system, we set three 

different thresholds. Table 2 shows the relationship 

between the threshold and the accuracy. In the case of the 

small threshold, Recall is high. On the other hand, in the 

case of the large threshold, Precision is high. Therefore, 

users need to adjust the threshold number in accordance 

with the purpose. If users put emphasis on completeness, 

they should set a small threshold. If they give priority to 

correctness, they should use a large threshold. 

4.3.3 Scalability of Framework 

The number of components is small in our experiments. 

When we selected targets of experiments, there were 

some conditions. The target needs to have some versions 

with the configuration management log (The scope of 

our framework). And, the information of previously 

known traceability links is required in order to evaluate 

the accuracy. Except for CUnit, we could not find 

products satisfying the conditions from open source 

software. On the other hand, we prepared the previously 

known traceability links for only five modules in the 

network control system because of engineer’s time 

constraints. 

If we apply our framework to products including 

more components, the time cost and the accuracy of 

recovery are influenced. The time taken in automatic 

parts of our framework will increase because the code 

clone detection is conducted as many times as the 

number of combinations between code elements. And, 

the manual refine of links becomes difficult with 

increasing the number of components. Therefore, it 

increases not only cost but also misjudgment of users. As 

a result, the accuracy of recovery will decrease. 

However, the execution of recovering all links is 

not repeated frequently. Therefore, the automated 

process of our framework doesn’t have to finish 

recovering links of the large product in a few minutes. 

Regarding the manual process, in the use case in which 

users want to recover links of the specific requirements 

or components, the time cost of our framework may be 

allowable. 
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4.3.4 Qualitative Comparison with Previous Methods 

Most of previous methods compare the representation 

between requirements and source code to recover links. 

Therefore, these methods are not effective for software 

using a non-English language. If we apply these methods 

to the network control system (using Japanese), the 

accuracy of recovery would be inferior to our framework.  

On the other hand, in CUnit, there are many words 

shared between requirements and source code. So, 

previous methods can recover links with higher accuracy 

than our framework. However, our framework has the 

ability recovering non-explicit traceability links which 

may be overlooked by previous methods. 

In countries of non-English speaking, the 

documents are often written in their native languages. 

Therefore, our framework is effective for software 

developed in those countries. On the other hand, many of 

the open source software projects have the configuration 

management log including low quality log messages in 

comparison with commercial products. Our framework is 

not effective for such software. 

Previous methods and our framework have the 

strengths and weaknesses respectively. Therefore, we 

should selectively use them depending on the situation. 

And, we would like to combine our framework and 

previous methods to improve the accuracy and the 

applicable scope. 

4.4 Limitations 

4.4.1 Dependence of Log Messages 

Our frame work is highly dependent on the quality of log 

messages. If engineers do not record detailed information 

about modifications in log messages, our framework 

cannot work well. For example, if a revision only 

contains “Fix” in the log message, our framework cannot 

use such a revision to recover links. As in Figure 1, at 

least one meaningful phrase is required for each revision. 

4.4.2 Threats to Validity 

We manually set the keywords for each requirement and 

empirically got the trends of unsuitable or effective 

keywords. This may have affected the accuracy and costs 

of our evaluation, and is a threat to internal validity. In 

the future, we should confirm the influence of having 

multiple people set keywords on accuracy and costs. 

The two targets we used are different in terms of 

software domain and the development organization. 

These factors should not significantly affect the validity 

of our framework. 

In our evaluation, Relevant consisted of links 

known in advance and correct links recovered by our 

framework. However, there should be some links that 

were not known and could not be recovered. Therefore, 

if we include these links to Relevant, Recall may become 

lower. We should conduct experiments using benchmarks 

in order to evaluate our framework more accurately. 

5. Related Work 

5.1 Traceability Issues and Benefits 

Arkley et al. have conducted a survey of nine software 

projects using questionnaires and interviews [2]. They 

have identified three issues related to traceability: the 

usability of tools and the necessity of additional input 

data; a lack of understanding on how to employ the 

traceability information; and a lack of perception of 

direct benefits to the main development process. 

Researchers in the traceability field should aim to 

overcome these issues. Traceability recovery tools, 

including our tool, have not been able to completely 

overcome the issue of usability. We should reduce the 

manual process and additional input data in the future. 

Mäder et al. have conducted a controlled 

experiment with 52 subjects performing real 

maintenance tasks on two third-party development 

projects: half of the tasks with and the other half without 

traceability [4]. Through the experiment, they have 

shown that subjects with traceability performed on 

average 21% faster on a task and created on average 60% 

more correct solutions. This empirical study has affirmed 

the usefulness of requirements traceability. In order to 

maximize traceability benefits, the cost of recovering and 

maintaining traceability links should be reduced. We 

believe that studies of traceability recovery, including 

our study, address this important issue. 

5.2 Traceability Recovery 

Antoniol et al. have proposed a method to recover 

traceability links between code and documentation using 

information retrieval technologies, such as the 

probabilistic model and the vector space model [12]. 

They compare the identifier in source codes with the 

words in documents to recover links. In contrast, we 

recover links using the configuration management log. 

Our framework can recover links even if the identifier in 

source codes and the words in documents are different. 

Marcus et al. have proposed a method to recover 

links between documentation and source code using 

latent semantic indexing (LSI) [13]. They measure the 

similarity of latent semantic between documentation and 

source code to recover links, which significantly 

decreases the dependency on the similarity of 

representation. However, LSI cannot deal with linguistic 

differences. They use the comments and identifier names 

within the source code. Hence, they require that the same 

language be used in the documentation and source code 



IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX 

11 

 

in order for their method to work well. 

Dagenais et al. have proposed a method to recover 

traceability links between an API and learning resources 

by using code-like terms in documents and analyzing 

their contexts [14]. Our framework does not require 

code-like terms in documents because it uses the 

configuration management log to recover links. 

There are additional studies that have compared the 

representation between requirements and source code to 

recover links [15] [16]. Our framework is intended to 

cover the weakness of their methods rather than to be 

upward-compatible with them. Our method does not 

depend on the representation, but it may be inferior to 

their methods for targets in which there is little 

difference in the representation between requirements 

and code. So the completeness and correctness of the 

traceability link recovery may be improved by 

combining our framework with previous methods. 

Kaiya et al. have proposed a method to find change 

impacts on source codes caused by requirements changes 

[17]. They use documents written in Japanese, and 

identify requirements from Japanese sentences and 

implementation points from English sentences. In our 

method, we use the configuration management log. In 

the log, requirements and implementation points are 

distinguished as messages and file paths, so our 

framework does not depend on the language of targets. 

6. Conclusion and Future Work 

We have proposed a framework that includes the process 

to recover traceability links between requirements and 

source code. We have recovered links using the 

configuration management log, and have refined the 

links by applying CVA and having engineers review 

them. Moreover, we have applied the framework to 

actual products that have more than 60KLOC, and have 

confirmed its validity. Our framework enables cost 

reduction of the recovery of traceability links, and the 

recovery of non-explicit traceability links. Recovering 

traceability links may increase the reusability and 

maintainability of software. For future work, we will 

consider the hierarchical structure of requirements and 

code elements, and aim to improve our methods for 

keyword setting and refining links. And, we should 

conduct comparison experiments with previous methods 

in order to argue that our framework can cover the 

weakness of previous methods. 
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